Skip to main content
Log in

Hypergeometric Expression for the Resolvent of the Discrete Laplacian in Low Dimensions

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We present an explicit formula for the resolvent of the discrete Laplacian on the square lattice, and compute its asymptotic expansions around thresholds in low dimensions. As a by-product we obtain a closed formula for the fundamental solution to the discrete Laplacian. For the proofs we express the resolvent in a general dimension in terms of the Appell–Lauricella hypergeometric function of type C outside a disk encircling the spectrum. In low dimensions it reduces to a generalized hypergeometric function, for which certain transformation formulas are available for the desired expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhat, H.S., Osting, B.: Diffraction on the two-dimensional square lattice. SIAM J. Appl. Math. 70(5), 1389–1406 (2009/10)

  2. Bühring, W.: Generalized hypergeometric functions at unit argument. Proc. Am. Math. Soc. 114(1), 145–153 (1992)

    Article  MathSciNet  Google Scholar 

  3. Bühring, W., Srivastava, H.M.: Analytic continuation of the generalized hypergeometric series near unit argument with emphasis on the zero-balanced series. Approximation Theory and Applications, Hadronic Press, Palm Harbor, FL, 17–35 (1998)

  4. Ebisu, A.: Special values of the hypergeometric series. Mem. Am. Math. Soc. 248(1177) (2017)

  5. Guttmann, A.J.: Lattice Green’s functions in all dimensions. J. Phys. A 43(30), 305205, 26 pp (2010)

  6. Ito, K., Jensen, A.: A complete classification of threshold properties for one-dimensional discrete Schrödinger operators. Rev. Math. Phys. 27(1), 1550002, 45 pp (2015)

  7. Ito, K., Jensen, A.: Branching form of the resolvent at threshold for ultra-hyperbolic operators and discrete Laplacians. J. Funct. Anal. 277(4), 965–993 (2019)

    Article  MathSciNet  Google Scholar 

  8. Isozaki, H., Korotyaev, E.: Inverse problems, trace formulae for discrete Schrödinger operators. Ann. Henri Poincare 13(4), 751–788 (2012)

    Article  MathSciNet  Google Scholar 

  9. Jensen, A., Nenciu, G.: A unified approach to resolvent expansions at thresholds. Rev. Math. Phys. 13(6), 717–754 (2001)

    Article  MathSciNet  Google Scholar 

  10. Jensen, A., Nenciu, G.: Erratum: “A unified approach to resolvent expansions at thresholds” [Rev. Math. Phys. 13 (2001), no. 6, 717–754]. Rev. Math. Phys. 16(5), 675–677 (2004)

  11. Joyce, G.S.: Singular behaviour of the lattice Green function for the \(d\)-dimensional hypercubic lattice. J. Phys. A 36(4), 911–921 (2003)

    Article  MathSciNet  Google Scholar 

  12. Kapanadze, D.: Exterior diffraction problems for two-dimensional square lattice. Z. Angew. Math. Phys. 69(5), Art. 123, 17 pp (2018)

  13. Lawler, G.F., Limic, V.: Random walk: a modern introduction. Cambridge Studies in Advanced Mathematics, 123. Cambridge University Press, Cambridge (2010)

  14. Lynch, R.E.: Fundamental solutions of nine-point discrete Laplacians. A Festschrift to honor Professor Garrett Birkhoff on his eightieth birthday. Appl. Numer. Math. 10(3–4), 325–334 (1992)

    Article  MathSciNet  Google Scholar 

  15. Martin, P.A.: Discrete scattering theory: Green’s function for a square lattice. Wave Motion 43(7), 619–629 (2006)

    Article  MathSciNet  Google Scholar 

  16. Mangad, M.: Bounds for the two-dimensional discrete harmonic Green’s function. Math. Comput. 20, 60–67 (1966)

    MathSciNet  MATH  Google Scholar 

  17. McCrea, W.H., Whipple, F.J.W.: Random paths in two and three dimensions. Proc. R. Soc. Edinb. 60, 281–298 (1940)

    Article  MathSciNet  Google Scholar 

  18. Morita, T.: Useful procedure for computing the lattice Green’s function–square, tetragonal, and bcc lattices. J. Math. Phys. 12, 1744–1747 (1971)

