Skip to main content
Log in

Conditions for Discreteness of the Spectrum to Schrödinger Operator Via Non-increasing Rearrangement, Lagrangian Relaxation and Perturbations

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

This work is a continuation of our previous paper (Zelenko in Appl Anal Optim 3(2):281–306, 2019), where for the Schrödinger operator \(H=-\Delta + V({{\mathbf {x}}})\cdot \), acting in the space \(L_2({{\mathbf {R}}}^d)\,(d\ge 3)\), some sufficient conditions for discreteness of its spectrum have been obtained on the base of well known Mazya–Shubin criterion and an optimization problem for a set function. This problem is an infinite-dimensional generalization of a binary linear programming problem. A sufficient condition for discreteness of the spectrum is formulated in terms of the non-increasing rearrangement of the potential \(V({{\mathbf {x}}})\). Using the method of Lagrangian relaxation for this optimization problem, we obtain a sufficient condition for discreteness of the spectrum in terms of expectation and deviation of the potential. By means of suitable perturbations of the potential we obtain conditions for discreteness of the spectrum, covering potentials which tend to infinity only on subsets of cubes, whose Lebesgue measures tend to zero when the cubes go to infinity. Also the case where the operator H is defined in the space \(L_2(\Omega )\) is considered (\(\Omega \) is an open domain in \({{\mathbf {R}}}^d\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the Russian literature it is often called Wiener capacity.

  2. The variational formulation of these problelems is meant. Under some smoothness conditions for \(V({{\mathbf {x}}})\) and the boundary \(\partial \Omega \) the infimum in (5.6) and (5.7) can be considered on the set of functions, which are smooth in closed domain \({\bar{\Omega }}\) and satisfy the corresponding boundary conditions in the classical sense ([13], Chapt VI, §4).

References

  1. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer, New-York (1998)

    Book  Google Scholar 

  2. Benci, V., Fortunato, D.: Discreteness conditions of the spectrum of Schrödinger operators. J. Math. Anal. Appl. 64, 695–700 (1978)

  3. Bourgain, J., Brezis, H.: On the equation \({\text{ div }}\,{\text{ Y }}={\text{ f }}\) and application to control of phases. J. Am. Math. Soc. 16(2), 393–426 (2003)

    Article  Google Scholar 

  4. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  5. DallAra, G.M.: Discreteness of the spectrum of Schrodinger operators with matrix-valued non-negative potentials. J. Funct. Anal. 268, 3649–3679 (2015)

    Article  MathSciNet  Google Scholar 

  6. Dunford, N., Schwartz, J.T.: Linear Operators, Part II: Spectral Theory. Intersc. Publ, New York, London (1963)

    MATH  Google Scholar 

  7. De Pauw, T., Pfeffer, W.F.: Distributions for which \({\text{ div }}\, v=F\) has a continuous solution. Comm. Pure Appl. Math. 61(2), 230–260 (2008)

    Article  MathSciNet  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Berlin-Heidelberg, New York (1983)

    Book  Google Scholar 

  9. Glazman, I.M.: Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. Israel Program for Scientific Translations, New York (1965)

    MATH  Google Scholar 

  10. Grafakos, L.: Classical Fourier Analysis, 3rd edn. Springer, New York (2014)

    MATH  Google Scholar 

  11. Iwatsuka, A.: Magnetic Schrödinger operator with compact resolvent. J. Math. Kyoto Univ. (JMKYAZ) 26–3, 357–374 (1986)

  12. Kammler, D.W.: A First Course in Fourier Analysis. Prentice Hall, Upper Saddle River (2000)

    MATH  Google Scholar 

  13. Kato, T.: Perturbation Theory of Linear Operators. Springer, New York, Tokyo (1984)

    MATH  Google Scholar 

  14. Kondratiev, V., Shubin, M.: Discreteness of spectrum for the magnetic Schrödinger operators. Commun. Partial Differ. Equ. 27, 477–525 (2002)

  15. Kondratiev, V., Shubin, M.: Discreteness of spectrum for the Schrödinger operator on manifolds with bounded geometry. Oper. Theory Adv. Appl. 110, 185–226 (1999)

  16. Lenz, D., Stollmann, P., Wingert, D.: Compactness of Schrödinger semigroups. Math. Nachr. 283(1), 94–103 (2010)

  17. Mazya, V.: Sobolev Spaces: with Applications to Elliptic Partial Differential Equations, 2nd edn., series: Grundlehren der mathematischen Wissenschaften. Springer, p. 342 (2011)

