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Abstract. The paper is devoted to the study of compactness of Hankel
operators acting between distinct Hardy spaces generated by Banach
function lattices. We prove an analogue of Hartman’s theorem character-
izing compact Hankel operators in terms of properties of their symbols.
As a byproduct we give an estimation of the essential norm of such oper-
ators. Furthermore, compactness of commutators and semicommutators
of Toeplitz operators for unbounded symbols is discussed.
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1. Introduction

Let H2 be the space of analytic and square-integrable functions on the unit
circle T = {eiθ : θ ∈ [0, 2π)}. For a measurable and bounded function a on T

(called a symbol), the Toeplitz operator Ta is defined on H2 as Taf = P (af),
f ∈ H2. Here P is the orthogonal projection from L2 onto H2 (i.e., the
Riesz projection). Similarly, the Hankel operator Ha is defined on H2 by the
formula Haf = P (aJf), where J is the flip operator.

The theory of Toeplitz and Hankel operators has been constantly de-
veloped since the beginning of the twentieth century and plays a pivotal
role in functional and harmonic analysis as well as in the operator theory
(see [3,31]). Through intimate connection with Toeplitz and Hankel matri-
ces, these operators are of great importance in many applications far beyond
pure mathematics, for instance in signal and image processing, queueing the-
ory or quantum mechanics.

It is worth mentioning that from the historical point of view, the main
lines of research in the field of Toeplitz and Hankel operators are related to the
case when a symbol of operators is bounded, that is the discussed operators
act on (the same) Hardy space (mainly H2). The case of Toeplitz and Hankel
operators acting from one to another Hardy space (further we will refer to
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such a situation as nonalgebraic) was considered for the first time—up to our
knowledge—in the papers [13,35,36]. Recently, this kind of study has been
developed from a general perspective of Hardy spaces generated by Banach
lattices in [20] (cf. [14]).

This paper is in a sense a follow-up to an article [20]. There, the first
author studied Toeplitz and Hankel operators acting between distinct Hardy
spaces. Among other things, he proved nonalgebraic versions of Brown–
Halmos and Nehari’s theorems. The present work is devoted to the study
of compact counterparts of the results obtained in [20]. Since there are no
nontrivial compact Toeplitz operators even in the general approach (see [20,
Section 4.2]), we focus on compactness of Hankel operators.

In the classical case of Hankel operators acting on H2 their compactness
has been completely described by Hartman [8]. Namely, Ha is compact on
H2 if and only if a ∈ C(T)+H2. Exactly the same characterization holds for
Ha : Hp → Hp in the case when p ∈ (1,∞), see [3, p. 80]. For Ha : H1 → H1

the situation is more involved. In [29] (cf. [13,35]) the authors showed that
the compactness of Ha on H1 is equivalent to Pa ∈ VMOAlog.

The main result of the paper is an analogue of the Hartman’s theorem,
but fitted for nonalgebraic setting. Namely, we fully characterize compact
operators among all bounded Hankel operators Ha : H[X] → H[Y ], where
H[X],H[Y ] are Hardy type spaces built upon r.i. spaces satisfying some
general assumptions (actually, assumptions of the general Nehari theorem—
see Sect. 4). The special cases of Hardy–Orlicz and Hardy–Lorentz spaces are
also discussed.

Furthermore, although we consider an essentially nonalgebraic situa-
tion, that is Toeplitz and Hankel operators act between distinct spaces, we
are able to study commutators [Ta, Tb] and semicommutators (Ta, Tb] of these
operators (see Sect. 5). On one hand, such a nonalgebraic approach to an ide-
ologically algebraic objects is not completely new in harmonic analysis. For
example, commutators [T, b] : Lp → Lq of Calderón–Zygmund and multipli-
cation operators have been investigated in the recent papers [11,12] (see also
references therein). On the other hand, the commutator [T, b] considered in
the mentioned papers is understood rather as a single operator acting directly
from Lp to Lq without considering any intermediate space between Lp and
Lq. Our approach is different. Basing on Proposition 5.3 we find an interme-
diate space such that the respective component of the commutator [Ta, Tb]
factors through it. In consequence, we may treat components of [Ta, Tb] as
individual operators and thanks to that we are able to apply obtained results
to give sufficient conditions for compactness of such commutator.

2. Preliminaries

In this part we present a necessary background for consideration in the fol-
lowing sections. When it comes to that we follow the classical monographs
like [19,23] or [2]. Nevertheless, for the convenience of the reader and due to
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the generality of the topic being considered, we recall the main definitions
and notations below.

2.1. Quasi-Banach Function Spaces

Recall that T is the unit circle and m is the normalized Lebesgue mea-
sure on T, that is dm(t) = (2π)−1|dt|. Let L0 := L0(T) be the space of
(equivalence classes of) all m-measurable complex-valued almost everywhere
finite functions on T.

A quasi-Banach space X ⊂ L0 is called a quasi-Banach function space
if it has the so-called ideal property (that is, g ∈ X and ‖g‖X � ‖f‖X for all
f ∈ X and g ∈ L0 satisfying |g| � |f | a.e. on T) and L∞ ⊂ X. If in addition
X is a Banach space, then we will call it a Banach function space (it is also
common to refer to such a space a Köthe space or Banach function lattice).

