Abstract
The paper is devoted to the study of compactness of Hankel operators acting between distinct Hardy spaces generated by Banach function lattices. We prove an analogue of Hartman’s theorem characterizing compact Hankel operators in terms of properties of their symbols. As a byproduct we give an estimation of the essential norm of such operators. Furthermore, compactness of commutators and semicommutators of Toeplitz operators for unbounded symbols is discussed.
Similar content being viewed by others
Avoid common mistakes on your manuscript.
1 Introduction
Let \(H^2\) be the space of analytic and squareintegrable functions on the unit circle \(\mathbb {T}=\{e^{i\theta }:\theta \in [0,2\pi )\}\). For a measurable and bounded function \(a\) on \(\mathbb {T}\) (called a symbol), the Toeplitz operator \(T_a\) is defined on \(H^2\) as \(T_af=P(af)\), \(f\in H^2\). Here \(P\) is the orthogonal projection from \(L^2\) onto \(H^2\) (i.e., the Riesz projection). Similarly, the Hankel operator \(H_a\) is defined on \(H^2\) by the formula \(H_af = P(aJf)\), where \(J\) is the flip operator.
The theory of Toeplitz and Hankel operators has been constantly developed since the beginning of the twentieth century and plays a pivotal role in functional and harmonic analysis as well as in the operator theory (see [3, 31]). Through intimate connection with Toeplitz and Hankel matrices, these operators are of great importance in many applications far beyond pure mathematics, for instance in signal and image processing, queueing theory or quantum mechanics.
It is worth mentioning that from the historical point of view, the main lines of research in the field of Toeplitz and Hankel operators are related to the case when a symbol of operators is bounded, that is the discussed operators act on (the same) Hardy space (mainly \(H^2\)). The case of Toeplitz and Hankel operators acting from one to another Hardy space (further we will refer to such a situation as nonalgebraic) was considered for the first time—up to our knowledge—in the papers [13, 35, 36]. Recently, this kind of study has been developed from a general perspective of Hardy spaces generated by Banach lattices in [20] (cf. [14]).
This paper is in a sense a followup to an article [20]. There, the first author studied Toeplitz and Hankel operators acting between distinct Hardy spaces. Among other things, he proved nonalgebraic versions of Brown–Halmos and Nehari’s theorems. The present work is devoted to the study of compact counterparts of the results obtained in [20]. Since there are no nontrivial compact Toeplitz operators even in the general approach (see [20, Section 4.2]), we focus on compactness of Hankel operators.
In the classical case of Hankel operators acting on \(H^2\) their compactness has been completely described by Hartman [8]. Namely, \(H_a\) is compact on \(H^2\) if and only if \(a\in C(\mathbb {T})+\overline{H^2}\). Exactly the same characterization holds for \(H_a:H^p\rightarrow H^p\) in the case when \(p\in (1,\infty )\), see [3, p. 80]. For \(H_a:H^1\rightarrow H^1\) the situation is more involved. In [29] (cf. [13, 35]) the authors showed that the compactness of \(H_a\) on \(H^1\) is equivalent to \(Pa\in VMOA _{{\text {log}}}\).
The main result of the paper is an analogue of the Hartman’s theorem, but fitted for nonalgebraic setting. Namely, we fully characterize compact operators among all bounded Hankel operators \(H_a:H[X]\rightarrow H[Y]\), where \(H[X],H[Y]\) are Hardy type spaces built upon r.i. spaces satisfying some general assumptions (actually, assumptions of the general Nehari theorem—see Sect. 4). The special cases of Hardy–Orlicz and Hardy–Lorentz spaces are also discussed.
Furthermore, although we consider an essentially nonalgebraic situation, that is Toeplitz and Hankel operators act between distinct spaces, we are able to study commutators \([T_a,T_b]\) and semicommutators \((T_a,T_b]\) of these operators (see Sect. 5). On one hand, such a nonalgebraic approach to an ideologically algebraic objects is not completely new in harmonic analysis. For example, commutators \([T,b]:L^p\rightarrow L^q\) of Calderón–Zygmund and multiplication operators have been investigated in the recent papers [11, 12] (see also references therein). On the other hand, the commutator \([T,b]\) considered in the mentioned papers is understood rather as a single operator acting directly from \(L^p\) to \(L^q\) without considering any intermediate space between \(L^p\) and \(L^q\). Our approach is different. Basing on Proposition 5.3 we find an intermediate space such that the respective component of the commutator \([T_a,T_b]\) factors through it. In consequence, we may treat components of \([T_a,T_b]\) as individual operators and thanks to that we are able to apply obtained results to give sufficient conditions for compactness of such commutator.
2 Preliminaries
