Skip to main content
Log in

Continuum limit for a discrete Hodge–Dirac operator on square lattices

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the continuum limit for Dirac–Hodge operators defined on the n dimensional square lattice \(h\mathbb {Z}^n\) as h goes to 0. This result extends to a first order discrete differential operator the known convergence of discrete Schrödinger operators to their continuous counterpart. To be able to define such a discrete analog, we start by defining an alternative framework for a higher–dimensional discrete differential calculus. We believe that this framework, that generalize the standard one defined on simplicial complexes, could be of independent interest. We then express our operator as a differential operator acting on discrete forms to finally be able to show the limit to the continuous Dirac–Hodge operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

There are no data associated with this manuscript.

References

  1. Anné, C., Torki-Hamza, N.: The Gauss-Bonnet operator of an infinite graph. Anal. Math. Phys. 5(2), 137–159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Athmouni, N., Baloudi, H., Damak, M., Ennaceur, M.: The magnetic discrete Laplacian inferred from the Gauß-Bonnet operator and application. Ann. Funct. Anal. 12(2), 33 (2021)

    Article  MATH  Google Scholar 

  3. Bourget, O., Flores, G., Moreno, R., Taarabt, A.: One-dimensional discrete Dirac operators in a decaying random potential I: spectrum and dynamics. Math. Phys. Anal. Geom. 23(2), 20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cassano, B., Ibrogimov, O., Krejčiřík, D., Štampach, F.: Location of eigenvalues of non-self-adjoint discrete Dirac operators. Ann. Henri Poincaré 21(7), 2193–2217 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Cornean, H., Garde, H., Jensen, A.: Norm resolvent convergence of discretized Fourier multipliers. J. Fourier Anal. Appl. 27(4), 71 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cornean, H., Garde, H., Jensen, A.: Discrete approximations to Dirichlet and Neumann Laplacians on a half-space and norm resolvent convergence. 2022. eprint: arXiv:2211.01974 (2022). to appear in Studia Math.

  7. Cornean, H., Garde, H., Jensen, A.: Discrete approximations to Dirac operators and norm resolvent convergence. 2022. eprint: arXiv:2203.07826 (2022). to appear in J. Spectr. Theory

  8. Chebbi, Y.: The discrete Laplacian of a 2-simplicial complex. Potential Anal. 49(2), 331–358 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chebbi, Y.: Spectral gap of the discrete Laplacian on triangulations. J. Math. Phys. 61(10), 103507 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dodziuk, J.: Finite-difference approach to the Hodge theory of harmonic forms. Amer. J. Math. 98(1), 79–104 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eckmann, B.: Harmonische Funktionen und Randwertaufgaben in einem Komplex. Comment. Math. Helv. 17, 240–255 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  12. Exner, P., Nakamura, S., Tadano, Y.: Continuum limit of the lattice quantum graph Hamiltonian. Lett. Math. Phys. 112(4), 83 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Anna, G., Uli, W.: On eigenvalues of random complexes. Israel J. Math. 216(2), 545–582 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horak, D., Jost, J.: Spectra of combinatorial Laplace operators on simplicial complexes. Adv. Math. 244, 303–336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Keller, M.: Intrinsic metrics on graphs: a survey. In: Mathematical Technology of Networks: Bielefeld, Springer, Cham pp. 81–119, (2015)

  16. Lim, L.-H.: Hodge Laplacians on graphs. SIAM Rev. 62(3), 685–715 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miranda, P., Parra, D., Raikov, G.: Spectral asymptotics at thresholds for a Dirac-type operator on Z2. J. Funct. Anal. 284(2), 109743 (2023)

    Article  MATH  Google Scholar 

  18. Nakamura, S., Tadano, Y.: On a continuum limit of discrete Schrödinger operators on square lattice. J. Spectr. Theory 11(1), 355–367 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Parra, D.: Spectral and scattering theory for Gauss-Bonnet operators on perturbed topological crystals. J. Math. Anal. Appl. 452(2), 792–813 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Prado, R., de Oliveira, C., de Oliveira, E.: Density of states and Lifshitz tails for discrete 1D random Dirac operators. Math. Phys. Anal. Geom. 24(3), 30 (2021)