A quasi-Banach function space X has the Fatou property when given
a sequence (fn)n∈N ⊂ X and f ∈ L0 satisfying 0 ≤ fn ↑ f a.e. as n → ∞
and supn∈N ‖fn‖X < ∞ we have f ∈ X and ‖f‖X = sup{‖fn‖X : n ∈ N}.
A quasi-Banach function space X has the semi-Fatou property if for each
(fn)n∈N ⊂ X, f ∈ X such that 0 ≤ fn ↑ f a.e. as n → ∞ there holds
‖f‖X = sup{‖fn‖X : n ∈ N}.

Recall that f ∈ X is said to be an order continuous element if for each
(fn)n∈N ⊂ X satisfying 0 ≤ fn ≤ |f | for all n ∈ N and fn → 0 a.e. as n → ∞,
there holds ‖fn‖X → 0 as n → ∞. The subspace of order continuous elements
of X is denoted by Xo. Evidently, Xo has the semi-Fatou property. We say
that X is order continuous, when X = Xo. Notice that this is equivalent to
the separability of X.

For a quasi-Banach function space X, its Köthe dual X ′ is defined as the
space of functions g ∈ L0 satisfying fg ∈ L1 for all f ∈ X and equipped with
a quasi-norm ‖g‖X′ = sup{‖fg‖L1 : ‖f‖X � 1}. Notice that X ′ is nontrivial
and possesses the Fatou property if X is a Banach function space. Note also
that X ′ may be trivial, that is X ′ = {0}, when X is just a quasi-Banach
function space. For example, (Lp)′ = {0} when p ∈ (0, 1). It is known that
a Banach function space X has the Fatou property if and only if X ′′ ≡ X
(see [23, p. 30]).

We will work within an important class of quasi-Banach function spaces,
that is with rearrangement invariant spaces. Recall that for f ∈ L0 it’s distri-
bution μf is given by μf (λ) = m

{
t ∈ T : |f(t)| > λ

}
, λ � 0. Two functions

f, g ∈ L0 are said to be equimeasurable if μf (λ) = μg(λ) for all λ � 0. The
non-increasing rearrangement f∗ of f ∈ L0 is defined by

f∗(t) = inf{λ : μf (λ) ≤ t}, t ∈ [0, 1].

A quasi-Banach function space X is called rearrangement invariant (r.i. for
short) if for every pair of equimeasurable functions f, g ∈ L0, f ∈ X implies
that g ∈ X and ‖f‖X = ‖g‖X . We point out that many important examples
of quasi-Banach function spaces are rearrangement-invariant, for example
Lebesgue, Orlicz and Lorentz spaces. We refer the reader to [19,23] and [2]
for more information on non-increasing rearrangements and r.i. spaces.



58 Page 4 of 18 K. Leśnik, P. Mleczko IEOT

Let X be a r.i. quasi-Banach function space. For each s ∈ R+ the dilation
operator Ds is defined by

(Dsf)(eiθ) =

{
f(eiθs), θs ∈ [0, 2π),
0, θs 
∈ [0, 2π),

θ ∈ [0, 2π).

It is well-known (see, for example, [19] for the case of Banach spaces, or [5,28]
for the case of quasi-Banach spaces on R and R+, respectively) that Ds is
bounded on X for each s > 0 and the following limits exist

αX = lim
s→0+

log ‖D1/s‖X→X

log s
, βX = lim

s→∞
log ‖D1/s‖X→X

log s
.

The numbers αX and βX are called the lower and the upper Boyd index of X,
respectively. For an arbitrary r.i. Banach function space X, its Boyd indices
belong to [0, 1] and αX ≤ βX . We say that Boyd indices are nontrivial, if
αX , βX ∈ (0, 1).

2.2. Pointwise Multipliers and Products

Let X and Y be Banach function spaces. The space of pointwise multipliers
M(X,Y ) from X to Y is defined as

M(X,Y ) =
{
f ∈ L0 : fg ∈ Y for all g ∈ X

}
,

equipped with the operator norm

‖f‖M(X,Y ) = sup
{‖fg‖Y : ‖g‖X ≤ 1

}
.

It is clear, that each f ∈ M(X,Y ) corresponds to a bounded multiplication
operator Mf : X → Y defined by Mf : g �→ fg and there holds ‖f‖M(X,Y ) =
‖Mf‖X→Y . Function f defining the operator Mf will be called its symbol.

Let us collect some known facts about spaces of pointwise multipliers.
– If 1 � p < q � ∞, then M(Lp, Lq) = {0} (see [25, Theorem 2]), while

for 1 � q � p � ∞ there holds M(Lp, Lq) ≡ Lr, where 1/r = 1/q − 1/p,
(see [25, Proposition 3]).

– For an arbitrary Banach function space X, M(X,X) ≡ L∞ (see [25,
Theorem 3]).

– For two rearrangement invariant Banach function spaces X and Y ,
M(X,Y ) 
= {0} if and only if X ⊂ Y (see [25, the remark after Corol-
lary 1], or [16, Theorem 2.2 (i)]).

– If X and Y are rearrangement invariant Banach function spaces and
X ⊂ Y , then M(X,Y ) is also rearrangement invariant (see [16, Theo-
rem 2.2]).