    Article  MathSciNet  Google Scholar 

  19. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.23 of 2019-06-15. Online companion to [OLBC]

  20. Nomura, Y., Taira, K.: Some properties of threshold eigenstates and resonant states of discrete Schrödinger operators. Ann. Henri Poincaré 21(6), 2009–2030 (2020)

    Article  MathSciNet  Google Scholar 

  21. Ray, K.: Green’s function on lattices. arXiv:1409.7806 [math-ph]

  22. Rozenblum, G., Solomyak, M.: Spectral estimates for Schrödinger operators with sparse potentials on graphs. Problems in mathematical analysis. No. 57. J. Math. Sci. (N.Y.) 176(3), 458–474 (2011)

  23. Saigo, M., Saxena, R.K.: Expansions of \({_4F_3}\) when the upper parameters differ by integers. Kyungpook Math. J. 38(2), 293–299 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

  25. Vidūnas, R.: Specialization of Appell’s functions to univariate hypergeometric functions. J. Math. Anal. Appl. 355(1), 145–163 (2009)

    Article  MathSciNet  Google Scholar 

  26. Zucker, I.J.: 70+ years of the Watson integrals. J. Stat. Phys. 145(3), 591–612 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

KI would like to thank Professors Naotaka Kajino, Yoshiaki Goto, Hideshi Yamane and Kanam Park for valuable comments. This work was initiated and finalized during KI’s visits to Aarhus University, and he would like to thank for their kind hospitality. KI was partially supported by JSPS KAKENHI Grant Number 17K05325. The authors were partially supported by the Danish Council for Independent Research | Natural Sciences, Grants DFF–4181-00042 and DFF–8021-0084B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Jensen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Comparison with Previous Results

1.1 Result from the Previous Paper [7]

In [7] we computed the singular parts of the resolvent expansions around all the thresholds in all the dimensions. They should coincide with the results of this paper. For a quick comparison here we review the results from [7] according to the present setting only for the low dimensions.

Theorem A.1

Let \(d=1\). There exists \({\mathcal {E}}_0(z,n)\) analytic in \(|z|<4\) such that for any \(z\in {\mathbb {C}}\setminus [0,4]\) with \(|z|<4\) and \(n\in {\mathbb {Z}}\)

$$\begin{aligned} G(z,n) = {\mathcal {E}}_0(z,n)+\frac{1}{2\sqrt{-z}}F^{(1)}_B\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+n;\frac{1}{2}-n}{\frac{1}{2}};\frac{z}{4}\biggr ). \end{aligned}$$

Similarly, there exists \({\mathcal {E}}_1(z,n)\) analytic in \(|z-4|<4\) such that for any \(z\in {\mathbb {C}}\setminus [0,4]\) with \(|z-4|<4\) and \(n\in {\mathbb {Z}}\)

$$\begin{aligned} G(z,n) = {\mathcal {E}}_1(z,n)+\frac{(-1)^{n+1}}{2\sqrt{z-4}} F^{(1)}_B\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+n;\frac{1}{2}-n}{\frac{1}{2}};\frac{4-z}{4}\biggr ). \end{aligned}$$

Theorem A.2

Let \(d=2\). There exists \({\mathcal {E}}_0(z,n)\) analytic in \(|z|<4\) such that for any \(z\in {\mathbb {C}}\setminus [0,8]\) with \(|z|<4\) and \(n\in {\mathbb {Z}}^2\)

$$\begin{aligned} G(z,n)&= {\mathcal {E}}_0(z,n) \\&\quad -\,\frac{1}{4\pi }[\log (-z)] F^{(2)}_B\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+n_1,\frac{1}{2}+n_2;\frac{1}{2}-n_1,\frac{1}{2}-n_2}{1}; \frac{z}{4},\frac{z}{4}\biggr ). \end{aligned}$$

