Skip to main content
Log in

Global Well-Posedness for Navier–Stokes Equations with Small Initial Value in \({B^{0}_{n,\infty}(\Omega)}\)

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We prove global well-posedness for instationary Navier–Stokes equations with initial data in Besov space \({B^{0}_{n,\infty}(\Omega)}\) in whole and half space, and bounded domains of \({{\mathbb R}^{n}}\), \({n \geq 3}\). To this end, we prove maximal \({L^{\infty}_{\gamma}}\) -regularity of the sectorial operators in some Banach spaces and, in particular, maximal \({L^{\infty}_{\gamma}}\) -regularity of the Stokes operator in little Nikolskii spaces \({b^{s}_{q,\infty}(\Omega)}\), \({s \in (-1, 2)}\), which are of independent significance. Then, based on the maximal regularity results and \({b^{s_{1}}_{q_{1},\infty}-B^{s_{2}}_{q_{2,1}}}\) estimates of the Stokes semigroups, we prove global well-posedness for Navier–Stokes equations under smallness condition on \({\|u_{0}\|_{B^{0}_{n,\infty}(\Omega)}}\) via a fixed point argument using Banach fixed point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe T., Shibata Y.: On a resolvent estimate of the Stokes equation on an infinite layer. J. Math. Soc. Jpn. 55, 469–497 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abels H., Wiegner M.: Resolvent estimates for the Stokes operator on an infinite layer. Differ. Integral Equ. 18, 1081–1110 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Amann H.: Parabolic evolution equations in interpolation and extrapolation spaces. J. Funct. Anal. 78, 233–270 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amann H.: Linear and Quasilinear Parabolic Problems, I. Abstract Linear Theory. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  5. Amann H.: On the strong solvability of the Navier–Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Angenent S.: Nonlinear analytic semiflows. Proc. R. Soc. Edinb. Sect. A 115, 91–107 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bergh J., Löfström J.: Interpolation Spaces. Springer, New York (1977)

    Google Scholar 

  8. Borchers W., Miyakawa T.: \({L^{2}}\) -decay for the Navier–Stokes flows in half spaces. Math. Ann. 282, 139–155 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borchers W., Sohr H.: On the semigroup of the Stokes operator for exterior domains in \({L^{q}}\) -spaces. Math. Z. 196, 415–425 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain J., Pavlović N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255, 2233–2247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cannone, M.: Ondelettes, Paraproduits et Navier–Stokes, Diderot Editeur, Arts et Sciences, Paris (1995)

  12. Cannone M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iveroamericana 13, 515–541 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cannone M., Planchon F.: Self-similar solutions for Navier–Stokes equations in \({{\mathbb R}^{3}}\). Commun. Partial Differ. Equ. 21, 179–193 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cannone M., Planchon F., Schonbek M.E.: Strong solutions to incompressible Navier–Stokes equations in the half space. Commun. Partial Differ. Equ. 25, 903–924 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Clément P., Simonett G.: Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations. J. Evol. Equ. 1(1), 39–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cowling M., Doust I., McIntosh A., Yagi A.: Banach space operators with a bounded \({H^{\infty}}\) functional calculus. J. Aust. Math. Soc. Ser. A 60, 51–89 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Da Prato G., Grisvard P.: Equations d’évolution abstraites non linéaires de type parabolique. Ann. Mat. Pura Appl. 4, 329–396 (1979)

    Article  MathSciNet  Google Scholar 

  18. Denk, R., Hieber, M., Prüss, J.: R–boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 788, 114 (2003)

  19. Desch W., Hieber M., Prüss J.: \({L_{p}}\) -theory of the Stokes equation in a half-space. J. Evol. Equ. 1, 115–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dore G., Venni A.: On the closedness of the sum of two closed operators. Math. Z. 196, 189–201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Farwig, R., Giga, Y., Hsu, P.-Y.: Initial values for the Navier–Stokes equations in spaces with weights in time. Accepted for publication in Funkcialaj Ekvacioj (TU Darmstadt, FB Math. Preprint No. 2692 (2014). Preprints Series in Mathematics #1060. Hokkaido University)

  22. Farwig R., Ri M.-H.: The resolvent problem and \({H^{\infty}}\) -calculus of the Stokes operator in unbounded cylinders with several exits to infinity. J. Evol. Equ. 7, 497–528 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Farwig R., Ri M.-H.: Resolvent estimate and maximal regularity in weighted \({L^{q}}\) -spaces of the Stokes operator in an infinite cylinder. J. Math. Fluid. Mech. 10, 352–387 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Farwig R., Sohr H.: Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations. Math. Ann. 345, 631–642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Farwig R., Sohr H., Varnhorn W.: On optimal initial value conditions for local strong solutions of the Navier–Stokes equations. Ann. Univ. Ferrara 55, 89–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fujita H., Kato T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fujiwara D., Morimoto H.: An \({L^{r}}\) -theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  28. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Steady-State Problems, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  29. Germain P.: Multipliers, paramultipliers, and weak-strong uniqueness for the Navier–Stokes equations. J. Differ. Equ. 226, 373–428 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Germain, P., Pavlović, N., Staffilani, G.: Regularity of solutions to the Naiver–Stokes equations evolving from small data in \({BMO^{-1}}\). Int. Math. Res. Not. 2007 (2007). doi:10.1093/imrn/rnm087

  31. Giga Y.: Analyticity of the semigroup generated by the Stokes operator in \({L_{r}}\) -spaces. Math. Z. 178, 297–329 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Giga Y., Miyakawa T.: Solutions in \({L_{r}}\) of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89, 267–281 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Giga Y.: Domains of fractional powers of the Stokes operator in \({L_{r}}\) spaces. Arch. Ration. Mech. Anal. 89, 251–265 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Giga Y., Sohr H.: Abstract \({L_{p}}\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kato T.: Strong \({L^{p}}\) -solutions of the Navier–Stokes equations in \({{\mathbb R}^{m}}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Koch H., Tataru D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Miura H., Sawada O.: On the regularizing rate estimates of Koch–Tataru’s solution to the Navier–Stokes equations. Asymptot. Anal. 49, 1–15 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Miyakawa T.: On nonstationary solutions of the Navier–Stokes equations in exterior domains. Hiroshima Math. J. 112, 115–140 (1982)

    MathSciNet  Google Scholar 

  39. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  40. Prüss J., Simonett G.: Maximal regularity for evolution equations in weighted \({L_{p}}\) -spaces. Arch. Math. 82, 415–431 (2004)

    Article  MATH  Google Scholar 

  41. Simonett G.: Center manifolds for quasilinear reaction–diffusion systems. Differ. Integral Equ. 8(4), 753–796 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Temam R.: Navier–Stokes Equations. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  43. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam (1983)

    Google Scholar 

  44. Wiegner M.: The Navier–Stokes equations—a neverending challenge?. Jahresber. Dtsch. Math. Ver. 101, 1–25 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myong-Hwan Ri.

Additional information

Communicated by Y. Giga

M.-H. Ri was supported by 2012 CAS-TWAS Postdoctoral Fellowship with Grant No. 3240267229.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ri, MH., Zhang, P. & Zhang, Z. Global Well-Posedness for Navier–Stokes Equations with Small Initial Value in \({B^{0}_{n,\infty}(\Omega)}\) . J. Math. Fluid Mech. 18, 103–131 (2016). https://doi.org/10.1007/s00021-015-0243-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-015-0243-4

Mathematics Subject Classification

Keywords

Navigation