The notion of multipliers is associated with a concept of products of
spaces. Given two quasi-Banach spaces X and Y , the pointwise product X�Y
is defined as

X � Y =
{
gh : g ∈ X, h ∈ Y

}
.

It should be noted that even if X,Y are Banach function spaces, then X �Y
need not to be a Banach space. Indeed, the product space is, in general,
a quasi-Banach space when equipped with the quasi-norm

‖f‖X�Y = inf
{‖g‖X ‖h‖Y : f = gh, g ∈ X, h ∈ Y

}
.
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For example, if p, q ∈ (0,∞], then Lp�Lq ≡ Lr, where 1
r = 1

p + 1
q . For further

reading we refer to the papers [17,34] and references included therein.

3. Hardy Spaces, Toeplitz and Hankel Operators

For n ∈ Z and t ∈ T, let χn(t) := tn. The Fourier coefficients of a function
f ∈ L1 are given by

f̂(n) = 〈f, χn〉 :=
∫

T

f(t)t−n dm(t), n ∈ Z.

Let X be a quasi-Banach function space such that X ⊂ L1 (note that X ⊂ L1

for each r.i. Banach function space). The Hardy space H[X] is defined by

H[X] =
{
f ∈ X : f̂(n) = 0 for all n < 0

}
,

with the quasi-norm inherited from X (see for example [14,26,27,38]). If
p ∈ [1,∞], then Hp := H[Lp] is the classical Hardy space (see for example
[6,9,15]). We shall also use the following variants of Hardy spaces:

H[X] =
{
f : f ∈ H[X]

}
.

The Riesz projection P is for f ∈ L1 given by the formula

P : f �→ 1
2
(
f + f̃ + f̂(0)

)
,

where f̃ is the conjugate function to f (see for example [15, Chapter III] for
the definition of f̃). We recall that if a quasi-Banach function space X has
nontrivial Boyd indices, then from the Boyd interpolation theorem it follows
that P : X → X is a bounded operator (see [5,23]). A little more can be said
in the case of r.i. Banach function spaces. Indeed, in [7] it was proved that
P : X → X is bounded if and only if X has nontrivial Boyd indices. In such
the case, the following equivalent formula for P is meaningful

P : f �→
∑

n�0

f̂(n)χn, f ∈ X.

Below we state definitions of Toeplitz and Hankel operators. Roughly
speaking we follow [20], however, notice that we allow also quasi-Banach
spaces, which will be used as a tool in the last section. Let X and Y be
r.i. quasi-Banach function spaces such that X ⊂ Y ⊂ L1 and assume that P
is bounded on Y . For a ∈ M(X,Y ), the Toeplitz operator Ta is defined by
the formula

Taf = P (af), f ∈ H[X].

Analogously, the Hankel operator is given by

Haf = P (aJf), f ∈ H[X],

where J is the so-called flip operator, that is

Jf(t) = t−1f
(
t−1

)
, t ∈ T.

It is well known that a Toeplitz operator Ta : H[X] → H[Y ] admits the matrix
representations with a Toeplitz matrix, that is 〈Taχj , χk〉 = a(k − j) for all



58 Page 6 of 18 K. Leśnik, P. Mleczko IEOT

k, j � 0. The converse statement is known as the Brown–Halmos theorem and
holds for a wide class of spaces (see for example [3], or [14,20] for nonalgebraic
setting). An analogous role, but for Hankel operators is played by the Nehari
theorem. We will need in the sequel the following general version of it (see
[20, Theorem 5.2]).

Theorem 3.1. (The general Nehari theorem) Let X,Y be two r.i. Banach
function spaces, such that X is separable, X ⊂ Y , Y has nontrivial Boyd
indices and one of the following conditions holds:

(i) X � M(X,Y ) = Y and X,Y have the Fatou property,
(ii) βX < αY and Y has the semi-Fatou property.

Then a continuous linear operator A : H[X] → H[Y ] satisfies

〈Aχj , χk〉 = ak+j+1, j, k � 0,

for some sequence (ak)k>0 if and only if there exists a ∈ M(X,Y ) such that
â(n) = an for each n > 0 and A = Ha, i.e., A : f �→ P (aJf). Moreover,

cdistM(X,Y )

(
a,H[M(X,Y )]

)
� ‖Ha‖H[X]→H[Y ]

� ‖P‖Y →Y distM(X,Y )

(
a,H[M(X,Y )]

)
,

where the constant c > 0 depends only on the spaces X,Y .

4. Compact Hankel Operators

Before we state the main result we need to prove an analogue of Lemma 5.4
from [31]. Recall that a Banach space Y has the approximation property, if
for every Banach space X, the set of finite rank operators from X into Y is
dense in the subspace K(X,Y ) of compact operators from X into Y (cf. [23,
Theorem 1.e.4, p. 32]).

In what follows S : X → X denotes the shift operator given by

Sf(t) = tf(t), t ∈ T.

Lemma 4.1. Let X and Y be r.i. Banach function spaces such that Y has
nontrivial Boyd indices and assume that X and X ′ are order continuous. If
K : H[X] → H[Y ] is compact, then

‖KSn‖ → 0 as n → ∞.