  21. Post, O.: Spectral analysis on graph-like spaces. Vol. 2039. Lecture Notes in Mathematics. Springer, Heidelberg, (2012), pp. xvi+431

  22. Post, O., Zimmer, S.: Generalised norm resolvent convergence: comparison of different concepts. (2022). eprint: arXiv:2202.03234

  23. Schmidt, K.M., Umeda, T.: Continuum limits for discrete Dirac operators on 2D square lattices. (2021). eprint: arXiv:2109.04052

  24. Thaller, B.: The Dirac equation. Texts and Monographs in Physics. Springer- Verlag, Berlin, (1992), pp. xviii+357

Download references

Acknowledgements

P. Miranda was supported by the Chilean Fondecyt Grant 1201857. D. Parra was supported by the Chilean Fondecyt Grant 3210686.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Miranda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Proposition 2.7

Appendix A. Proof of Proposition 2.7

Because the definition of \(\partial \) involves \(({}_{}{i}{\hat{s}})^*\) we need a better understanding of how the involution and restriction are related before attempting to prove Proposition 2.7.

Lemma A.1

Let \(\hat{s}\) be given by (9). Let \(1\le i_0 \le j\) and \(1\le i_1 \le j-1\). Then the following statements hold:

  1. (1)

    \({}_{}{i_0}{(\hat{s}^*})=({}_{}{j-i_0+1}{\hat{s}})^*\)

  2. (2)

    \(({}_{}{i_0}{(\hat{s}^*))^*}=({}_{}{j-i_0+1}{\hat{s}})\)

  3. (3)
    $$\begin{aligned} {}_{}{i_1}{({}_{}{i_0}{\hat{s}})}={\left\{ \begin{array}{ll} {}_{}{(i_0-1)}{({}_{}{i_1}{\hat{s}})} &{}\text { if }i_1<i_0\ ;\ \\ {}_{}{i_0}{({}_{}{(i_1+1)}{\hat{s}})} &{}\text { if }i_0\le i_1\ . \end{array}\right. } \end{aligned}$$

Proof

Let \(1\le i\le j-1\), then on one hand we have

$$\begin{aligned} {}_{}{i_0}{(\hat{s}^*})(i)=&{\left\{ \begin{array}{ll} \hat{s}^*(i)\quad &{}i<i_0\\ \hat{s}^*(i+1)\quad &{} i_0\le i \end{array}\right. }\\ =&{\left\{ \begin{array}{ll} \hat{s}(j-i+1)\quad &{}i<i_0\\ \hat{s}(j-i)\quad &{} i_0\le i \end{array}\right. } \end{aligned}$$

while in the other we can compute

$$\begin{aligned} ({}_{}{j-i_0+1}{\hat{s}})^*(i)=&{}_{}{j-i_0+1}{\hat{s}}(j-i)\\ =&{\left\{ \begin{array}{ll} \hat{s}(j-i)\quad &{}j-i<j-i_0+1\\ \hat{s}(j-i+1)\quad &{} j-i_0+1\le j- i \end{array}\right. }\\ =&{\left\{ \begin{array}{ll} \hat{s}(j-i)\quad &{} i_0\le i\\ \hat{s}(j-i+1)\quad &{}i<i_0 \end{array}\right. } \end{aligned}$$

which proves Item 1. Further, Item 2 is a direct consequence of Item 1. To prove Item 3 we fix \(1\le i_0\le j\) and \(1\le i_1\le j-1\) and first consider the case \(i_1<i_0\). We first compute

