Skip to main content
Log in

Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Consider the instationary Navier–Stokes system in a smooth bounded domain \({\Omega\subset \mathbb {R}^3}\) with vanishing force and initial value \({u_0\in L^2_\sigma(\Omega)}\) . Since the work of Kiselev and Ladyzhenskaya (Am. Math. Soc. Transl. Ser. 2 24:79–106, 1963) there have been found several conditions on u 0 to prove the existence of a unique strong solution \({u\in L^s\left( 0,T;L^q(\Omega)\right)}\) with u(0) = u 0 in some time interval [0, T), 0 < T ≤ ∞, where the exponents 2 < s < ∞, 3 < q < ∞ satisfy \({\frac{2}{s} + \frac{3}{q} = 1}\) . Indeed, such conditions could be weakened step by step, thus enlarging the corresponding solution classes. Our aim is to prove the following optimal result with the weakest possible initial value condition and the largest possible solution class: Given u 0qs as above and the Stokes operator A 2, we prove that the condition \({\int_0^\infty \| e^{-tA_2}u_0\|_q^s\, dt < \infty}\) is necessary and sufficient for the existence of such a local strong solution u. The proof rests on arguments from the recently developed theory of very weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: Linear and Quasilinear Parabolic Equations. Birkhäuser Verlag, Basel (1995)

    Google Scholar 

  2. Amann H.: On the strong solvability of the Navier–Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amann H.: Nonhomogeneous Navier–Stokes equations with integrable low-regularity data, pp. 1–26. Int. Math. Ser. Kluwer Academic/Plenum Publishing, New York (2002)

    Google Scholar 

  4. Escauriaza, L., Seregin, G., Šverák, V.: On L 3,∞-solutions to the Navier–Stokes equations and backward uniqueness, Inst. Math. Appl., Univ. Minnesota, Preprint no. 1904 (2002)

  5. Farwig R., Sohr H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan 46, 607–643 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Farwig R., Galdi G.P., Sohr H.: A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous data. J. Math. Fluid Mech. 8, 423–444 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Farwig R., Kozono H., Sohr H.: Local in time regularity properties of the Navier–Stokes equations. Indiana Univ. Math. J. 56, 2111–2132 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Farwig, R., Kozono, H., Sohr, H.: Very weak, weak and strong solutions to the instationary Navier–Stokes system. In: Kaplický, P., Nečasová, Š. (eds.) Topics on Partial Differential Equations. J. Nečas Center for Mathematical Modeling. Lecture Notes, vol. 2, Prague (2007)

  9. Fujita H., Kato T.: On the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  10. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Nonlinear Steady Problems. Springer Tracts in Natural Philosophy, New York (1998)

  11. Giga Y.: Analyticity of the semigroup generated by the Stokes operator in L r -spaces. Math. Z. 178, 287–329 (1981)

    Article  MathSciNet  Google Scholar 

  12. Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Giga Y., Sohr H.: Abstract L q-estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Heywood J.G.: The Navier–Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1950–51)

    Google Scholar 

  16. Kiselev A.A., Ladyzenskaya O.A.: On the existence of uniqueness of solutions of the non-stationary problems for flows of non-compressible fluids. Am. Math. Soc. Transl. Ser. 2 24, 79–106 (1963)

    Google Scholar 

  17. Kozono H., Yamazaki M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Comm. Partial Differ. Equ. 19, 959–1014 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  19. Miyakawa T.: On the initial value problem for the Navier–Stokes equations in L r -spaces. Math. Z. 178, 9–20 (1981)

    Google Scholar 

  20. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel (2001)

  21. Sohr H.: A regularity class for the Navier–Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Solonnikov V.A.: Estimates for solutions of nonstationary Navier–Stokes equations. J. Soviet Math. 8, 467–529 (1977)

    Article  MATH  Google Scholar 

  23. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

  24. Varnhorn W.: The Stokes Equations. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Farwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farwig, R., Sohr, H. Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations. Math. Ann. 345, 631–642 (2009). https://doi.org/10.1007/s00208-009-0368-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0368-y

Mathematics Subject Classification (2000)

Navigation