Proof. Notice that from [32, Theorem 4.6] (cf. [33]) it follows that every
r.i. Banach function space has the approximation property. Since Y has non-
trivial Boyd indices, then by the boundedness of the Riesz projection, H[Y ]
is complemented in Y and thus also H[Y ] has the approximation property. In
consequence, any compact operator K : H[X] → H[Y ] may be approximated
in the norm topology by finite rank operators.

Let ε > 0 be arbitrary and K : H[X] → H[Y ] be compact. Then there
exists a finite rank operator F such that ‖K − F‖ � ε

4 . Representing F in
a canonical form there exist (not necessarily unique) functions ϕk ∈ X ′ (since
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H[X]∗ � X ′/H[X]⊥) and ηk ∈ H[Y ], where k ∈ {1, . . . , m} and m > 0, such
that

∥
∥
∥
∥K −

m∑

k=1

ηk ⊗ ϕk

∥
∥
∥
∥ � ε

4
.

Since X ′ is order continuous, then polynomials are dense in X ′. Thus there
exist polynomials pk ∈ X ′ such that

∥
∥
∥
∥K −

m∑

k=1

ηk ⊗ pk

∥
∥
∥
∥ � ε

2
.

Further observe that

‖KSn‖ �
∥
∥
∥
∥KSn −

( m∑

k=1

ηk ⊗ pk

)
Sn

∥
∥
∥
∥ +

∥
∥
∥
∥

( m∑

k=1

ηk ⊗ pk

)
Sn

∥
∥
∥
∥

�
∥
∥
∥
∥K −

( m∑

k=1

ηk ⊗ pk

)∥
∥
∥
∥

∥
∥Sn

∥
∥ +

∥
∥
∥
∥

( m∑

k=1

ηk ⊗ pk

)
Sn

∥
∥
∥
∥.

Notice that for a fixed k and arbitrary f ∈ H[X] we have

(ηk ⊗ pk)Snf = 〈Snf, pk〉ηk = 0,

whenever n > deg pk. As a consequence, for n > max{deg pk : k ∈ {1, . . . , m}}
there holds

‖KSn‖ � ε

and the proof is finished. �

Recall that the essential norm ‖T‖ess of an operator T ∈ L(X,Y ), where
X,Y are Banach spaces, is the distance of T from the subspace of compact
operators K(X,Y ), that is

‖T‖ess = inf
{‖T − K‖ : K ∈ K(X,Y )

}
.

In 1958, Hartman [8] characterized the compactness of Hankel operators
Ha : H2 → H2 and showed that Ha is compact if and only if there exists
a continuous function g on T such that ĝ(n) = an for n ∈ N. Using the
notion of the essential norm even more can be said. The following result at-
tributed to Hartman, Adamyan, Arov and Krein, contains estimates on the
essential norm of Hankel operators on Hp spaces.

Theorem 4.2. ([3, Theorem 2.54]) Let a ∈ L∞ and p ∈ (1,∞). Then

distL∞
(
a,C + H∞) � ‖H(a)‖ess � cpdistL∞

(
a,C + H∞)

,

where cp is the norm of the Riesz projection P : Lp → Hp.

Here the space C + H∞ is a closed subalgebra of L∞ (this statement
is usually referred to as Sarason’s theorem) consisting of functions φ ∈ L∞

such that φ admits a representation φ = g + f , where g ∈ C and f ∈ H∞
(see [31, p. 25]).

Our description of compact Hankel operators will be of similar fashion,
but C will be replaced by M(X,Y )o, while M(X,Y ) and H[M(X,Y )] will
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play the role of L∞ and H∞, respectively. At first, we need, however, one
more auxiliary result, i.e., an analogue of Sarason’s theorem.

Theorem 4.3. Let X be r.i. Banach function spaces with the Fatou property.
Then Xo + H[X] is a closed subspace of X. In particular,

Xo + H[X] = closX

{ ⋃

n>0

χnH[X]
}

.

Proof. First notice that if X = Xo or X has nontrivial Boyd indices, then
there is nothing to prove. Suppose that X 
= Xo. We will follow ideas of [31,
Theorem 5.1]. At first we will show that for each f ∈ Xo

distX

(
f,H[X]

)
= distX

(
f,H[Xo]

)
. (4.1)

We need to prove only the inequality distX(f,H[X]) � distX(f,H[Xo]). De-
note for f ∈ L1 and r ∈ (0, 1)

fr(t) = f ∗ Pr(t), t ∈ T,

where Pr is the Poisson kernel for the unit disc D (see [6,9,15]). Let now
f ∈ Xo and g ∈ H[X]. Then

∥
∥(f − g)r

∥
∥

X
=

∥
∥(f − g) ∗ Pr

∥
∥

X
� ‖f − g‖X ,

where the last inequality follows from the Calderón–Mitjagin theorem (cf. [2])
and the fact that ‖Pr‖H1 = 1 for each r ∈ (0, 1). As a consequence,

∥
∥f − g

∥
∥

X
� lim

r→1−

∥
∥(f − g)r

∥
∥

X
� lim

r→1−

(‖f − gr‖X − ‖f − fr‖X

)
.

