Skip to main content
Log in

Global Regularity for the Incompressible Oldroyd-B Model with Only Stress Tensor Dissipation in Critical \({{\varvec{L}}}^{{{\varvec{p}}}}\) Framework

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This work is concerned with the global solutions to the d-dimensional incompressible Oldroyd-B model with only dissipation in the equation of stress tensor (without stress tensor damping or velocity dissipation). The main ingredients of the proof lies in commutator estimate at low frequency and energy estimate in Lagrangian coordinates at high frequency. Particularly, our result extends the works of Wu–Zhao [24] (J. Differ. Equ. 316, 2021) and Constantin–Wu–Zhao–Zhu [9] (J. Evol. Equ. 21, 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  2. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of polymeric liquids: v. 1 fluid mechanics (1987)

  3. Charve, F., Danchin, R.: A global existence result for the compressible Navier–Stokes equations in the critical \(L^p\) framework. Arch. Ration. Mech. Anal. 198, 233–271 (2010)

    Article  MathSciNet  Google Scholar 

  4. Chemin, J.-Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121, 314–328 (1995)

    Article  ADS  Google Scholar 

  5. Chemin, J.-Y., Masmoudi, N.: About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33, 84–112 (2001)

    Article  MathSciNet  Google Scholar 

  6. Chen, Q., Hao, X.: Global well-posedness in the critical Besov spaces for the incompressible Oldroyd-B model without damping mechanism. J. Math. Fluid Mech. 21, 42, 23 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Comm. Pure Appl. Math. 63, 1173–1224 (2010)

    Article  MathSciNet  Google Scholar 

  8. Constantin, P., Kliegl, M.: Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress. Arch. Ration. Mech. Anal. 206, 725–740 (2012)

    Article  MathSciNet  Google Scholar 

  9. Constantin, P., Wu, J., Zhao, J., Zhu, Y.: High Reynolds number and high Weissenberg number Oldroyd-b model with dissipation. J. Evol. Equ. 21 (2021)

  10. Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Danchin, R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39 (2001)

    Article  MathSciNet  Google Scholar 

  12. Danchin, R., He, L.: The incompressible limit in \(L^p\) type critical spaces. Math. Ann. 366, 1365–1402 (2016)

    Article  MathSciNet  Google Scholar 

  13. Elgindi, T.M., Liu, J.: Global wellposedness to the generalized Oldroyd type models in \(\mathbb{R}^3\). J. Differ. Equ. 259, 1958–1966 (2015)

    Article  ADS  Google Scholar 

  14. Elgindi, T.M., Rousset, F.: Global regularity for some Oldroyd-B type models. Commun. Pure Appl. Math. 68, 2005–2021 (2015)

    Article  MathSciNet  Google Scholar 

  15. Guillopé, C., Saut, J.-C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)

    Article  MathSciNet  Google Scholar 

  16. Guillopé, C., Saut, J.-C.: Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér. 24, 369–401 (1990)

    Article  MathSciNet  Google Scholar 

  17. Hmidi, T.: Régularité höldérienne des poches de tourbillon visqueuses. J. Math. Pures Appl. (9) 84, 1455–1495 (2005)

    Article  MathSciNet  Google Scholar 

  18. Hu, D., Lelièvre, T.: New entropy estimates for Oldroyd-B and related models. Commun. Math. Sci. 5, 909–916 (2007)

    Article  MathSciNet  Google Scholar 

  19. Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. Ser. B 21, 131–146 (2000)

    Article  MathSciNet  Google Scholar 

  20. Oldroyd, J.G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. Roy. Soc. Lond. Ser. A 245, 278–297 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  21. Tao, T.: Nonlinear dispersive equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis

  22. Vishik, M.: Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal. 145, 197–214 (1998)

    Article  MathSciNet  Google Scholar 

  23. Wu, J.: Global regularity for a class of generalized magnetohydrodynamic equations. J. Math. Fluid Mech. 13, 295–305 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wu, J., Zhao, J.: Global regularity for the generalized incompressible Oldroyd-B model with only stress tentor dissipation in critical besov spaces. J. Differ. Equ. 316, 641–686 (2022)

    Article  ADS  Google Scholar 

  25. Wu, J., Zhao, J.: Global regularity for the generalized incompressible Oldroyd-B model with only velocity dissipation and no stress tensor damping, preprint (2021)

  26. Zhai, X.: Global solutions to the \(n\)-dimensional incompressible Oldroyd-B model without damping mechanism. J. Math. Phys. 62, 021503 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zhai, X., Dan, Y., Li, Y.: Global well-posedness and inviscid limits of the generalized Oldroyd type models, arXiv e-prints (2021). arXiv:2106.14785

  28. Zhai, X., Li, Y., Zhou, F.: Global large solutions to the three dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 52, 1806–1843 (2020)

    Article  MathSciNet  Google Scholar 

  29. Zhu, Y.: Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J. Funct. Anal. 274, 2039–2060 (2018)

    Article  MathSciNet  Google Scholar 

  30. Zi, R., Fang, D., Zhang, T.: Global solution to the incompressible Oldroyd-B model in the critical \(L^p\) framework: the case of the non-small coupling parameter. Arch. Ration. Mech. Anal. 213, 651–687 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by China Scholarship Council (Nos.202006370255) and the National Natural Science Foundation of China (Nos. 11801574, 11971485, 12171486, 12161091), Natural Science Foundation of Hunan Province (No. 2019JJ50788), Central South University Innovation-Driven Project for Young Scholars (No. 2019CX022) and Fundamental Research Funds for the Central Universities of Central South University, China (Nos. 2020zzts038, 2021zzts0041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lvqiao Liu.

Additional information

Communicated by L. Székelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Liu, L., Qin, D. et al. Global Regularity for the Incompressible Oldroyd-B Model with Only Stress Tensor Dissipation in Critical \({{\varvec{L}}}^{{{\varvec{p}}}}\) Framework. J. Math. Fluid Mech. 24, 54 (2022). https://doi.org/10.1007/s00021-022-00675-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-022-00675-6

Keywords

Mathematics Subject Classification

Navigation