Skip to main content
Log in

Global Well-Posedness in the Critical Besov Spaces for the Incompressible Oldroyd-B Model Without Damping Mechanism

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We prove the global well-posedness in the critical Besov spaces for the incompressible Oldroyd-B model without damping mechanism on the stress tensor in \({\mathbb {R}}^d\) for the small initial data. Our proof is based on the observation that the behaviors of Green’s matrix to the system of \(\big (u,(-\Delta )^{-\frac{1}{2}}{\mathbb {P}}\nabla \cdot \tau \big )\) as well as the effects of \(\tau \) change from the low frequencies to the high frequencies and the construction of the appropriate energies in different frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin/BerlinHeidelberg (2011)

    Book  Google Scholar 

  2. Bird, C.F., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymetric Liquids, Fluid Mechanics, vol. 1, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  3. Cannone, M.: Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations, Handbook of Mathematical fluid Dynamics, vol. III. North-Holland, Amsterdam (2004)

    MATH  Google Scholar 

  4. Cannone, M.: A generalization of a theorem by Kato on Naiver–Stokes equations. Rev. Mat. Iberoam. 13, 515–541 (1997)

    Article  Google Scholar 

  5. Cannone, M., Meyer, Y., Planchon, F.: Solutions autosimilaires des équations de Navier-Stokes, Séminaire “Équations aux Dérivées Partielles” de l’École polytechnique, Exposé VIII (1993–1994)

  6. Chemin, J.-Y., Masmoudi, N.: About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33, 84–112 (2001)

    Article  MathSciNet  Google Scholar 

  7. Chen, Q., Miao, C.: Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal. 68, 1928–1939 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63, 1173–1224 (2010)

    Article  MathSciNet  Google Scholar 

  9. Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. Danchin, R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39 (2001)

    Article  MathSciNet  Google Scholar 

  11. Danchin, R.: On the uniqueness in critical spaces for compresssible Navier–Stokes equatons. Nonlinear Differ. Equ. Appl. 12, 111–128 (2005)

    Article  Google Scholar 

  12. Elgindi, T.M., Rousset, F.: Global regularity for some Oldroyd-B type models. Commun. Pure Appl. Math. 68, 2005–2021 (2015)

    Article  MathSciNet  Google Scholar 

  13. Elgindi, T.M., Liu, J.L.: Global wellposedness to the generalized Oldroyd type models in \({\mathbb{R}}^3\). J. Differ. Equ. 259, 1958–1966 (2015)

    Article  ADS  Google Scholar 

  14. Fernandez-Cara, E., Guillén, F., Ortega, R.R.: Existence et unicité de solution forte locale en temps pour des fluides non newtoniens de type Oldroyd (version \(L^s-L^r\)). C. R. Acad. Sci. Paris Sér. I Math. 319, 411–416 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Fang, D., Zi, R.: Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J. Math. Anal. 48, 1054–1084 (2016)

    Article  MathSciNet  Google Scholar 

  16. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  17. Guillopé, C., Saut, J.-C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)

    Article  MathSciNet  Google Scholar 

  18. Guillopé, C., Saut, J.-C.: Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér. 24, 369–401 (1990)

    Article  MathSciNet  Google Scholar 

  19. Lions, P.-L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. Ser. B 21, 131–146 (2000)

    Article  MathSciNet  Google Scholar 

  20. Lei, Z., Masmoudi, N., Zhou, Y.: Remarks on the blowup criteria for Oldroyd models. J. Differ. Equ. 248, 328–341 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Miao, C., Wu, J., Zhang, Z.: Littlewood–Paley Theory and Applications to Fluid Dynamics Equations. Monographs on Modern Pure mathematics, No. 142. Science Press, Beijing (2012)

    Google Scholar 

  22. Oldroyd, J.G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Edinb. Sect. A 245, 278–297 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  23. Qian, J., Zhang, Z.: Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 198, 835–868 (2010)

    Article  MathSciNet  Google Scholar 

  24. Zhu, Y.: Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J. Funct. Anal. 274, 2039–2060 (2017)

    Article  MathSciNet  Google Scholar 

  25. Zi, R., Fang, D., Zhang, T.: Global solution to the incompressible Oldroyd-B type model in the critical \(L^p\) framework: the case of the non-small coupling paramrter. Arch. Ration. Mech. Anal. 213, 651–687 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Q. Chen and X. Hao were supported by the National Natural Science Foundation of China (No.11671045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Hao.

Additional information

Communicated by G. P. Galdi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section is devoted to the estimates of the convection terms which were used in Sect. 3.

First, let us give some definitions in paradifferential calculus in homogeneous spaces. We designate the homogeneous paraproduct of v by u as

$$\begin{aligned} {\dot{T}}_uv\triangleq \sum _q{\dot{S}}_{q-1}{\dot{\Delta }}_qv. \end{aligned}$$

and the homogeneous remainder of u and v as

$$\begin{aligned} {\dot{R}}(u,v)\triangleq \sum _{q}{\dot{\Delta }}_qu\dot{{\widetilde{\Delta }}}_qv,\ \ \text {and}\ \ \dot{{\widetilde{\Delta }}}_q={\dot{\Delta }}_{q-1}+{\dot{\Delta }}_{q}+{\dot{\Delta }}_{q+1}. \end{aligned}$$

Formally, we have the following homogeneous Bony decomposition:

$$\begin{aligned} uv={\dot{T}}_uv+{\dot{T}}_vu+{\dot{R}}(u,v). \end{aligned}$$

The properties of continuity of homogeneous paraproduct and remainder on homogeneous hybrid Besov spaces are described as follows.