However, f, fr ∈ Xo and so ‖f − fr‖Xo
= ‖f − fr‖X → 0 as r → ∞, because

(Pr) is the approximation kernel and Xo is a homogeneous Banach space in
the sense of [15, Theorem 2.11]. Hence,

∥
∥f − g

∥
∥

X
� lim

r→1−
‖f − gr‖X � distX(f,Xo),

since also gr ∈ Xo as a continuous function. Thus the equality (4.1) is proved.
The proved claim means that Xo/H[Xo] may be regarded as a closed

subspace of X/H[X] since the natural embedding is isometric by the for-
mula (4.1). Then the argument is exactly the same as in [31, Theorem 5.1]
with C, CA, L∞, and H∞ replaced by Xo, H[Xo], X, and H[X], respectively.
�

The following theorem describes compactness of Hankel operators in
a general nonalgebraic setting. Notice that the point (i) in case of Hardy
spaces H[X] = Hp,H[Y ] = Hq, 1 < q < p, trivially holds, which was already
known to Tolokonnikov [35].

Theorem 4.4. Let X and Y be r.i. Banach function spaces such that L∞
�

M(X,Y ) and assume that Y has nontrivial Boyd indices.
(i) For each a ∈ M(X,Y ) and the Hankel operator Ha : H[X] → H[Y ]

there holds

‖Ha‖ess � ‖P‖X→Y distM(X,Y )

(
a,M(X,Y )o + H[M(X,Y )]

)
.



IEOT Compact Toeplitz and Hankel Operators Page 9 of 18 58

(ii) If in addition spaces X and Y satisfy assumptions of Theorem 3.1, Y
has the Fatou property and X,X ′ are order continuous, then also

‖Ha‖ess � cdistM(X,Y )

(
a,M(X,Y )o + H[M(X,Y )]

)
,

for some constant c > 0 depending only on spaces X and Y .

Proof. (i). At first assume that a ∈ M(X,Y )o. Thanks to the assumption
L∞

� M(X,Y ), the set of all polynomials is included in M(X,Y )o and
is dense therein (see [20, Lemma 3.1 (a) and Lemma 3.4]). Note also that
any Hankel operator induced by a polynomial has a finite rank (cf. Kro-
necker’s theorem [31]). Let (pn) be a sequence of polynomials such that
‖a − pn‖M(X,Y ) → 0 as n → ∞. By the definition of the Hankel operator we
have

‖Ha − Hpn
‖ = ‖Ha−pn

‖ � ‖P‖Y →Y ‖a − pn‖M(X,Y ) → 0 as n → ∞.

Hence Ha is compact.
Assume now that a ∈ M(X,Y ). Then evidently

‖Ha‖ess � inf
{‖Ha − Hb‖ : b ∈ M(X,Y )o

}
.

Further we have

inf{‖Ha − Hb‖ : b ∈ M(X,Y )o

}
= inf

{‖Ha−b‖ : b ∈ M(X,Y )o

}

� ‖P‖Y →Y inf
{
distM(X,Y )(a − b,H[M(X,Y )]) : b ∈ M(X,Y )o

}
.

where the inequality comes from the definition and properties of Hankel op-
erator (cf. [20, Theorem 5.2]). Besides, we get

inf
{
distM(X,Y )(a − b,H[M(X,Y )]) : b ∈ M(X,Y )o

}

= inf
{‖a − b − d‖M(X,Y ) : b ∈ M(X,Y )o, d ∈ H[M(X,Y )]

}

= inf
{‖a − f‖M(X,Y ) : f ∈ M(X,Y )o + H[M(X,Y )]

}

= distM(X,Y )

(
a,M(X,Y )o + H[M(X,Y )])

)
.

Eventually, the calculations above lead to the conclusion that

‖Ha‖ess � ‖P‖Y →H[Y ]distM(X,Y )

(
a,M(X,Y )o + H[M(X,Y )])

)
.

(ii). Let a ∈ M(X,Y ) and assume that K : H[X] → H[Y ] is compact. From
Theorem 3.1 it follows

‖Ha − K‖ = ‖Sn‖ ‖Ha − K‖ � ‖HaSn − KSn‖ � ‖HaSn‖ − ‖KSn‖
� cdistM(X,Y )

(
χna,H[M(X,Y )])

) − ‖KSn‖.

From Lemma 4.1 we know that ‖KSn‖ → 0 as n → ∞. Thus, to conclude
the proof it suffices to see that

distM(X,Y )

(
χna,H[M(X,Y )])

) → distM(X,Y )

(
a,M(X,Y )o + H[M(X,Y )])

)

as n → ∞. But this statement easily follows from the observation that

distM(X,Y )

(
χna,H[M(X,Y )])

)
= distM(X,Y )

(
a, χnH[M(X,Y )]

)

and Theorem 4.3. �
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Before we proceed with further results let us comment on assumptions
of the above theorem and discuss some special cases excluded from it. First
of all, we have assumed L∞

� M(X,Y ). Nevertheless, this assumption is
essentially not necessary to prove the point (i). The reason to assume it is
that in case L∞ = M(X,Y ) we can not use the notion of M(X,Y )o = {0}.
However, in such circumstances the role of M(X,Y )o is played by the space
of continuous functions C = C(T). Thus, when X ⊂ Y , but M(X,Y ) = L∞,
point (i) holds (with exactly the same proof, under the assumption that Y
has nontrivial Boyd indices) and takes the form

‖H(a)‖ess � ‖P‖X→Y distL∞
(
a,C + H∞)

,

for each a ∈ L∞, where Ha : H[X] → H[Y ]. In particular, Ha is compact,
when a ∈ C + H∞.