  18. Mazya, V.: Analytic criteria in the qualitative spectral analysis of the Schrödinger operator. In: Proceedings of Simposia in Pure Mathematics, Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, A.M.S., Providence, Rhode Island, vol. 76, Part 1, pp. 257–288 (2006)

  19. Mazya, V., Shubin, M.: Discreteness of spectrum and positivity criteria for Schrödinger operators. Ann. Math. 162, 919–942 (2005)

  20. Mazya, V.G., Verbitsky, I.E.: The Schrödinger operator on the energy space: boundedness and compactness criteria. Acta Math. 188, 263–302 (2002)

  21. Molchanov, A.M.: On conditions of discreteness of the spectrum for self-adjoint differential equations of the second order. Trudy Mosk. Matem. Obshchestva (Proc. Moscow Math. Society) 2, 169–199 (1953). Russian

    MathSciNet  Google Scholar 

  22. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Willey, London (1988)

    Book  Google Scholar 

  23. Simon, B.: Schrödinger operators with purely discrete spectrum. Methods Funct. Anal. Topol. 15(1), 61–66 (2009)

  24. Taylor, M.: Scattering length and the spectrum of \(-\Delta +V\). Canad. Math. Bull. 49(1), 144–151 (2006)

    Article  MathSciNet  Google Scholar 

  25. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  26. Yadav, A.K., Ranjan, R., Mahbub, U., Rotkowitz, M.C.: New Methods for Handling Binary Problems. In: Annual Allerton Conference on Communication, Control and Computing, Allerton (2016)

  27. Zelenko, L.: Conditions of discreteness of the spectrum for Schrödinger operator and some optimization problems for capacity and measures. Appl. Anal. Optim. 3(2), 281–306 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Zelenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Some Classes of Solutions of the Divergence Equation

In this section we consider a class of generalized solutions of the divergence equation

$$\begin{aligned} {\mathrm {div}}\vec \Gamma =W \end{aligned}$$
(A.1)

in the cube \(Q_r({{\mathbf {y}}})\). Here W is a distribution on \(Q_r({{\mathbf {y}}})\), belonging to

$$\begin{aligned} {\mathcal {D}}^\prime \big ({\mathrm {Int}}(Q_r({{\mathbf {y}}}))\big ). \end{aligned}$$

Recall that the space \({\mathcal {D}}^\prime (\Omega )\) is dual to the topological vector space \({\mathcal {D}}(\Omega )=C_0^\infty (\Omega )\) (\(\Omega \) is an open domain in \({{\mathbf {R}}}^d\)). Also recall that a vector distribution \(\vec \Gamma \in {\mathcal {D}}^\prime \big ({\mathrm {Int}}(Q_r({{\mathbf {y}}})),\,{{\mathbf {R}}}^d\big )\) is called a generalized solution of the above equation, if it satisfies (A.1) in the distributional sense. In particular, this means that if \(W\in L_1(Q_r({{\mathbf {y}}}))\) and we consider solutions \(\vec \Gamma \), belonging \(L_1(Q_r({{\mathbf {y}}}))\), then

$$\begin{aligned}&\forall \,\phi \in C_0^\infty \big ({\mathrm {Int}}(Q_r({{\mathbf {y}}}))\big ):\nonumber \\&\int _{Q_r({{\mathbf {y}}})}W({{\mathbf {x}}})\phi ({{\mathbf {x}}})\, {\mathrm {d}}{{\mathbf {x}}}=-\int _{Q_r({{\mathbf {y}}})}\langle \vec \Gamma ({{\mathbf {x}}}),\,\nabla \phi ({{\mathbf {x}}})\rangle \, {\mathrm {d}}{{\mathbf {x}}}, \end{aligned}$$
(A.2)

([3, 7]). In the case where \(W\in {\mathcal {D}}^\prime \big ({{\mathbf {R}}}^d\big )\) and it is 1-periodic in all the variables \(x_1,\,x_2,\,\dots ,\,x_d\) we shall consider generalized solutions \(\vec \Gamma ({{\mathbf {x}}})\) of (A.1), which are 1-periodic in all the variables. In particular, this means that if \(W\in L_{1,\,loc}({{\mathbf {R}}}^d)\) and we consider 1-periodic solutions \(\vec \Gamma \), belonging \(L_{1,\,loc}({{\mathbf {R}}}^d)\), then

$$\begin{aligned}&\forall \,\phi \in C_0^\infty \big ({{\mathbf {R}}}^d\big ):\nonumber \\&\int _{{{\mathbf {R}}}^d}W({{\mathbf {x}}})\phi ({{\mathbf {x}}})\, {\mathrm {d}}{{\mathbf {x}}}=-\int _{{{\mathbf {R}}}^d}\langle \vec \Gamma ({{\mathbf {x}}}),\,\nabla \phi ({{\mathbf {x}}})\rangle \ {\mathrm {d}}{{\mathbf {x}}}\nonumber \\&{\mathrm {and}}\quad \forall \,\vec l\in {{\mathbf {Z}}}^d\quad \vec \Gamma ({{\mathbf {x}}}+\vec l)=\vec \Gamma ({{\mathbf {x}}}). \end{aligned}$$
(A.3)