In this part we present a necessary background for consideration in the following sections. When it comes to that we follow the classical monographs like [19, 23] or [2]. Nevertheless, for the convenience of the reader and due to the generality of the topic being considered, we recall the main definitions and notations below.
2.1 QuasiBanach Function Spaces
Recall that \(\mathbb {T}\) is the unit circle and \(m\) is the normalized Lebesgue measure on \(\mathbb {T}\), that is \(d m(t)=(2\pi )^{1}d t\). Let \(L^0:=L^0(\mathbb {T})\) be the space of (equivalence classes of) all \(m\)measurable complexvalued almost everywhere finite functions on \(\mathbb {T}\).
A quasiBanach space \(X\subset L^0\) is called a quasiBanach function space if it has the socalled ideal property (that is, \(g\in X\) and \(\Vert g\Vert _X \leqslant \Vert f\Vert _X\) for all \(f\in X\) and \(g\in L^0\) satisfying \(g \leqslant f\) a.e. on \(\mathbb {T}\)) and \(L^{\infty }\subset X\). If in addition \(X\) is a Banach space, then we will call it a Banach function space (it is also common to refer to such a space a Köthe space or Banach function lattice).
A quasiBanach function space \(X\) has the Fatou property when given a sequence \((f_n)_{n\in \mathbb {N}}\subset X\) and \(f\in L^0\) satisfying \(0\le f_n\uparrow f\) a.e. as \(n\rightarrow \infty \) and \(\sup _{n\in \mathbb {N}}\Vert f_n\Vert _X<\infty \) we have \(f\in X\) and \(\Vert f\Vert _X = \sup \{\Vert f_n\Vert _X:n\in \mathbb {N}\}\). A quasiBanach function space \(X\) has the semiFatou property if for each \((f_n)_{n\in \mathbb {N}}\subset X\), \(f\in X\) such that \(0\le f_n\uparrow f\) a.e. as \(n\rightarrow \infty \) there holds \(\Vert f\Vert _X = \sup \{\Vert f_n\Vert _X:n\in \mathbb {N}\}\).
Recall that \(f\in X\) is said to be an order continuous element if for each \((f_n)_{n\in \mathbb {N}}\subset X\) satisfying \(0\le f_n\le f\) for all \(n\in \mathbb {N}\) and \(f_n\rightarrow 0\) a.e. as \(n\rightarrow \infty \), there holds \(\Vert f_n\Vert _X\rightarrow 0\) as \(n\rightarrow \infty \). The subspace of order continuous elements of \(X\) is denoted by \({X}_{o}\). Evidently, \({X}_{o}\) has the semiFatou property. We say that \(X\) is order continuous, when \(X={X}_{o}\). Notice that this is equivalent to the separability of \(X\).
For a quasiBanach function space \(X\), its Köthe dual \(X'\) is defined as the space of functions \(g\in L^0\) satisfying \(fg\in L^1\) for all \(f\in X\) and equipped with a quasinorm \(\Vert g\Vert _{X'}=\sup \{\Vert fg\Vert _{L^1}:\Vert f\Vert _X\leqslant 1\}\). Notice that \(X'\) is nontrivial and possesses the Fatou property if \(X\) is a Banach function space. Note also that \(X'\) may be trivial, that is \(X'=\{0\}\), when \(X\) is just a quasiBanach function space. For example, \((L^p)'=\{0\}\) when \(p\in (0,1)\). It is known that a Banach function space \(X\) has the Fatou property if and only if \(X''\equiv X\) (see [23, p. 30]).
We will work within an important class of quasiBanach function spaces, that is with rearrangement invariant spaces. Recall that for \(f\in L^0\) it’s distribution \(\mu _f\) is given by \(\mu _f(\lambda )=m\bigl \{t\in \mathbb {T}:f(t)>\lambda \bigr \},\ \lambda \geqslant 0\). Two functions \(f,g\in L^0\) are said to be equimeasurable if \(\mu _f(\lambda )=\mu _g(\lambda )\) for all \(\lambda \geqslant 0\). The nonincreasing rearrangement \({f}^{*}\) of \(f\in L^0\) is defined by
A quasiBanach function space \(X\) is called rearrangement invariant (r.i. for short) if for every pair of equimeasurable functions \(f,g \in L^0\), \(f\in X\) implies that \(g\in X\) and \(\Vert f\Vert _X=\Vert g\Vert _X\). We point out that many important examples of quasiBanach function spaces are rearrangementinvariant, for example Lebesgue, Orlicz and Lorentz spaces. We refer the reader to [19, 23] and [2] for more information on nonincreasing rearrangements and r.i. spaces.
Let \(X\) be a r.i. quasiBanach function space. For each \(s\in \mathbb {R}_+\) the dilation operator \(D_s\) is defined by
It is wellknown (see, for example, [19] for the case of Banach spaces, or [5, 28] for the case of quasiBanach spaces on \(\mathbb {R}\) and \(\mathbb {R}_+\), respectively) that \(D_s\) is bounded on \(X\) for each \(s>0\) and the following limits exist
The numbers \(\alpha _X\) and \(\beta _X\) are called the lower and the upper Boyd index of \(X\), respectively. For an arbitrary r.i. Banach function space \(X\), its Boyd indices belong to \([0,1]\) and \(\alpha _X\le \beta _X\). We say that Boyd indices are nontrivial, if \(\alpha _X,\beta _X\in (0,1)\).
2.2 Pointwise Multipliers and Products
Let \(X\) and \(Y\) be Banach function spaces. The space of pointwise multipliers \(M(X,Y)\) from \(X\) to \(Y\) is defined as
equipped with the operator norm
It is clear, that each \(f\in M(X,Y)\) corresponds to a bounded multiplication operator \(M_f:X\rightarrow Y\) defined by \(M_f:g\mapsto fg\) and there holds \(\Vert f\Vert _{M(X,Y)}=\Vert M_f\Vert _{X\rightarrow Y}\). Function f defining the operator \(M_f\) will be called its symbol.
Let us collect some known facts about spaces of pointwise multipliers.