$$\begin{aligned} {}_{}{i_1}{({}_{}{i_0}{\hat{s}})}(i)=&{\left\{ \begin{array}{ll} {}_{}{i_0}{\hat{s}}(i)\quad &{}i<i_1\\ {}_{}{i_0}{\hat{s}}(i+1)\quad &{} i_1\le i \end{array}\right. }\\ =&{\left\{ \begin{array}{ll} \hat{s}(i)\quad &{}i<i_1\\ \hat{s}(i+1)\quad &{}i_1\le i\le i_0-2\\ \hat{s}(i+2)\quad &{}i_0-1\le i \end{array}\right. } \end{aligned}$$

and then compare it with

$$\begin{aligned} {}_{}{i_0-1}{({}_{}{i_1}{\hat{s}})}(i) =&{\left\{ \begin{array}{ll} {}_{}{i_1}{\hat{s}}(i)\quad &{}i<i_0-1\\ {}_{}{i_1}{\hat{s}}(i+1)\quad &{} i_0-1\le i \end{array}\right. } \end{aligned}$$

which will coincide with the previous expression and hence show that Item 3 holds for \(i_1<i_0\). The computations for \(i_0\le i_1\) follow the same structure and are omitted. \(\square \)

Proof of Proposition 2.7

Let us first show that \(\partial (\overline{s})=\overline{\partial (s)}\). By (10) and using Items 1 and 2 from Lemma A.1 we can check that:

$$\begin{aligned} \partial (\overline{s}) =&\cup _{i=1}^j \{(-1)^{j-i} (\lfloor \overline{s} \rfloor ;{}_{}{i}{(\hat{s}^*)}) \}\bigcup \cup _{i=1}^j\{(-1)^{i} (\lceil \overline{s} \rceil ;({}_{}{i}{(\hat{s}^*)})^*) \}\\ =&\cup _{i=1}^j \{(-1)^{j-i} (\lceil s \rceil \lfloor ;({}_{}{j-i+1}{\hat{s}})^*) \}\bigcup \cup _{i=1}^j\{(-1)^{i} (\lfloor s \rfloor ;{}_{}{j-i+1}{\hat{s}}) \}\\ =&\cup _{m=1}^j \{(-1)^{m-1} (\lceil s \rceil \lfloor ;({}_{}{m}{\hat{s}})^*) \}\bigcup \cup _{m=1}^j\{(-1)^{j-m+1} (\lfloor s \rfloor ;{}_{}{m}{\hat{s}}) \}\\ =&\cup _{m=1}^j \overline{\{(-1)^{m} (\lceil s \rceil \lfloor ;({}_{}{m}{\hat{s}})^*) \}}\bigcup \cup _{m=1}^j\overline{\{(-1)^{j-m} (\lfloor s \rfloor ;{}_{}{m}{\hat{s}}) \}}=\overline{\partial (s)}\ . \end{aligned}$$

It remains to show that \(\partial (\partial (s))=\overline{\partial (\partial (s))}\). For this we introduce the following notation for \(1\le i \le j\) and \(s\in X^j\)

$$\begin{aligned} A_i(s):=(-1)^{j-i}(\lfloor s \rfloor ; {}_{}{i}{\hat{s}})\quad B_i(s):=(-1)^{i}(\lceil s \rceil :({}_{}{i}{\hat{s}})^*)\ . \end{aligned}$$

It follows that

$$\begin{aligned} \partial (\partial (s))=\cup _{l=1}^{j-1}\cup _{i=1}^{j}\{A_l(A_i(s))\cup B_l(A_i(s))\cup A_l(B_i(s))\cup B_l(B_i(s))\}\ . \end{aligned}$$