For the point (ii) much more is needed. Namely, we have two pos-
sibilities. If the assumption of Theorem 3.1(ii) is satisfied, it implies that
L∞

� M(X,Y ). Notice however that the assumption from Theorem 3.1(ii)
is much stronger than L∞

� M(X,Y ). On the other hand, the assumption
of Theorem 3.1(i) is satisfied when X = Y and X has the Fatou property. In
this case Theorem 4.4 has the following form.

Theorem 4.5. Let X be a reflexive r.i. Banach function space with nontrivial
Boyd indices. For each a ∈ L∞, Ha : H[X] → H[X] is bounded and

cdistL∞
(
a,C + H∞)

� ‖H(a)‖ess � ‖P‖X→XdistL∞
(
a,C + H∞)

,

where constant c > 0 depends only on the space X.

Proof. As was mentioned, in case X = Y assumptions of Theorem 4.4 are
satisfied and L∞ = M(X,Y ). Therefore, it is enough to repeat the proof of
Theorem 4.4 with M(X,Y )o replaced by C. �

Finally, notice that it may happen that L∞ = M(X,Y ) even for X � Y
(for example, M(Lp,q, Lp,r) = L∞ when p ∈ [1,∞) and 1 � q < r � ∞,
see the definition of the Lorentz space Lp,q below). In such a case, however,
neither assumption (i), nor (ii) of Theorem 3.1 is satisfied, and thus estimation
from Theorem 4.4(ii) is problematic—with current knowledge we can not
decide whether it holds.

Let us state one more conclusion of the above Theorem 4.4.

Corollary 4.6. Let X and Y , X ⊂ Y be r.i. Banach function spaces such
that Y has nontrivial Boyd indices. If M(X,Y ) is separable, then for each
a ∈ M(X,Y ) the Hankel operator Ha : H[X] → H[Y ] is compact.

Proof. If M(X,Y ) is separable, then M(X,Y ) = M(X,Y )o and by the fact
that H[M(X,Y )] is the subspace of M(X,Y ), we have

distM(X,Y )

(
a,M(X,Y )o + H[M(X,Y )])

)
= distM(X,Y )

(
a,M(X,Y )

)
= 0.

Thus Theorem 4.4(i) implies the claim. �
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From Theorem 4.4 the following results on compact Hankel operators
between special classes of Hardy type spaces follow. Let us recall that for
p ∈ (0,∞) and q ∈ (0,∞] the Lorentz space Lp,q is defined by the (quasi-)
norm

‖f‖Lp,q =
(∫ 1

0

[
f∗(s)s1/p

]q ds
s

)1/q

,

with the standard modification when q = ∞. A function ϕ : [0,∞) → [0,∞]
which is convex, nondecreasing and ϕ(0) = 0 is called the Young function, or
the Orlicz function, when additionally ϕ : [0,∞) → [0,∞). The Orlicz space
Lϕ is defined by the norm

‖f‖ϕ = inf
{

λ > 0 :
∫

T

ϕ
(|f(t)|/λ

)
dm(t) � 1

}
.

Then the Hardy–Lorentz space Hp,q is defined as Hp,q := H[Lp,q], for p, q � 1,
while the Hardy–Orlicz space Hϕ is given by Hϕ = H[Lϕ].

Corollary 4.7. (i) If 1 < q < p < ∞, then each Hankel operator Ha : Hp →
Hq is compact (see [35]).

(ii) Let 1 < p2 < p1 < ∞.
(a) If 1 < q1 < q2 < ∞, then any Hankel operator Ha : Hp1,q1 →

Hp2,q2 between Hardy–Lorentz spaces is compact.
(b) If 1 < q2 � q1 < ∞, then the Hankel operator Ha : Hp1,q1 →

Hp2,q2 between Hardy–Lorentz spaces is compact if and only if Pa ∈
H[Lp,∞

o ] where 1
p = 1

p2
− 1

p1
.

(iii) Let ϕ1, ϕ be Orlicz functions such that Lϕ has nontrivial Boyd indices,
i.e., 1 < aϕ � bϕ < ∞, where aϕ, bϕ are Matuszewska–Orlicz indices
of ϕ (cf. [20]). Let ϕ � ϕ1 be a Young function given by ϕ � ϕ1(t) =
sup{ϕ(st) − ϕ1(s) : s > 0} (see [22]) and assume that either ϕ−1 ≈
ϕ−1
1 (ϕ � ϕ1)−1, or bϕ < aϕ1 . If a ∈ Lϕ	ϕ1 , then the Hankel operator

Ha : Hϕ1 → Hϕ is compact if and only if a ∈ Lϕ	ϕ1
o + Hϕ	ϕ1 .

5. Commutators and Semicommutators of Toeplitz and Hankel
Operators

For two operators T, S : X → X their commutator is defined as

[T, S] = TS − ST.

The commutator inspects to what extent operators T and S fail to be com-
mutative, which constitutes an important question in the field of operator
algebras.

Seemingly, the definition of commutator requires that both operators
belong to the same operator algebra and in general can not be directly ex-
tended to nonalgebraic settings. Nonetheless, it is quite interesting that we
may define commutators and semicommutators for Toeplitz and Hankel op-
erators acting between distinct Hardy spaces.