If \(1\leqslant p<q\leqslant \infty \), then \(M(L^p,L^q)=\{0\}\) (see [25, Theorem 2]), while for \(1\leqslant q\leqslant p\leqslant \infty \) there holds \(M(L^p,L^q)\equiv L^r\), where \(1/r=1/q1/p\), (see [25, Proposition 3]).

For an arbitrary Banach function space \(X\), \(M(X,X)\equiv L^\infty \) (see [25, Theorem 3]).

For two rearrangement invariant Banach function spaces \(X\) and \(Y\), \(M(X,Y)\not =\{0\} \) if and only if \(X\subset Y\) (see [25, the remark after Corollary 1], or [16, Theorem 2.2 (i)]).

If \(X\) and \(Y\) are rearrangement invariant Banach function spaces and \(X\subset Y\), then \(M(X,Y)\) is also rearrangement invariant (see [16, Theorem 2.2]).
The notion of multipliers is associated with a concept of products of spaces. Given two quasiBanach spaces \(X\) and \(Y\), the pointwise product \(X\odot Y\) is defined as
It should be noted that even if \(X,Y\) are Banach function spaces, then \(X\odot Y\) need not to be a Banach space. Indeed, the product space is, in general, a quasiBanach space when equipped with the quasinorm
For example, if \(p,q\in (0,\infty ]\), then \(L^p\odot L^q\equiv L^r\), where \(\frac{1}{r}=\frac{1}{p}+\frac{1}{q}\). For further reading we refer to the papers [17, 34] and references included therein.
3 Hardy Spaces, Toeplitz and Hankel Operators
For \(n\in \mathbb {Z}\) and \(t\in \mathbb {T}\), let \(\chi _n(t):=t^n\). The Fourier coefficients of a function \(f\in L^1\) are given by
Let \(X\) be a quasiBanach function space such that \(X\subset L^1\) (note that \(X\subset L^1\) for each r.i. Banach function space). The Hardy space \(H[X]\) is defined by
with the quasinorm inherited from \(X\) (see for example [14, 26, 27, 38]). If \(p\in [1,\infty ]\), then \(H^p:=H[L^p]\) is the classical Hardy space (see for example [6, 9, 15]). We shall also use the following variants of Hardy spaces:
The Riesz projection \(P\) is for \(f\in L^1\) given by the formula
where \(\widetilde{f}\) is the conjugate function to \(f\) (see for example [15, Chapter III] for the definition of \(\widetilde{f}\)). We recall that if a quasiBanach function space \(X\) has nontrivial Boyd indices, then from the Boyd interpolation theorem it follows that \(P:X\rightarrow X\) is a bounded operator (see [5, 23]). A little more can be said in the case of r.i. Banach function spaces. Indeed, in [7] it was proved that \(P:X\rightarrow X\) is bounded if and only if \(X\) has nontrivial Boyd indices. In such the case, the following equivalent formula for P is meaningful
Below we state definitions of Toeplitz and Hankel operators. Roughly speaking we follow [20], however, notice that we allow also quasiBanach spaces, which will be used as a tool in the last section. Let \(X\) and \(Y\) be r.i. quasiBanach function spaces such that \(X\subset Y\subset L^1\) and assume that \(P\) is bounded on \(Y\). For \(a\in M(X,Y)\), the Toeplitz operator \(T_a\) is defined by the formula
Analogously, the Hankel operator is given by
where J is the socalled flip operator, that is
It is well known that a Toeplitz operator \(T_a:H[X]\rightarrow H[Y]\) admits the matrix representations with a Toeplitz matrix, that is \(\langle T_a\chi _j,\chi _k\rangle =a(kj)\) for all \(k,j\geqslant 0\). The converse statement is known as the Brown–Halmos theorem and holds for a wide class of spaces (see for example [3], or [14, 20] for nonalgebraic setting). An analogous role, but for Hankel operators is played by the Nehari theorem. We will need in the sequel the following general version of it (see [20, Theorem 5.2]).
Theorem 3.1
(The general Nehari theorem) Let \(X,Y\) be two r.i. Banach function spaces, such that \(X\) is separable, \(X\subset Y\), \(Y\) has nontrivial Boyd indices and one of the following conditions holds:

(i)
\(X\odot M(X,Y)=Y\) and \(X,Y\) have the Fatou property,

(ii)
\(\beta _X<\alpha _Y\) and \(Y\) has the semiFatou property.
Then a continuous linear operator \(A:H[X]\rightarrow H[Y]\) satisfies
for some sequence \((a_k)_{k>0}\) if and only if there exists \(a\in M(X,Y)\) such that \(\widehat{a}(n)=a_n\) for each \(n>0\) and \(A=H_a\), i.e., \(A:f\mapsto P(aJf)\). Moreover,
where the constant \(c>0\) depends only on the spaces \(X,Y\).
4 Compact Hankel Operators
Before we state the main result we need to prove an analogue of Lemma 5.4 from [31]. Recall that a Banach space \(Y\) has the approximation property, if for every Banach space \(X\), the set of finite rank operators from \(X\) into \(Y\) is dense in the subspace \(K(X,Y)\) of compact operators from \(X\) into \(Y\) (cf. [23, Theorem 1.e.4, p. 32]).
In what follows \(S:X\rightarrow X\) denotes the shift operator given by
Lemma 4.1
Let \(X\) and \(Y\) be r.i. Banach function spaces such that \(Y\) has nontrivial Boyd indices and assume that \(X\) and \(X'\) are order continuous. If \(K:H[X]\rightarrow H[Y]\) is compact, then
Proof
Notice that from [32, Theorem 4.6] (cf. [33]) it follows that every r.i. Banach function space has the approximation property. Since \(Y\) has nontrivial Boyd indices, then by the boundedness of the Riesz projection, \(H[Y]\) is complemented in \(Y\) and thus also \(H[Y]\) has the approximation property. In consequence, any compact operator \(K:H[X]\rightarrow H[Y]\) may be approximated in the norm topology by finite rank operators.
Let \(\varepsilon >0\) be arbitrary and \(K:H[X]\rightarrow H[Y]\) be compact. Then there exists a finite rank operator \(F\) such that \(\Vert KF\Vert \leqslant \frac{\varepsilon }{4}\). Representing \(F\) in a canonical form there exist (not necessarily unique) functions \(\varphi _k\in X'\) (since \(H[X]^*\simeq X'/ H[X]^{\perp }\)) and \(\eta _k\in H[Y]\), where \(k\in \{1,\dots ,m\}\) and \(m>0\), such that
Since \(X'\) is order continuous, then polynomials are dense in \(X'\). Thus there exist polynomials \(p_k\in X'\) such that
Further observe that
Notice that for a fixed \(k\) and arbitrary \(f\in H[X]\) we have
whenever \(n>\deg p_k\). As a consequence, for \(n>\max \{\deg p_k:k\in \{1,\dots ,m\}\}\) there holds
and the proof is finished. \(\square \)
Recall that the essential norm \(\Vert T\Vert _{{\mathrm{ess}}}\) of an operator \(T\in L(X,Y)\), where \(X,Y\) are Banach spaces, is the distance of \(T\) from the subspace of compact operators \(K(X,Y)\), that is
In 1958, Hartman [8] characterized the compactness of Hankel operators \(H_a:H^2\rightarrow H^2\) and showed that \(H_a\) is compact if and only if there exists a continuous function \(g\) on \(\mathbb {T}\) such that \(\widehat{g}(n) = a_n\) for \(n\in \mathbb {N}\). Using the notion of the essential norm even more can be said. The following result attributed to Hartman, Adamyan, Arov and Krein, contains estimates on the essential norm of Hankel operators on \(H^p\) spaces.
Theorem 4.2
([3, Theorem 2.54]) Let \(a\in L^\infty \) and \( p\in (1,\infty )\). Then
where \(c_p\) is the norm of the Riesz projection \(P:L^p\rightarrow H^p\).
Here the space \(C+ \overline{H^\infty }\) is a closed subalgebra of \(L^\infty \) (this statement is usually referred to as Sarason’s theorem) consisting of functions \(\phi \in L^\infty \) such that \(\phi \) admits a representation \(\phi = g + f \), where \(g\in C\) and \(f\in \overline{H^\infty }\) (see [31, p. 25]).
Our description of compact Hankel operators will be of similar fashion, but \(C\) will be replaced by \(M (X,Y)_{o}\), while \(M(X,Y)\) and \(\overline{H[M(X,Y)]}\) will play the role of \(L^\infty \) and \(H^\infty \), respectively. At first, we need, however, one more auxiliary result, i.e., an analogue of Sarason’s theorem.
Theorem 4.3
Let \(X\) be r.i. Banach function spaces with the Fatou property. Then \({X}_{o}+\overline{H[X]}\) is a closed subspace of \(X\). In particular,
Proof
First notice that if \(X={X}_{o}\) or \(X\) has nontrivial Boyd indices, then there is nothing to prove. Suppose that \(X\not ={X}_{o}\). We will follow ideas of [31, Theorem 5.1]. At first we will show that for each \(f\in {X}_{o}\)
We need to prove only the inequality \({\mathrm{dist}}_{X}(f, \overline{H[X]})\geqslant {\mathrm{dist}}_{X}(f, \overline{H[{X}_{o}]})\). Denote for \(f\in L^1\) and \(r\in (0,1)\)
where \(P_r\) is the Poisson kernel for the unit disc \(\mathbb {D}\) (see [6, 9, 15]). Let now \(f\in {X}_{o}\) and \(g\in \overline{H[X]}\). Then
where the last inequality follows from the Calderón–Mitjagin theorem (cf. [2]) and the fact that \(\Vert P_r\Vert _{H^1}=1\) for each \(r\in (0,1)\). As a consequence,
However, \(f,f_r\in {X}_{o}\) and so \(\Vert ff_r\Vert _{{X}_{o}}=\Vert ff_r\Vert _X\rightarrow 0\) as \(r\rightarrow \infty \), because \((P_r)\) is the approximation kernel and \({X}_{o}\) is a homogeneous Banach space in the sense of [15, Theorem 2.11]. Hence,
since also \(g_r\in {X}_{o}\) as a continuous function. Thus the equality (4.1) is proved.
The proved claim means that \({X}_{o}/\overline{H[{X}_{o}]}\) may be regarded as a closed subspace of \(X/\overline{H[X]}\) since the natural embedding is isometric by the formula (4.1). Then the argument is exactly the same as in [31, Theorem 5.1] with \(C\), \(C_A\), \(L^{\infty }\), and \(H^{\infty }\) replaced by \({X}_{o}\), \(\overline{H[{X}_{o}]}\), \(X\), and \(\overline{H[X]}\), respectively. \(\square \)
The following theorem describes compactness of Hankel operators in a general nonalgebraic setting. Notice that the point (i) in case of Hardy spaces \(H[X]=H^p,H[Y]=H^q\), \(1<q<p\), trivially holds, which was already known to Tolokonnikov [35].
Theorem 4.4
Let \(X\) and \(Y\) be r.i. Banach function spaces such that \(L^{\infty }\varsubsetneq M(X,Y)\) and assume that \(Y\) has nontrivial Boyd indices.

