Skip to main content
Log in

A weak-\(L^{p}\) Prodi–Serrin type regularity criterion for the micropolar fluid equations in terms of the pressure

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

This paper is devoted to investigating regularity criteria for the 3D micropolar fluid equations in terms of pressure in weak Lebesgue space. More precisely, we mainly proved that the weak solution is regular on (0, T] provided that either the norm \(\left\| \pi \right\| _{L^{\alpha ,\infty }(0,T;L^{\beta ,\infty }(\mathbb {R}^{3}))}\) with \(\frac{2}{\alpha }+ \frac{3}{\beta }=2\) and \(\frac{3}{2}<\beta <\infty \) or \(\left\| \nabla \pi \right\| _{L^{\alpha ,\infty }(0,T;L^{\beta ,\infty }(\mathbb {R} ^{3}))}\) with \(\frac{2}{\alpha }+\frac{3}{\beta }=3\) and \(1<\beta <\infty \) is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga, H.: A sufficient condition on the pressure for the regularity of weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 2, 99–106 (2000)

    Article  MathSciNet  Google Scholar 

  2. Beirão da Veiga, H.: Concerning the regularity of the solutions to the Navier–Stokes equations via the truncation method. In: II. Équations aux dérivées partielles et applications, pp. 127-138, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris (1998)

  3. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, New York (1976)

    Book  Google Scholar 

  4. Berselli, L., Galdi, G.: Regularity criteria involving the pressure for the weak solutions of the Navier–Stokes equations. Proc. Am. Math. Soc. 130, 3585–3595 (2002)

    Article  MathSciNet  Google Scholar 

  5. Bosia, S., Pata, V., Robinson, J.: A weak-\(L^{p}\) Prodi-Serrin type regularity criterion for the Navier–Stokes equations. J. Math. Fluid Mech. 16, 721–725 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Chen, Z.-M., Dong, B.-Q.: Uniform attractors of non-homogeneous micropolar fluid flows in non-smooth domains. Nonlinearity 20, 1619–1635 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chen, Q., Miao, C.: Global well-posedness for the micropolar fluid system in critical Besov spaces. J. Differ. Equ. 252, 2698–2724 (2012)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z.-M., Price, W.: Decay estimates of linearized micropolar fluid flows in \(\mathbb{R} ^{3}\) space with applications to \(L^{3}\) -strong solutions. Internat. J. Engrg. Sci. 44, 859–873 (2006)

    Article  MathSciNet  Google Scholar 

  9. Dong, B.-Q., Chen, Z.-M.: Regularity criteria of weak solutions to the three-dimensional micropolar flows. J. Math. Phys. 50, 1–13 (2009)

    Article  MathSciNet  Google Scholar 

  10. Dong, B.-Q., Zhang, W.: On the regularity criterion for the 3D micropolar fluid flows in Besov spaces. Nonlinear Anal. Theory Methods Appl. 73, 2334–2341 (2010)

    Article  Google Scholar 

  11. Dong, B.-Q., Jia, Y., Chen, Z.-M.: Pressure regularity criteria of the three-dimensional micropolar fluid flows. Math. Meth. Appl. Sci. 34, 595–606 (2011)

    Article  MathSciNet  Google Scholar 

  12. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  13. Gala, S.: On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey–Campanato space. Nonlinear Anal. Real World Appl. 12, 2142–2150 (2011)

    Article  MathSciNet  Google Scholar 

  14. Gala, S., Ragusa, M.A.: A regularity criterion for 3D micropolar fluid flows in terms of one partial derivative of the velocity. Ann. Polon. Math. 116, 217–228 (2016)

    MathSciNet  Google Scholar 

  15. Gala, S., Yan, J.: Two regularity criteria via the logarithmic of the weak solutions to the micropolar fluid equations. J. Partial Differ. Equ. 25, 32–40 (2012)

    Article  MathSciNet  Google Scholar 

  16. Gala, S.: A remark on the logarithmically improved regularity criterion for the micropolar fluid equations in terms of the pressure. Math. Meth. Appl. Sci. 34, 1945–1953 (2011)

    Article  MathSciNet  Google Scholar 

  17. Galdi, G., Rionero, S.: A note on the existence and uniqueness of solutions of micropolar fluid equations. Int. J. Engrg. Sci. 14, 105–108 (1977)

    Article  MathSciNet  Google Scholar 

  18. Grafakos, L.: Classical Fourier analysis, 2nd edn. Springer (2008)

  19. Ji, X., Wang, Y., Wei, W.: New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier–Stokes equations. J. Math. Fluid Mech. 22(1), 13 (2020)