Proposition 5.1

For all \(s_1,s_2,t_1,t_2\) such that \(s_1\le \frac{d}{2}\) and \(s_2\le \frac{d}{2}\), the following estimate holds

$$\begin{aligned} \Vert T_uv\Vert _{{\dot{B}}^{s_1+t_1-\frac{d}{2},s_2+t_2-\frac{d}{2}}}\lesssim \Vert u\Vert _{{\dot{B}}^{s_1,s_2}}\Vert v\Vert _{{\dot{B}}^{t_1,t_2}}. \end{aligned}$$

If \(\min (s_1+t_1,s_2+t_2)>0\), then

$$\begin{aligned} \Vert R(u,v)\Vert _{\dot{B}^{s_1+t_1-\frac{d}{2},s_2+t_2-\frac{d}{2}}}\lesssim \Vert u\Vert _{\dot{B}^{s_1,s_2}}\Vert v\Vert _{\dot{B}^{t_1,t_2}}. \end{aligned}$$

If \(u\in L^{\infty }\),

$$\begin{aligned} \Vert T_uv\Vert _{\dot{B}^{t_1,t_2}}\lesssim \Vert u\Vert _{L^{\infty }}\Vert v\Vert _{\dot{B}^{t_1,t_2}}, \end{aligned}$$

and, if \(\min (t_1,t_2)>0\), then

$$\begin{aligned} \Vert R(u,v)\Vert _{\dot{B}^{t_1,t_2}}\lesssim \Vert u\Vert _{L^{\infty }}\Vert v\Vert _{\dot{B}^{t_1,t_2}}. \end{aligned}$$

Remark 5.2

When \(d\ge 2\), we have \(\Vert uv\Vert _{\dot{B}^{\frac{d}{2}-1,\frac{d}{2}}}\lesssim \Vert u\Vert _{\dot{B}^{\frac{d}{2}}_{2,1}}\Vert v\Vert _{\dot{B}^{\frac{d}{2}-1,\frac{d}{2}}}\).

Proposition 5.3

Let u be a vector with \(\nabla \cdot u=0\). Suppose that \(-1-\frac{d}{2}<s_1,t_1,s_2,t_2\le 1+\frac{d}{2}\). The following two estimates hold

$$\begin{aligned}&\big |({\dot{\Delta }}_j(u\cdot \nabla v),{\dot{\Delta }}_jv)\big | \lesssim c_j2^{-j\psi ^{s_1,s_2}(j)}\Vert u\Vert _{\dot{B}_{2,1}^{\frac{d}{2}+1}}\Vert v\Vert _{\dot{ B}^{s_1,s_2}}\Vert {\dot{\Delta }}_jv\Vert _{L^2},\\&\begin{aligned}&\big |({\dot{\Delta }}_j(u\cdot \nabla v),{\dot{\Delta }}_jw)+({\dot{\Delta }}_j(u\cdot \nabla w),{\dot{\Delta }}_jv)\big | \lesssim c_j\Vert u\Vert _{\dot{B}_{2,1}^{\frac{d}{2}+1}}(2^{-j\psi ^{s_1,s_2}(j)}\Vert v\Vert _ {\dot{B}^{s_1,s_2}}\Vert {\dot{\Delta }}_jw\Vert _{L^2}\\&\quad +2^{-j\psi ^{t_1,t_2}(j)} \Vert w\Vert _{\dot{B}^{t_1,t_2}}\Vert {\dot{\Delta }}_jv\Vert _{L^2}). \end{aligned} \end{aligned}$$

where the function \(\psi ^{\alpha ,\beta }(j)\) define as \(\psi ^{\alpha ,\beta }(j)=\alpha \) if \(j\le 0\), \(\psi ^{\alpha ,\beta }(j)=\beta \), if \(j>0\), and \(\sum _{j\in {\mathbb {Z}}}c_j\le 1\).

One can refer to [10] for the proof of above two Propositions. Here we only have made a slight modification since the incompressible condition on u.

Next, we introduce a useful Proposition to deal with \([{\mathbb {P}}\mathrm {div},u\cdot \nabla ]\) type commutators.

Proposition 5.4

For any smooth tensor \([\tau ^{i,j}]_{d\times d}\) and d dimensional vector u, it always holds that

$$\begin{aligned} {\mathbb {P}}\nabla \cdot (u\cdot \nabla \tau )={\mathbb {P}}(u\cdot \nabla {\mathbb {P}}\nabla \cdot \tau )+{\mathbb {P}}(\nabla u\cdot \nabla \tau )-{\mathbb {P}}(\nabla u\cdot \nabla \Delta ^{-1}\nabla \cdot \nabla \cdot \tau ), \end{aligned}$$

where the ith component of \(\nabla u\cdot \nabla \tau \) is

$$\begin{aligned}{}[\nabla u\cdot \nabla \tau ]^i=\sum _{j}\partial _j u\cdot \nabla \tau ^{i,j}, \end{aligned}$$

and also

$$\begin{aligned}{}[\nabla u\cdot \nabla \Delta ^{-1}\nabla \cdot \nabla \cdot \tau ]^i =\partial _iu\cdot \nabla \Delta ^{-1}\nabla \cdot \nabla \cdot \tau . \end{aligned}$$

For more detailed derivations, one can refer to the proof of the three dimensions in [24].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Hao, X. Global Well-Posedness in the Critical Besov Spaces for the Incompressible Oldroyd-B Model Without Damping Mechanism. J. Math. Fluid Mech. 21, 42 (2019). https://doi.org/10.1007/s00021-019-0446-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0446-1

Keywords

Mathematics Subject Classification

Navigation