(i)
For each \(a\in M(X,Y)\) and the Hankel operator \(H_a:H[X]\rightarrow H[Y]\) there holds
$$\begin{aligned} \Vert H_{a}\Vert _{{\mathrm{ess}}}\leqslant \Vert P\Vert _{X\rightarrow Y}{\mathrm{dist}}_{M(X,Y)}\bigl (a,{M(X,Y)}_{o}+\overline{H[M(X,Y)]}\bigr ). \end{aligned}$$ 
(ii)
If in addition spaces \(X\) and \(Y\) satisfy assumptions of Theorem 3.1, Y has the Fatou property and \(X,X'\) are order continuous, then also
$$\begin{aligned} \Vert H_{a}\Vert _{{\mathrm {ess}}}\geqslant c\, {\mathrm {dist}}_{M(X,Y)}\bigl (a,{M(X,Y)}_{o}+\overline{H[M(X,Y)]}\bigr ), \end{aligned}$$for some constant \(c>0\) depending only on spaces \(X\) and \(Y\).
Proof
(i). At first assume that \(a\in {M(X,Y)}_{o}\). Thanks to the assumption \(L^{\infty }\varsubsetneq M(X,Y)\), the set of all polynomials is included in \({M(X,Y)}_{o}\) and is dense therein (see [20, Lemma 3.1 (a) and Lemma 3.4]). Note also that any Hankel operator induced by a polynomial has a finite rank (cf. Kronecker’s theorem [31]). Let \((p_n)\) be a sequence of polynomials such that \(\Vert ap_n\Vert _{M(X,Y)}\rightarrow 0\) as \(n\rightarrow \infty \). By the definition of the Hankel operator we have
Hence \(H_a\) is compact.
Assume now that \(a\in M(X,Y)\). Then evidently
Further we have
where the inequality comes from the definition and properties of Hankel operator (cf. [20, Theorem 5.2]). Besides, we get
Eventually, the calculations above lead to the conclusion that
(ii). Let \(a\in M(X,Y)\) and assume that \(K:H[X]\rightarrow H[Y]\) is compact. From Theorem 3.1 it follows
From Lemma 4.1 we know that \(\Vert KS^n\Vert \rightarrow 0\) as \(n\rightarrow \infty \). Thus, to conclude the proof it suffices to see that
as \(n\rightarrow \infty \). But this statement easily follows from the observation that
and Theorem 4.3. \(\square \)
Before we proceed with further results let us comment on assumptions of the above theorem and discuss some special cases excluded from it. First of all, we have assumed \(L^{\infty }\varsubsetneq M(X,Y)\). Nevertheless, this assumption is essentially not necessary to prove the point (i). The reason to assume it is that in case \(L^{\infty }= M(X,Y)\) we can not use the notion of \(M (X,Y)_{o}=\{0\}\). However, in such circumstances the role of \(M (X,Y)_{o}\) is played by the space of continuous functions \(C=C(\mathbb {T})\). Thus, when \(X\subset Y\), but \(M(X,Y)=L^{\infty }\), point (i) holds (with exactly the same proof, under the assumption that \(Y\) has nontrivial Boyd indices) and takes the form
for each \(a\in L^{\infty }\), where \(H_a:H[X]\rightarrow H[Y]\). In particular, \(H_a\) is compact, when \(a\in C+ \overline{H^\infty }\).
For the point (ii) much more is needed. Namely, we have two possibilities. If the assumption of Theorem 3.1(ii) is satisfied, it implies that \(L^{\infty }\varsubsetneq M(X,Y)\). Notice however that the assumption from Theorem 3.1(ii) is much stronger than \(L^{\infty }\varsubsetneq M(X,Y)\). On the other hand, the assumption of Theorem 3.1(i) is satisfied when \(X=Y\) and X has the Fatou property. In this case Theorem 4.4 has the following form.
Theorem 4.5
Let \(X\) be a reflexive r.i. Banach function space with nontrivial Boyd indices. For each \(a\in L^{\infty }\), \(H_a:H[X]\rightarrow H[X]\) is bounded and
where constant \(c>0\) depends only on the space \(X\).
Proof
As was mentioned, in case \(X=Y\) assumptions of Theorem 4.4 are satisfied and \(L^{\infty }= M(X,Y)\). Therefore, it is enough to repeat the proof of Theorem 4.4 with \(M (X,Y)_{o}\) replaced by \(C\). \(\square \)
Finally, notice that it may happen that \(L^{\infty }= M(X,Y)\) even for \(X\varsubsetneq Y\) (for example, \(M(L^{p,q},L^{p,r})=L^{\infty }\) when \(p\in [1,\infty )\) and \(1\leqslant q<r\leqslant \infty \), see the definition of the Lorentz space \(L^{p,q}\) below). In such a case, however, neither assumption (i), nor (ii) of Theorem 3.1 is satisfied, and thus estimation from Theorem 4.4(ii) is problematic—with current knowledge we can not decide whether it holds.
Let us state one more conclusion of the above Theorem 4.4.
Corollary 4.6
Let \(X\) and \(Y\), \(X\subset Y\) be r.i. Banach function spaces such that \(Y\) has nontrivial Boyd indices. If \(M(X,Y)\) is separable, then for each \(a\in M(X,Y)\) the Hankel operator \(H_a:H[X]\rightarrow H[Y]\) is compact.
Proof
If \(M(X,Y)\) is separable, then \(M(X,Y)={M(X,Y)}_{o}\) and by the fact that \(\overline{H[M(X,Y)]}\) is the subspace of \(M(X,Y)\), we have
Thus Theorem 4.4(i) implies the claim. \(\square \)
From Theorem 4.4 the following results on compact Hankel operators between special classes of Hardy type spaces follow. Let us recall that for \(p\in (0,\infty )\) and \(q\in (0,\infty ]\) the Lorentz space \(L^{p,q}\) is defined by the (quasi) norm
with the standard modification when \(q=\infty \). A function \(\varphi :[0,\infty )\rightarrow [0,\infty ]\) which is convex, nondecreasing and \(\varphi (0)=0\) is called the Young function, or the Orlicz function, when additionally \(\varphi :[0,\infty )\rightarrow [0,\infty )\). The Orlicz space \(L^{\varphi }\) is defined by the norm
Then the Hardy–Lorentz space \(H^{p,q}\) is defined as \(H^{p,q}:=H[L^{p,q}]\), for \(p,q\geqslant 1\), while the Hardy–Orlicz space \(H^\varphi \) is given by \(H^{\varphi }=H[L^{\varphi }]\).
Corollary 4.7

(i)
If \(1<q<p<\infty \), then each Hankel operator \(H_a:H^p\rightarrow H^q\) is compact (see [35]).

(ii)
Let \(1<p_2<p_1<\infty \).

(a)
If \(1<q_1<q_2<\infty \), then any Hankel operator \(H_a:H^{p_1,q_1}\rightarrow H^{p_2,q_2}\) between Hardy–Lorentz spaces is compact.

(b)
If \(1<q_2\leqslant q_1<\infty \), then the Hankel operator \(H_a:H^{p_1,q_1}\rightarrow H^{p_2,q_2}\) between Hardy–Lorentz spaces is compact if and only if \(Pa\in H[{L^{p,\infty }_{o}}]\) where \(\frac{1}{p}=\frac{1}{p_2}\frac{1}{p_1}\).