    Article  MathSciNet  Google Scholar 

  20. Jia, Y., Zhang, W., Dong, B.: Remarks on the regularity criterion of the 3D micropolar fluid flows in terms of the pressure. Appl. Math. Lett. 24, 199–203 (2011)

    Article  MathSciNet  Google Scholar 

  21. Jia, Y., Zhang, W., Dong, B.: Logarithmical regularity criteria of the three-dimensional micropolar fluid equations in terms of the pressure. Abstr. Appl. Anal. (2012). https://doi.org/10.1155/2012/395420

    Article  MathSciNet  Google Scholar 

  22. Kozono, H., Yamazaki, M.: Exterior problem from the stationary Navier-Stokes equations in the Lorentz space. Math. Ann. 310, 279–305 (1998)

    Article  MathSciNet  Google Scholar 

  23. Lukaszewicz, G.: Micropolar fluids. Theory and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkhauser Boston, Inc, Boston, MA (1999)

    Google Scholar 

  24. Loayza, M., Rojas-Medar, M.A.: A weak-\(L^{p}\) Prodi-Serrin type regularity criterion for the micropolar fluid equations. J. Math. Phys. 57, 021512 (2016)

    Article  MathSciNet  Google Scholar 

  25. Malý, J.: Advanced theory of differentiation-Lorentz

  26. Pineau, B., Yu, X.: A new Prodi-Serrin type regularity criterion in velocity directions. J. Math. Fluid Mech. 20, 1737–1744 (2018)

    Article  MathSciNet  Google Scholar 

  27. Pineau, B., Yu, X.: On Prodi-Serrin type conditions for the 3D Navier–Stokes equations. Nonlinear Anal. 190, 111612 (2020)

    Article  MathSciNet  Google Scholar 

  28. Rojas-Medar, M.: Magnato-microplar fluid motion: existence and uniqueness of strong solution. Math. Nachr. 188, 301–319 (1997)

    Article  MathSciNet  Google Scholar 

  29. Suzuki, T.: Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier–Stokes equations. J. Math. Fluid Mech. 14, 653–660 (2012)

    Article  MathSciNet  Google Scholar 

  30. Suzuki, T.: A remark on the regularity of weak solutions to the Navier–Stokes equations in terms of the pressure in Lorentz spaces. Nonlinear Anal. Theory Methods Appl. 75, 3849–3853 (2012)

    Article  MathSciNet  Google Scholar 

  31. Triebel, H.: Theory of Function Spaces. Birkhäuser Verlag, Basel, Boston (1983)

    Book  Google Scholar 

  32. Yamaguchi, N.: Existence of global strong solution to the micropolar fluid equations. Math. Methods Appl. Sci. 28, 1507–1526 (2005)

    Article  MathSciNet  Google Scholar 

  33. Yuan, B.: On the regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space. Proc. Am. Math. Soc. 138, 2025–2036 (2010)

    Article  MathSciNet  Google Scholar 

  34. Wang, Y., Zhao, H.: Logarithmically improved blow up criterion for smooths solution to the 3D micropolar fluid equations. J. Appl. Math. 10, 1–13 (2012)

    MathSciNet  Google Scholar 

  35. Zhou, Y.: Regularity criteria in terms of pressure for the 3-D Navier–Stokes equations in a generic domain. Math. Annalen 328, 173–192 (2004)

    Article  MathSciNet  Google Scholar 

  36. Zhou, Y.: On the regularity criteria in terms of pressure for the Navier–Stokes equations in \(\mathbb{R} ^{3}\). Proc. Am. Math. Soc. 134, 149–156 (2006)

    Article  Google Scholar 

  37. Zhou, Y.: On a regularity criterion in terms of the gradient of pressure for the Navier–Stokes equations in \(\mathbb{R} ^{3}\). Z. Angew. Math. Phys. 57, 384–392 (2006)

    Article  MathSciNet  Google Scholar 

  38. Zhou, Y.: Regularity criteria for the 3D MHD equations in terms of the pressure. Internat. J. Non-Linear Mech. 41, 1174–1180 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the referee for his/her very careful reading of the paper, giving valuable comments and helpful suggestions. M. Benslimane extends his appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia). The fourth author likes to thank Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Vietnam, for the opportunity to work in it. This paper has been supported by Faculty of Fundamental Science, Industrial University of Ho Chi Minh City and P.R.I.N.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that the work was realized in collaboration with the same responsibility. All authors read and approved the final paper.

Corresponding author

Correspondence to Sadek Gala.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omrane, I.B., Slimane, M.B., Gala, S. et al. A weak-\(L^{p}\) Prodi–Serrin type regularity criterion for the micropolar fluid equations in terms of the pressure. Ricerche mat (2023). https://doi.org/10.1007/s11587-023-00829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11587-023-00829-2

Keywords

Mathematics Subject Classification

Navigation