The following example serves as an inspiration for considerations in this
part of the paper.
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Example 5.1. Let 1 < q < r < p < ∞ and suppose that a ∈ M(Lp, Lr) = Ls1

and b ∈ M(Lr, Lq) = Ls2 , where 1/s1 = 1/r − 1/p and 1/s2 = 1/q − 1/r.
Observe that if s satisfies 1

s = 1
p + 1

q − 1
r , then a ∈ M(Ls, Lq) and b ∈

M(Lp, Ls). Moreover, ab ∈ M(Lp, Lq). On the diagram it looks like

Hp Hr

Hs Hq.

Ta

Tb

Tba
Tb

Ta

Thus all three operators TaTb, TbTa and Tba map Hp into Hq. Therefore,
commutators [Ta, Tb] := TaTb−TbTa and semicommutators (Tb, Ta] := TbTa−
Tba make sense. Note also that essentially the same reasoning applies to
Hankel operators and their commutators and semicommutators.

We will study when commutators and semicommutators of Toeplitz op-
erators are compact. For this to be done we need the following basic relations,
which are in fact the same as in the classical (that is, algebraic) settings
(see [3, 2.14 Proposition, p. 57]). However, we will present the proof for the
sake of convenience, since, on one hand, the notion of Hankel operators varies
through the literature and, on the other hand, sometimes proofs of the formu-
las below goes through bases (while we do not assume separability of spaces
X,Y,Z). Below S denotes the shift operator, as in Sect. 4.

Proposition 5.2. Let X, Y , Z be r.i. quasi-Banach function spaces such that
X ⊂ Y ⊂ Z and both Y,Z have nontrivial Boyd indices. Assume that a ∈
M(X,Y ) and b ∈ M(Y,Z). Then ba ∈ M(X,Z) and

(i) Tba = TbTa + HbHSJa, where Tba, TbTa,HbHSJa : H[X] → H[Z],
(ii) Hba = TbHa + HbTSJa, where Hba, TbHa,HbTSJa : H[X] → H[Z].

Proof. (i). It is easy to see that PJ = J(1−P ) and also from the definition of
the flip operator it follows that for any f, g ∈ L0 one has J(fg) = (SJf)·(Jg).
Since P is a projection and J is an involution (that is, J2 = id, we get

Tba = PMba = PMbMa = PMb

(
P + (1 − P )

)
Ma

= PMbPMa + PMbJ
2(1 − P )Ma = TbTa + HbJ(1 − P )Ma

= TbTa + HbPJMa = TbTa + HbPMSJaJ = TbTa + HbHSJa.

(ii). Proceeding as in the proof of (i), we get

Hba = PMbaJ = PMbMaJ = PMb

(
P + (1 − P )

)
MaJ

= PMbPMaJ + PMb(1 − P )MaJ = TbHa + PMbJJ(1 − P )MaJ

= TbHa + HbPJMaJ = TbHa + HbTSJa.

�

Observe that compactness of semicommutators TbTa − Tba can be di-
rectly derived from Theorem 4.4 and Proposition 5.2. However, both results
are not sufficient when studying the same property of commutators. Indeed,
we need to work with an intermediate space which plays the role of Hs on
the diagram in Example 5.1 and which replaces Y after changing an order
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of operators. Let X, Y and Z satisfy assumption of the above theorem. The
diagram that answers this quest looks like

H[X] H[Y ]

H[W ] H[Z],

Ta

Tb Tb

Ta

where the formula for W is given in the lemma below.

Proposition 5.3. Let X, Y , Z be r.i. Banach function spaces such that X ⊂
Y ⊂ Z. If a ∈ M(X,Y ), b ∈ M(Y,Z), and W = X � M(Y,Z), then the
following diagram commutes

X Y

W Z

Ma

Mb Mb

Ma

Proof. Let W = X � M(Y,Z). It should be noted that in general W is not
a Banach space, but only a quasi-Banach space. Regardless of that we may
proceed in the following way. From the definition of the space of pointwise
multipliers we get that

Y � M(Y,Z) ⊂ Z.

Now, by the cancellation law from [17, Theorem 4] we get that

M(X,Y ) = M
(
X � M(Y,Z), Y � M(Y,Z)

) ⊂ M(W,Z). (5.1)

Similarly

M(X,W ) = M
(
X,X � M(Y,Z)

)
= M

(
L∞,M(Y,Z)

)
= M(Y,Z). (5.2)

However, since Ma : X → Y and Mb : Y → Z are equivalent to a ∈ M(X,Y )
and b ∈ M(Y,Z), then inclusion (5.1) and equality (5.2) yield Ma : W → Z
and Mb : X → W , which finishes the proof. �

We are now ready to state the main result of this section.

Theorem 5.4. Let X ⊂ Y ⊂ Z be r.i. Banach function spaces such that Y
and Z have nontrivial Boyd indices. Let a ∈ M(X,Y ) and b ∈ M(Y,Z).

(i) Assume that W = X � M(Y,Z) has nontrivial Boyd indices. If a ∈
M(X,Y )o + H[M(X,Y )] or b ∈ M(Y,Z)o + H[M(Y,Z)] and a ∈
M(X,Y )o + H[M(X,Y )] or b ∈ M(Y,Z)o + H[M(Y,Z)], then the
commutator [Ta, Tb] is compact. In particular, when a ∈ M(X,Y )o or
b ∈ M(Y,Z)o then the commutator [Ta, Tb] is compact.