(a)

(iii)
Let \(\varphi _1,\varphi \) be Orlicz functions such that \(L^{\varphi }\) has nontrivial Boyd indices, i.e., \(1<a_{\varphi }\leqslant b_{\varphi }<\infty \), where \(a_{\varphi },b_{\varphi }\) are Matuszewska–Orlicz indices of \(\varphi \) (cf. [20]). Let \(\varphi \ominus \varphi _1\) be a Young function given by \( \varphi \ominus \varphi _1 (t) = \sup \{ \varphi (st)  \varphi _1(s):s>0\}\) (see [22]) and assume that either \(\varphi ^{1}\approx \varphi _1^{1}(\varphi \ominus \varphi _1)^{1}\), or \(b_{\varphi }<a_{\varphi _1}\). If \(a\in L^{\varphi \ominus \varphi _1}\), then the Hankel operator \(H_a:H^{\varphi _1}\rightarrow H^{\varphi }\) is compact if and only if \(a\in {L^{\varphi \ominus \varphi _1}_{o}}+\overline{H^{\varphi \ominus \varphi _1}}\).
5 Commutators and Semicommutators of Toeplitz and Hankel Operators
For two operators \(T,S:X\rightarrow X\) their commutator is defined as
The commutator inspects to what extent operators \(T\) and \(S\) fail to be commutative, which constitutes an important question in the field of operator algebras.
Seemingly, the definition of commutator requires that both operators belong to the same operator algebra and in general can not be directly extended to nonalgebraic settings. Nonetheless, it is quite interesting that we may define commutators and semicommutators for Toeplitz and Hankel operators acting between distinct Hardy spaces.
The following example serves as an inspiration for considerations in this part of the paper.
Example 5.1
Let \(1<q<r<p<\infty \) and suppose that \(a\in M(L^p,L^r)=L^{s_1}\) and \(b\in M(L^r,L^q)=L^{s_2}\), where \(1/s_1=1/r1/p\) and \(1/s_2=1/q1/r\). Observe that if \(s\) satisfies \(\frac{1}{s} = \frac{1}{p}+\frac{1}{q}\frac{1}{r}\), then \(a\in M(L^{s},L^q)\) and \(b\in M(L^p,L^{s})\). Moreover, \(ab\in M(L^p,L^q)\). On the diagram it looks like
Thus all three operators \(T_aT_b\), \(T_bT_a\) and \(T_{ba}\) map \(H^p\) into \(H^q\). Therefore, commutators \([T_a,T_b]:=T_aT_bT_bT_a\) and semicommutators \((T_b,T_a] :=T_bT_aT_{ba}\) make sense. Note also that essentially the same reasoning applies to Hankel operators and their commutators and semicommutators.
We will study when commutators and semicommutators of Toeplitz operators are compact. For this to be done we need the following basic relations, which are in fact the same as in the classical (that is, algebraic) settings (see [3, 2.14 Proposition, p. 57]). However, we will present the proof for the sake of convenience, since, on one hand, the notion of Hankel operators varies through the literature and, on the other hand, sometimes proofs of the formulas below goes through bases (while we do not assume separability of spaces \(X,Y,Z\)). Below S denotes the shift operator, as in Sect. 4.
Proposition 5.2
Let \(X\), \(Y\), \(Z\) be r.i. quasiBanach function spaces such that \(X\subset Y\subset Z\) and both \(Y,Z\) have nontrivial Boyd indices. Assume that \(a\in M(X,Y)\) and \(b\in M(Y,Z)\). Then \(ba\in M(X,Z)\) and

(i)
\(T_{ba} = T_bT_a+H_bH_{SJa}\), where \(T_{ba}, T_bT_a, H_bH_{SJa}:H[X]\rightarrow H[Z]\),

(ii)
\(H_{ba} = T_bH_a+H_bT_{SJa}\), where \(H_{ba},T_bH_a,H_bT_{SJa}:H[X]\rightarrow H[Z]\).
Proof
(i). It is easy to see that \(PJ=J(1P)\) and also from the definition of the flip operator it follows that for any \(f,g\in L^0\) one has \(J(fg)=(SJf)\cdot (Jg)\). Since \(P\) is a projection and \(J\) is an involution (that is, \(J^2=\mathrm {id}\), we get
(ii). Proceeding as in the proof of (i), we get
\(\square \)
Observe that compactness of semicommutators \(T_bT_aT_{ba}\) can be directly derived from Theorem 4.4 and Proposition 5.2. However, both results are not sufficient when studying the same property of commutators. Indeed, we need to work with an intermediate space which plays the role of \(H^{s}\) on the diagram in Example 5.1 and which replaces \(Y\) after changing an order of operators. Let \(X\), \(Y\) and \(Z\) satisfy assumption of the above theorem. The diagram that answers this quest looks like
where the formula for W is given in the lemma below.
Proposition 5.3
Let \(X\), \(Y\), \(Z\) be r.i. Banach function spaces such that \(X\subset Y\subset Z\). If \(a\in M(X,Y)\), \(b\in M(Y,Z)\), and \(W=X\odot M(Y,Z)\), then the following diagram commutes
Proof
Let \(W=X\odot M(Y,Z)\). It should be noted that in general \(W\) is not a Banach space, but only a quasiBanach space. Regardless of that we may proceed in the following way. From the definition of the space of pointwise multipliers we get that
Now, by the cancellation law from [17, Theorem 4] we get that
Similarly
However, since \(M_a:X\rightarrow Y\) and \(M_b:Y\rightarrow Z\) are equivalent to \(a\in M(X,Y)\) and \(b\in M(Y,Z)\), then inclusion (5.1) and equality (5.2) yield \(M_a:W\rightarrow Z\) and \(M_b:X\rightarrow W\), which finishes the proof. \(\square \)
We are now ready to state the main result of this section.
Theorem 5.4
Let \(X\subset Y\subset Z\) be r.i. Banach function spaces such that \(Y\) and \(Z\) have nontrivial Boyd indices. Let \(a\in M(X,Y)\) and \(b\in M(Y,Z)\).

(i)
Assume that \(W=X\odot M(Y,Z)\) has nontrivial Boyd indices. If \(a\in M (X,Y)_{o}+H[M(X,Y)]\) or \(b\in M {(Y,Z)}_{o}+\overline{H[M(Y,Z)]}\) and \(a\in M (X,Y)_{o}+\overline{H[M(X,Y)]}\) or \(b\in M {(Y,Z)}_{o}+H[M(Y,Z)]\), then the commutator \([T_a,T_b]\) is compact. In particular, when \(a\in M (X,Y)_{o}\) or \(b\in M {(Y,Z)}_{o}\) then the commutator \([T_a,T_b]\) is compact.