There exists \({\mathcal {E}}_1(z,n)\) analytic in \(|z-4|<4\) such that for any \(|z-4|<4\) with \(\mathop {\mathrm {Im}}z>0\) and \(n\in {\mathbb {Z}}^2\)

$$\begin{aligned} G(z,n)&= {\mathcal {E}}_1(z,n) -\frac{\mathrm {i}}{8\pi }\Bigl [\log \Bigl (-\frac{(z-4)^2}{16}\Bigr )\Bigr ] \\&\quad \times \Bigl [ (-1)^{n_2}F^{(2)}_B \biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+n_1,\frac{1}{2}+n_2;\frac{1}{2}-n_1,\frac{1}{2}-n_2}{1};\frac{z-4}{4},\frac{4-z}{4}\biggr ) \\&\qquad +\, (-1)^{n_1}F^{(2)}_B\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+n_1,\frac{1}{2}+n_2;\frac{1}{2}-n_1,\frac{1}{2}-n_2}{1};\frac{4-z}{4},\frac{z-4}{4}\biggr ) \Bigr ]. \end{aligned}$$

There exists \({\mathcal {E}}_2(z,n)\) analytic in \(|z-8|<4\) such that for any \(z\in {\mathbb {C}}\setminus [0,8]\) with \(|z-8|<4\) and \(n\in {\mathbb {Z}}^2\)

$$\begin{aligned} G(z,n)&= {\mathcal {E}}_2(z,n) +\frac{(-1)^{|n|}}{4\pi }[\log (z-8)] \\&\quad \times F^{(2)}_B\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+n_1,\frac{1}{2}+n_2;\frac{1}{2}-n_1,\frac{1}{2}-n_2}{1};\frac{8-z}{4},\frac{8-z}{4}\biggr ). \end{aligned}$$

1.2 Comparison of the Singular Parts

For \(d=1\) the singular parts of Theorem 2.2 and Theorem A.1 clearly coincide due to (2.1). Hence we examine only the case \(d=2\). We begin with the embedded threshold \(z=4\).

Corollary A.3

The singular parts from Theorems 2.3 and A.2 around \(z=4\) coincide, which is equivalent to the following relations: For all \(k\in {\mathbb {N}}_0\) and \(n\in {\mathbb {Z}}^2\)

$$\begin{aligned}&\sum _{|\alpha |=2k} \frac{(-1)^{\alpha _1}}{\alpha _1!\alpha _2!} \Bigl (\frac{1}{2}+n_1\Bigr )_{\alpha _1} \Bigl (\frac{1}{2}+n_2\Bigr )_{\alpha _2} \Bigl (\frac{1}{2}-n_1\Bigr )_{\alpha _1} \Bigl (\frac{1}{2}-n_2\Bigr )_{\alpha _2} \\&= \frac{4^{2k}}{(2k)!}\Bigl (\frac{1+n_1+n_2}{2}\Bigr )_k \Bigl (\frac{1+n_1-n_2}{2}\Bigr )_k \Bigl (\frac{1-n_1+n_2}{2}\Bigr )_k \Bigl (\frac{1-n_1-n_2}{2}\Bigr )_k \end{aligned}$$

and

$$\begin{aligned}&\sum _{|\alpha |=2k+1} \frac{(-1)^{\alpha _1}}{\alpha _1!\alpha _2!}\Bigl (\frac{1}{2}+n_1\Bigr )_{\alpha _1} \Bigl (\frac{1}{2}+n_2\Bigr )_{\alpha _2} \Bigl (\frac{1}{2}-n_1\Bigr )_{\alpha _1} \Bigl (\frac{1}{2}-n_2\Bigr )_{\alpha _2} \\&= \frac{4^{2k+1}}{(2k+1)!}\Bigl (\frac{n_1+n_2}{2}\Bigr )_{k+1} \Bigl (\frac{n_1-n_2}{2}\Bigr )_{k+1} \Bigl (\frac{2-n_1+n_2}{2}\Bigr )_k \Bigl (\frac{2-n_1-n_2}{2}\Bigr )_k . \end{aligned}$$

Proof

Since Theorems 2.3 and A.2 provide asymptotic expansions of the same function, it is clear that their singular parts have to coincide.