(ii) If a ∈ M(X,Y )o + H[M(X,Y )] or b ∈ M(Y,Z)o + H[M(Y,Z)], then
the semicommutator (Tb, Ta] is compact.

Proof. (i) Notice that Proposition 5.3 implies

a ∈ M(W,Z) and b ∈ M(X,W ),



58 Page 14 of 18 K. Leśnik, P. Mleczko IEOT

which gives

Ta,Ha,HSJa : H[W ] → H[Z] and Tb,Hb,HSJb : H[X] → H[W ].

Applying Proposition 5.2(i) once to TbTa and secondly to TaTb with the space
Y replaced by W , we get the formula

[Ta, Tb] = HbHSJa − HaHSJb.

Thus the point (i) will be proved once we explain that under our assumptions
both HbHSJa and HaHSJb are compact.

At first suppose that a ∈ M(X,Y )o + H[M(X,Y )]. Then

SJa ∈ M(X,Y )o + H[M(X,Y )]

and Theorem 4.4 implies that HSJa : H[X] → H[Y ] is compact. Alternatively,
Hb : H[Y ] → H[Z] is compact, so is HbHSJa.

Consider now the second assumption, that is

a ∈ M(X,Y )o + H[M(X,Y )] or b ∈ M(Y,Z) + H[M(Y,Z)].

If a ∈ M(X,Y )o + H[M(X,Y )] then a ∈ M(W,Z)o + H[M(W,Z)] by the
formula (5.1). Moreover, M(W,Z) is a Banach space, even if W is just
quasi-Banach. Thus explaining exactly as in the proof of Theorem 4.4(i)
we conclude that Ha : H[W ] → H[Z] is compact. Otherwise, when b ∈
M(Y,Z) + H[M(Y,Z)], then the explanation is the same because of equali-
ties (5.2). Consequently, also HaHSJb is compact.

(ii) The proof follows from the formula (Tb, Ta] = −HbHSJa and Theo-
rem 4.4. �

Recall that the question about compactness of the commutator [Ta, Tb]
or the semicommutator (Tb, Ta] in the classical setting of H2 was considered
by many authors (see for example [1,4] and references therein). Especially, it
was a famous problem to find necessary and sufficient condition for compact-
ness of (Tb, Ta], which arose from Fredholm theory for Toeplitz operators.
Finally it was solved by Axler, Chang, Sarason [1] and Vol’berg [37]. They
showed that (Tb, Ta] is compact if and only if H∞[f ]∩H∞[g] ⊂ H∞+C, where
H∞[h] denotes the Douglas algebra generated by H∞ and h. In particular,
this condition is far weaker than condition that follows from Hartman’s com-
pactness theorem for Hankel operators by the formula (Tb, Ta] = −HbHSJa.
This suggests that also conditions of Theorem 5.4 are far from being neces-
sary. However, in essentially nonalgebraic setting, it is even difficult to decide
whether these conditions are in fact unnecessary. The reason is that, on one
hand, we do not dispose any tools of Banach algebras as in the classical setting
and, on the other hand, one can not look for such examples among classical
Hardy spaces, since M(Lp, Lq) is order continuous for every 1 � q < p � ∞
and thus each Hankel operator from Hp to Hq is compact.

The following corollary explains that one may look for such an example
among the class of Hardy–Lorentz spaces.

Corollary 5.5. Let 1 < p3 < p2 < p1 < ∞ and suppose a ∈ M(Lp1,q1 , Lp2,q2),
b ∈ M(Lp2,q2 , Lp3,q3).
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(i) If q1 > q2 or q2 > q3, then [Ta, Tb], (Tb, Ta] : Hp1,q1 → Hp3,q3 are com-
pact.

(ii) If q1 � q2 � q3, then M(Lp1,q1 , Lp2,q2) = Lr1,∞ and M(Lp2,q2 , Lp3,q3) =
Lr2,∞ for 1

ri
= 1

pi+1
− 1

pi
, i = 1, 2. Furthermore, [Ta, Tb] : Hp1,q1 →

Hp3,q3 is compact, whenever
[
Pa ∈ Lr1,∞

o or (1 − P )b ∈ Lr2,∞
o

]

and
[
(1 − P )a ∈ Lr1,∞

o or Pb ∈ Lr2,∞
o

]
.

Moreover, (Tb, Ta] : Hp1,q1 → Hp3,q3 is compact, whenever

Pa ∈ Lr1,∞
o or (1 − P )b ∈ Lr2,∞

o .

Proof. The proof is an immediate consequence of Proposition 5.4, [18, The-
orem 4] and boundedness of P on Lp,q spaces for each p ∈ (1,∞). �

Therefore, finalizing the previous discussion, we see that in the case (ii)
one can select a and b such that

Pa, (1 − P )a ∈ Lr1,∞ \ Lr1,∞
o and Pb, (1 − P )b ∈ Lr2,∞ \ Lr2,∞

o .

Then the natural question is whether for some a, b as above

[Ta, Tb], (Tb, Ta] : Hp1,q1 → Hp3,q3

may still be compact?
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