Let us now consider \(s\in X^j\). Without lose of generality we will assume that \(s=(\lfloor s \rfloor ; \delta _1,\dots ,\delta _j)\). From the proof of Lemma A.1 on can see that if \(i_1<i_0\), then \({}_{}{i_1}{({}_{}{i_0}{\hat{s}})}\) skips the \(i_0\) and \(i_1\) terms. We start by identifying the faces \(r \in \partial (\partial (s))\) that satisfies \(\lfloor r \rfloor = \lfloor s \rfloor \). There are given for \(1\le i\le j\) and \(1\le l\le j-1\) such that \(j-i\) is even and \(j-l\) is odd by

$$\begin{aligned} A_l(A_i)(s)=A_l((-1)^{j-i}(\lfloor s \rfloor ; {}_{}{i}{\hat{s}})=(-1)^{j-1-l}(\lfloor s \rfloor ; {}_{}{l}{({}_{}{i}{\hat{s}})})= {\left\{ \begin{array}{ll}(\lfloor s \rfloor ; {}_{}{l}{({}_{}{i}{\hat{s}})}) &{}\text { if }l<i\\ (\lfloor s \rfloor ; {}_{}{i}{({}_{}{l+1}{\hat{s}})}) &{}\text { if }i\le l \end{array}\right. }\ ; \end{aligned}$$

and for \(1\le i\le j\) and \(1\le l\le j-1\) such that \(j-i\) is odd and l is even by

$$\begin{aligned} B_l(A_i)(s)=B_l((-1)^{j-i}(\lfloor s \rfloor ; {}_{}{i}{\hat{s}})=&B_l((\lceil s \rceil -\delta _i ; ({}_{}{i}{\hat{s}})^*)\\ =&(-1)^{l}(\lfloor s \rfloor ; ({}_{}{l}{(({}_{}{i}{\hat{s}})^*}))^*)\\ =&(\lfloor s \rfloor ; {}_{}{j-l}{({}_{}{i}{\hat{s}})})= {\left\{ \begin{array}{ll}(\lfloor s \rfloor ; {}_{}{j-l}{({}_{}{i}{\hat{s}})}) &{}\text { if }j-l<i\\ (\lfloor s \rfloor ; {}_{}{i}{({}_{}{j-l+1}{\hat{s}})}) &{}\text { if }i\le j-l \end{array}\right. }\ . \end{aligned}$$

In both cases we have faces that start at \(\lfloor s \rfloor \) but have two directions less than s. To check that we have all possible \(\tfrac{j*(j-1)}{2}\) combinations we first consider the case \(j=2k\) for \(k\in \mathbb {N}\). We have that the faces \(r\in \partial (\partial (s))\) that satisfies \(\lfloor r \rfloor =\lfloor s \rfloor \) are given by

$$\begin{aligned}&\left\{ \cup _{p=1}^k \cup _{m=1}^k A_{2p-1}(A_{2m}(s))\right\} \bigcup \left\{ \cup _{p=1}^{k-1}\cup _{m=1}^k B_{2p}(A_{2m-1}(s))\right\} \\&=\left\{ \cup _{p=1}^k \cup _{m=p}^k (\lfloor s \rfloor ; {}_{}{2p-1}{({}_{}{2m}{\hat{s}})}) \right\} \bigcup \left\{ \cup _{p=1}^k \cup _{m=1}^{p-1} (\lfloor s \rfloor ; {}_{}{2m}{({}_{}{2p}{\hat{s}})}) \right\} \\&{\quad }\bigcup \left\{ \cup _{p=1}^{k-1}\cup _{m=k-p+1}^{k}(\lfloor s \rfloor ; {}_{}{2k-2p}{({}_{}{2m-1}{\hat{s}})})\right\} \bigcup \left\{ \cup _{p=1}^{k-1}\cup _{m=1}^{k-p} (\lfloor s \rfloor ;{}_{}{2m-1}{({}_{}{2k-2p+1}{\hat{s}})})\right\} \\&=\left\{ \cup _{p=1}^k \cup _{m=p}^k (\lfloor s \rfloor ; {}_{}{2p-1}{({}_{}{2m}{\hat{s}})}) \right\} \bigcup \left\{ \cup _{p=1}^k \cup _{m=1}^{p-1} (\lfloor s \rfloor ; {}_{}{2m}{({}_{}{2p}{\hat{s}})}) \right\} \\&{\quad }\bigcup \left\{ \cup _{p=1}^{k-1}\cup _{m=p+1}^{k}(\lfloor s \rfloor ; {}_{}{2p}{({}_{}{2m-1}{\hat{s}})})\right\} \bigcup \left\{ \cup _{p=1}^{k-1}\cup _{m=1}^{p} (\lfloor s \rfloor ;{}_{}{2m-1}{({}_{}{2p+1}{\hat{s}})})\right\} \\&=\left\{ \cup _{l=1}^{j-1} \cup _{i=l+1}^j (\lfloor s \rfloor ; {}_{}{l}{({}_{}{i}{\hat{s}})}) \right\} . \end{aligned}$$