(ii)
If \(a\in M (X,Y)_{o}+H[M(X,Y)]\) or \(b\in {M(Y,Z)}_{o}+\overline{H[M(Y,Z)]}\), then the semicommutator \((T_b,T_a]\) is compact.
Proof
(i) Notice that Proposition 5.3 implies
which gives
Applying Proposition 5.2(i) once to \(T_bT_a\) and secondly to \(T_aT_b\) with the space Y replaced by W, we get the formula
Thus the point (i) will be proved once we explain that under our assumptions both \(H_bH_{SJa}\) and \(H_aH_{SJb}\) are compact.
At first suppose that \(a\in M (X,Y)_{o}+H[M(X,Y)]\). Then
and Theorem 4.4 implies that \(H_{SJa}:H[X]\rightarrow H[Y]\) is compact. Alternatively, \(H_{b}:H[Y]\rightarrow H[Z]\) is compact, so is \(H_bH_{SJa}\).
Consider now the second assumption, that is
If \(a\in M (X,Y)_{o}+\overline{H[M(X,Y)]}\) then \(a\in M{(W,Z)}_{o}+\overline{H[M(W,Z)]}\) by the formula (5.1). Moreover, \(M(W,Z)\) is a Banach space, even if \(W\) is just quasiBanach. Thus explaining exactly as in the proof of Theorem 4.4(i) we conclude that \(H_a:H[W]\rightarrow H[Z]\) is compact. Otherwise, when \(b\in M(Y,Z)+H[M(Y,Z)]\), then the explanation is the same because of equalities (5.2). Consequently, also \(H_aH_{SJb}\) is compact.
(ii) The proof follows from the formula \((T_b,T_a]=H_bH_{SJa}\) and Theorem 4.4. \(\square \)
Recall that the question about compactness of the commutator \([T_a,T_b]\) or the semicommutator \((T_b,T_a]\) in the classical setting of \(H^2\) was considered by many authors (see for example [1, 4] and references therein). Especially, it was a famous problem to find necessary and sufficient condition for compactness of \((T_b,T_a]\), which arose from Fredholm theory for Toeplitz operators. Finally it was solved by Axler, Chang, Sarason [1] and Vol’berg [37]. They showed that \((T_b,T_a]\) is compact if and only if \(H^{\infty }[\overline{f}]\cap H^{\infty }[g]\subset H^{\infty }+C\), where \(H^{\infty }[h]\) denotes the Douglas algebra generated by \(H^{\infty }\) and \(h\). In particular, this condition is far weaker than condition that follows from Hartman’s compactness theorem for Hankel operators by the formula \((T_b,T_a]=H_bH_{SJa}\). This suggests that also conditions of Theorem 5.4 are far from being necessary. However, in essentially nonalgebraic setting, it is even difficult to decide whether these conditions are in fact unnecessary. The reason is that, on one hand, we do not dispose any tools of Banach algebras as in the classical setting and, on the other hand, one can not look for such examples among classical Hardy spaces, since \(M(L^p,L^q)\) is order continuous for every \(1\leqslant q<p\leqslant \infty \) and thus each Hankel operator from \(H^p\) to \(H^q\) is compact.
The following corollary explains that one may look for such an example among the class of Hardy–Lorentz spaces.
Corollary 5.5
Let \(1<p_3<p_2<p_1<\infty \) and suppose \(a\in M(L^{p_1,q_1},L^{p_2,q_2})\), \(b\in M(L^{p_2,q_2},L^{p_3,q_3})\).

(i)
If \(q_1>q_2\) or \(q_2>q_3\), then \([T_a,T_b],(T_b,T_a]:H^{p_1,q_1}\rightarrow H^{p_3,q_3}\) are compact.