Let us verify that this is equivalent to the asserted identities. For that we set

$$\begin{aligned}&s_j[n]=\\&\frac{1}{8} \Bigl [ (-1)^{n_2} \sum _{|\alpha |=j} \frac{ (-1)^{\alpha _2}\left( \frac{1}{2}+n_1\right) _{\alpha _1} \left( \frac{1}{2}+n_2\right) _{\alpha _2} \left( \frac{1}{2}-n_1\right) _{\alpha _1} \left( \frac{1}{2}-n_2\right) _{\alpha _2} }{j!\alpha _1!\alpha _2!} \\&\qquad +\, (-1)^{n_1} \sum _{|\alpha |=j} \frac{ (-1)^{\alpha _1}\left( \frac{1}{2}+n_1\right) _{\alpha _1} \left( \frac{1}{2}+n_2\right) _{\alpha _2} \left( \frac{1}{2}-n_1\right) _{\alpha _1} \left( \frac{1}{2}-n_2\right) _{\alpha _2} }{j!\alpha _1!\alpha _2!} \Bigr ], \end{aligned}$$

which are the coefficients of the singular part from Theorem A.2. First let \(j=2k\) be even, and then

$$\begin{aligned} s_{2k}[n]&= \frac{(-1)^{n_1}+(-1)^{n_2}}{8(2k)!} \\&\quad \times \sum _{|\alpha |=2k} \frac{ (-1)^{\alpha _1} }{\alpha _1!\alpha _2!}\Bigl (\frac{1}{2}+n_1\Bigr )_{\alpha _1} \Bigl (\frac{1}{2}+n_2\Bigr )_{\alpha _2} \Bigl (\frac{1}{2}-n_1\Bigr )_{\alpha _1} \Bigl (\frac{1}{2}-n_2\Bigr )_{\alpha _2} . \end{aligned}$$

Then the coincidence of the singular parts implies the first identity of the assertion for |n| even, and hence also for |n| odd. Next let \(j=2k+1\) be odd, and we have

$$\begin{aligned} s_{2k+1}[n]&= \frac{(-1)^{n_1}-(-1)^{n_2}}{8(2k+1)!} \\&\quad \times \sum _{|\alpha |=2k+1} \frac{(-1)^{\alpha _1}}{\alpha _1!\alpha _2!} \Bigl (\frac{1}{2}+n_1\Bigr )_{\alpha _1} \Bigl (\frac{1}{2}+n_2\Bigr )_{\alpha _2} \Bigl (\frac{1}{2}-n_1\Bigr )_{\alpha _1} \Bigl (\frac{1}{2}-n_2\Bigr )_{\alpha _2} . \end{aligned}$$

Similarly to the above, the coincidence of the singular parts implies the first asserted identity for |n| odd, and hence also for |n| even. The converse is clear from the above argument, and we are done. \(\square \)

Remark

We do not try to give direct proofs of the identities from Corollary A.3. The identities in Corollary A.3 have been verified using the computer algebra system Maple.

Similarly we discuss the endpoint thresholds \(z=0,8\) as follows.

Corollary A.4

The singular parts from Theorems 2.4 and A.2 around \(z=0,8\) coincide, i.e., for all \(|w|<1\) and \((m,l)\in {\mathbb {Z}}^2\)

$$\begin{aligned}&(-1)^{m+l} F^{(2)}_B\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+m+l,\frac{1}{2}+m-l;\frac{1}{2}-m-l,\frac{1}{2}-m+l}{1};w,w\biggr ) \\&= {_2F_1}\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2},\frac{1}{2}}{1};w(2-w)\biggr ) {_4F_3} \biggl (\genfrac{}{}{0.0pt}{}{m,-m,l,-l}{1,\frac{1}{2},\frac{1}{2}};(w-1)^2\biggr ) \\&\quad +\,\sum _{\mu =1}^{|m|} (-1)^\mu \biggl [{_2F_1}\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+\mu ,\frac{1}{2}-\mu }{1};w(2-w)\biggr ) \\&\qquad \qquad +\,{_2F_1}\biggl (\genfrac{}{}{0.0pt}{}{\mu -\frac{1}{2},\frac{3}{2}-\mu }{1};w(2-w)\biggr )\biggr ] \\&\qquad \times {_4F_3}\biggl (\genfrac{}{}{0.0pt}{}{1+|m|-\mu ,\mu -|m|,l,-l}{1,\frac{1}{2},\frac{1}{2}};(w-1)^2\biggr ) \\&\quad +\,\sum _{\nu =1}^{|l|} (-1)^\nu \biggl [ {_2F_1} \biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+\nu ,\frac{1}{2}-\nu }{1};w(2-w)\biggr ) \\&\qquad \qquad +\,{_2F_1}\biggl (\genfrac{}{}{0.0pt}{}{\nu -\frac{1}{2},\frac{3}{2}-\nu }{1};w(2-w) \biggr )\biggl ] \\&\qquad \times {_4F_3}\biggl (\genfrac{}{}{0.0pt}{}{m,-m,1+|l|-\nu ,\nu -|l|}{1,\frac{1}{2},\frac{1}{2}};(w-1)^2\biggr ) , \end{aligned}$$