Similar computations work for \(j=2k+1\) as well for the treatment of the other types of faces. We do not enter into the detail of each one but we will discuss where the terms come from with the aid of the following table.

 

r

i such that

l such that

\(\lfloor r \rfloor \)

1

\(A_l(A_i(s))\)

\(j-i\) is even

\(j-l\) is odd

\(\lfloor s \rfloor \)

2

\(B_l(A_i(s))\)

\(j-i\) is odd

l is even

\(\lfloor s \rfloor \)

3

\(A_l(A_i(s))\)

\(j-i\) is even

\(j-l\) is even

\(\lceil s \rceil - \delta _{1} - \delta _{2}\)

4

\(B_l(A_i(s))\)

\(j-i\) is odd

l is odd

\(\lceil s \rceil - \delta _{1} - \delta _{2}\)

5

\(A_l(A_i(s))\)

\(j-i\) is odd

\(j-l\) is even

\(\lfloor s \rfloor + \delta _{1}\)

6

\(B_l(A_i(s))\)

\(j-i\) is even

l is odd

\(\lfloor s \rfloor + \delta _{1}\)

7

\(A_l(B_i(s))\)

i is odd

\(j-l\) is odd

\(\lfloor s \rfloor + \delta _{1}\)

8

\(B_l(B_i(s))\)

i is even

l is even

\(\lfloor s \rfloor + \delta _{1}\)

9

\(A_l(A_i(s))\)

\(j-i\) is odd

\(j-l\) is odd

\(\lceil s \rceil - \delta _{1}\)

10

\(B_l(A_i(s))\)

\(j-i\) is even

l is even

\(\lceil s \rceil - \delta _{1}\)

11

\(A_l(B_i(s))\)

i is odd

\(j-l\) is even

\(\lceil s \rceil - \delta _{1}\)

12

\(B_l(B_i(s))\)

i is even

l is odd

\(\lceil s \rceil - \delta _{1}\)

13

\(A_l(B_i(s))\)

i is even

\(j-l\) is even

\(\lfloor s \rfloor + \delta _{1} + \delta _{2}\)

14

\(B_l(B_i(s))\)

i is odd

l is odd

\(\lfloor s \rfloor + \delta _{1} + \delta _{2}\)

15

\(A_l(B_i(s))\)

i is even

\(j-l\) is odd

\(\lceil s \rceil \)

16

\(B_l(B_i(s))\)

i is odd

l is even

\(\lceil s \rceil \)

The first two rows corresponds to the calculations we have already done. Rows 3 and 4 will give rise to the opposite faces of the first four rows. In all, the first four rows are all the faces that contain \(\lfloor s \rfloor \), either as \(\lfloor r \rfloor \) or \(\lceil r \rceil \). The next 8 rows describe the faces that contain a vertex at distance 1 from \(\lfloor s \rfloor \). Again we have that the first rows, rows 5 to 8, are positively oriented while the second half, rows 9 to 12 correspond to theirs opposite faces. Finally, rows 13 to 16 are symmetric to the the first 4 rows but its faces contain \(\lceil s \rceil \) instead of \(\lfloor s \rfloor \). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, P., Parra, D. Continuum limit for a discrete Hodge–Dirac operator on square lattices. Lett Math Phys 113, 45 (2023). https://doi.org/10.1007/s11005-023-01669-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01669-9

Keywords

Mathematics Subject Classification

Navigation