(ii)
If \(q_1\leqslant q_2\leqslant q_3\), then \(M(L^{p_1,q_1},L^{p_2,q_2})=L^{r_1,\infty }\) and \(M(L^{p_2,q_2},L^{p_3,q_3})=L^{r_2,\infty }\) for \(\frac{1}{r_i}=\frac{1}{p_{i+1}}\frac{1}{p_i}\), \(i=1,2\). Furthermore, \([T_a,T_b]:H^{p_1,q_1}\rightarrow H^{p_3,q_3}\) is compact, whenever
$$\begin{aligned}&\bigl [Pa\in {L^{r_1,\infty }_{o}} \text{ or } (1P)b\in {L^{r_2,\infty }_{o}}\bigr ] \\ \text{ and }&\bigl [(1P)a\in {L^{r_1,\infty }_{o}} \text{ or } Pb\in {L^{r_2,\infty }_{o}}\bigr ]. \end{aligned}$$Moreover, \((T_b,T_a]:H^{p_1,q_1}\rightarrow H^{p_3,q_3}\) is compact, whenever
$$\begin{aligned} Pa\in {L^{r_1,\infty }_{o}}\quad \text{ or }\quad (1P)b\in {L^{r_2,\infty }_{o}}. \end{aligned}$$
Proof
The proof is an immediate consequence of Proposition 5.4, [18, Theorem 4] and boundedness of \(P\) on \(L^{p,q}\) spaces for each \(p\in (1,\infty )\). \(\square \)
Therefore, finalizing the previous discussion, we see that in the case (ii) one can select \(a\) and \(b\) such that
Then the natural question is whether for some \(a,b\) as above
may still be compact?
References
Axler, S., Chang, S.Y.A., Sarason, D.: Products of Toeplitz operators. Integr. Equ. Oper. Theory 1, 285–309 (1978)
Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)
Böttcher, A., Silbermann, B.: Analysis of Toeplitz operators, 2nd edn. Springer, Berlin (2006)
Ding, X., Zheng, D.: Finite rank commutator of Toeplitz operators or Hankel operators. Houston J. Math. 34(4), 1099–1119 (2008)
Dirksen, S.: Noncommutative Boyd interpolation theorems. Trans. Am. Math. Soc. 367(6), 4079–4110 (2015)
Duren, P.: Theory of \(H^p\) Spaces. Academic Press, Boston (1970)
Fehér, F., Gaşpar, D., Johnen, H.: Normkonvergenz von Fourierreihen in rearrangement invarianten Banachräumen. J. Funct. Anal. 13, 417–434 (1973)
Hartman, P.: On completely continuous Hankel matrices. Proc. Am. Math. Soc. 9, 862–866 (1958)
Hoffman, K.: Banach Spaces of Analytic Functions. Dover Publications Inc, New York (1962)
Hollenbeck, B., Verbitsky, I.E.: Best constants for the Riesz projection. J. Funct. Anal. 175(2), 370–392 (2000)
Hytönen, T. P.: The \(L^p\) to \(L^q\) boundedness of commutators with applications to the Jacobian operator. Preprint available at https://arxiv.org/pdf/1804.11167.pdf (2018)
Hytönen, T.P.: On commutators and Jacobians. Preprint available at arxiv.org/pdf/1905.00814.pdf (2019)
Janson, S., Peetre, J., Semmes, S.: On the action of Hankel and Toeplitz operators on some function spaces. Duke Math. J. 51, 937–958 (1984)
Karlovich, A., Shargorodsky, E.: The Brown–Halmos theorem for a pair of abstract Hardy spaces. J. Math Anal. Appl. 472(1), 246–265 (2019)
Katznelson, Y.: An Introduction to Harmonic Analysis. Dower Publications Inc, New York (1976)
Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise multipliers of Calderón–Lozanovskiĭ spaces. Math. Nachr. 286, 876–907 (2013)
Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise products of some Banach function spaces and factorization. J. Funct. Anal. 266, 616–659 (2014)
Kolwicz, P., Leśnik, K., Maligranda, L.: Symmetrization, factorization and arithmetic of quasiBanach function spaces. J. Math. Anal. Appl. 470(2), 1136–1166 (2019)
Krein, S.G., Petunin, YuI, Semenov, E.M.: Interpolation of Linear Operators. American Mathematical Society, Providence (1982)
Leśnik, K.: Toeplitz and Hankel operators between distinct Hardy spaces. Studia Math. 249, 163–192 (2019)
Leśnik, K., Maligranda, L., Mleczko, P.: Regularization for Lozanovskiĭ’s type factorization with applications. Ann. Acad. Sci. Fenn. Math. 45, 1–13 (2020)
Leśnik, K., Tomaszewski, J.: Pointwise mutipliers of Orlicz function spaces and factorization. Positivity 21, 1563–1573 (2017)
Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)
Lozanovskiĭ, G. Ya.: On some Banach lattices. Sibirsk. Mat. Zh. 10, 584–599 (1969). (English transl. in: Sib. Math. J. 10, 419–431 (1969))
Maligranda, L., Persson, L.E.: Generalized duality of some Banach function spaces. Indag. Math. 51, 323–338 (1989)
Mastyło, M., Mleczko, P.: Absolutely summing multipliers on abstract Hardy spaces. Acta Math. Sin. 25, 883–902 (2009)
Mastyło, M., RodríguezPiazza, L.: Carleson measures and embeddings of abstract Hardy spaces into function lattices. J. Funct. Anal. 268(4), 902–928 (2015)
MontgomerySmith, S.: The Hardy operator and Boyd indices. In: Interaction Between Functional Analysis. Harmonic Analysis, and Probability (Columbia, MO, 1994), Volume 175 of Lecture Notes in Pure and Applied Mathematics, pp. 359–364. Dekker, New York (1996)
Papadimitrakis, M., Virtanen, J.A.: Hankel and Toeplitz transforms on \(H^1\): continuity, compactness and Fredholm properties. Integr. Equ. Oper. Theory 64(4), 573–591 (2008)
Papadimitrakis, M.: (Weak) compactness of Hankel operators on BMO. Publ. Mat. 58, 221–231 (2014)
Peller, V.V.: Hankel Operators and Their Applications. Springer, Berlin (2003)
Rao, M.M.: Linear operations, tensor products, and contractive projections in function spaces. Studia Math. 38, 131–186 (1970)
Rao, M.M.: Addendum to: “Linear operations, tensor products, and contractive projections in function spaces” (Studia Math. 38, 131–186 (1970)). Studia Math. 48, 307–308 (1973)
Schep, A.: Products and factors of Banach function spaces. Positivity 14(2), 301–319 (2010)
Tolokonnikov, V.A.: Hankel and Toeplitz operators in Hardy spaces. J. Sov. Math. 37, 1359–1364 (1987)
Tolokonnikov, V.A., Vol’berg, A.L.: Hankel operators and problems of best approximation of unbounded functions. Investigations on linear operators and function theory. Part XIV, Zap. Nauchn. Sem. LOMI, 141, “Nauka”, Leningrad. Otdel., Leningrad, 1985, 5–17; J. Sov. Math. 37(5), 1269–1275 (1987)
Vol’berg, A.L.: Two remarks concerning the theorem of S. Axler, SY. A. Chang, and D. Sarason. J. Oper. Theory 8, 209–218 (1982)
Xu, Q.: Notes on interpolation of Hardy spaces. Ann. Inst. Fourier 42, 875–889 (1992)
Acknowledgements
The authors wish to thank Lech Maligranda and Sebastian Król for valuable remarks and comments.
Funding
The authors were supported by the National Science Center (Narodowe Centrum Nauki), Poland (Project No. 2017/26/D/ST1/00060).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Leśnik, K., Mleczko, P. Compact Hankel Operators Between Distinct Hardy Spaces and Commutators. Integr. Equ. Oper. Theory 93, 58 (2021). https://doi.org/10.1007/s0002002102668y
Received:
Revised:
Published:
DOI: https://doi.org/10.1007/s0002002102668y