and for all \(|w|<1\) and \((m,l)\in {\mathbb {N}}_0^2\)

$$\begin{aligned}&(-1)^{m+l} F^{(2)}_B\biggl (\genfrac{}{}{0.0pt}{}{\frac{3}{2}+m+l,\frac{1}{2}+m-l;-\frac{1}{2}-m-l,\frac{1}{2}-m+l}{1};w,w\biggr ) \\&={} (2m+1)(2l+1)(w-1) {_2F_1}\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2},\frac{1}{2}}{1};w(2-w)\biggr ) \\&\qquad \times {_4F_3}\biggl (\genfrac{}{}{0.0pt}{}{1+m,-m,1+l,-l}{1,\frac{3}{2},\frac{3}{2}}; (w-1)^2\biggr ) \\&\quad -\, (2l+1)(w-1) \sum _{\mu =-m}^{m}(-1)^\mu {_2F_1}\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+\mu ,\frac{1}{2}-\mu }{1};w(2-w)\biggr ) \\&\qquad \times {_4F_3}\biggl (\genfrac{}{}{0.0pt}{}{1+m-|\mu |,|\mu |-m,1+l,-l}{1,\frac{1}{2},\frac{3}{2}}; (w-1)^2\biggr ) \\&\quad -\, (2m+1)(w-1) \sum _{\nu =-l}^{l}(-1)^\nu {_2F_1}\biggl (\genfrac{}{}{0.0pt}{}{\frac{1}{2}+\nu ,\frac{1}{2}-\nu }{1};w(2-w)\biggr ) \\&\qquad \times {_4F_3}\biggl (\genfrac{}{}{0.0pt}{}{1+m,-m,1+l-|\nu |,|\nu |-l}{1,\frac{1}{2},\frac{3}{2}}; (w-1)^2\biggr ) . \end{aligned}$$

Proof

We can prove the assertion similarly to Corollary A.3. However, it requires fairly long computations, and we omit it. \(\square \)

Remark

In contrast to Corollary A.3 we have no idea how we could possibly directly prove the identities from Corollary A.4. However, they can be verified using the computer algebra system Maple, in this case for fixed but arbitrary values of m and l.

Renormalized Expectation of Random Work

Proof of (1.3)

It is elementary to compute \(P(X_k=n)\). In fact, we have

$$\begin{aligned} P(X_k=n) =\frac{1}{(2d)^k}\sum _{|\alpha |=(k-|n|)/2}\frac{k!}{\alpha !\prod _{j=1}^d\bigl [(\alpha _j+|n_j|)!\bigr ]} \end{aligned}$$

if \(k\ge |n|\) and \(k-|n|\) is even, and

$$\begin{aligned} P(X_k=n)=0 \end{aligned}$$

otherwise. Then we obtain

$$\begin{aligned} \sum _{k=0}^\infty \Bigl (\frac{2d}{2d-z}\Bigr )^k&P(X_k=n) \\&= \sum _{\genfrac{}{}{0.0pt}{}{k\ge |n|,}{k-|n|\text {:even}}} \sum _{|\alpha |=(k-|n|)/2} \frac{k!}{\alpha !\prod _{j=1}^d\bigl [(\alpha _j+|n_j|)!\bigr ]} (2d-z)^{-k} \\&= \sum _{\alpha \in {\mathbb {N}}_0^d} \frac{(2|\alpha |+|n|)!}{\alpha !\prod _{j=1}^d\bigl [(\alpha _j+|n_j|)!\bigr ]} (2d-z)^{-2|\alpha |-|n|}, \end{aligned}$$

and hence (1.3) follows by Theorem 2.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, K., Jensen, A. Hypergeometric Expression for the Resolvent of the Discrete Laplacian in Low Dimensions. Integr. Equ. Oper. Theory 93, 32 (2021). https://doi.org/10.1007/s00020-021-02648-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02648-2

Keywords

Mathematics Subject Classification

Navigation