1.1 Reduction to ODE

Suppose that \(W\in L_1(Q_r({{\mathbf {y}}}))\). We shall look for a solution of Eq. (A.1) of the form:

$$\begin{aligned} \vec \Gamma ({{\mathbf {x}}})=u({{\mathbf {x}}})\,\vec g({{\mathbf {x}}})\quad ({{\mathbf {x}}}=(x_1,\,x_2,\,\dots \,x_d)), \end{aligned}$$
(A.4)

where \(\vec g({{\mathbf {x}}})\) is a given vector field on \(Q_r({{\mathbf {y}}})\;({{\mathbf {y}}}=(y_1,\,y_2,\,\dots \,y_d))\) and \(u({{\mathbf {x}}})\) is a unknown scalar function. Let us take the constant vector field

$$\begin{aligned} \vec g({{\mathbf {x}}})=(1,\,0,\dots ,\,0). \end{aligned}$$
(A.5)

Then (A.1) is reduced to \(\frac{\partial u}{\partial x_1}=W({{\mathbf {x}}})\). Consider the solution of last equation in \(Q_r({{\mathbf {y}}})\), satisfying the initial condition \(u({{\mathbf {x}}})\vert _{x_1=y_1}=0\). It has the form

$$\begin{aligned} u({{\mathbf {x}}})=\int _{y_1}^{x_1}W(s,{{\mathbf {x}}}^\prime )\,{\mathrm {d}}s\quad ({{\mathbf {x}}}^\prime =(x_2,\,x_3,\,\dots ,\,x_d)). \end{aligned}$$
(A.6)

The following claim is valid:

Proposition A.1

Let \(\vec \Gamma ({{\mathbf {x}}})\) be the vector field, defined by (A.4), (A.5) and (A.6).

(i) If \(W\in C^1(Q_r({{\mathbf {y}}}))\), then \(\vec \Gamma ({{\mathbf {x}}})\) is a classical solution of divergence Eq. (A.1) in \(Q_r({{\mathbf {y}}})\);

(ii) The linear operator \(U(W)({{\mathbf {x}}}):=\int _{y_1}^{x_1}W(s,{{\mathbf {x}}}^\prime )\,{\mathrm {d}}s\), taking part on the right hand side of (A.6) acts in the space \(L_p(Q_r({{\mathbf {y}}}))\,(p\ge 1)\) and it is bounded;

(iii) If \(W\in L_p(Q_r({{\mathbf {y}}}))\), then \(\vec \Gamma ({{\mathbf {x}}})\) is a generalized solution of (A.1), belonging to \(L_p(Q_r({{\mathbf {y}}}))\).

Proof

(i) We see from (A.6) that the function \(u({{\mathbf {x}}})\) belongs to \(C^1(Q_r({{\mathbf {y}}}))\) and it satisfies the equation \(\frac{\partial u}{\partial x_1}=W({{\mathbf {x}}})\) in the cube \(Q_r({{\mathbf {y}}})\). Hence \(\vec \Gamma ({{\mathbf {x}}})\) is a classical solution of (A.1) in \(Q_r({{\mathbf {y}}})\). Claim (i) is proven

(ii) We have for \(W\in L_p(Q_r({{\mathbf {y}}}))\), using Hölder inequality:

$$\begin{aligned}&\Vert U(W)\Vert _p^p=\int _{Q_r({{\mathbf {y}}})}\Big |\int _{y_1}^{x_1}W(s,{{\mathbf {x}}}^\prime )\,{\mathrm {d}}s\Big |^p\,{\mathrm {d}}{{\mathbf {x}}}\\&\quad \le \int _{Q_r({{\mathbf {y}}})}(x_1-y_1)^{p-1}\int _{y_1}^{x_1}|W(s,{{\mathbf {x}}}^\prime )|^p\,{\mathrm {d}}s\,{\mathrm {d}}x_1\,{\mathrm {d}}{{\mathbf {x}}}^\prime \le \frac{r^p}{p}\Vert W\Vert _p^p. \end{aligned}$$

Claim (ii) is proven.

(iii) By claim (i), for any \(W\in C^1(Q_r({{\mathbf {y}}}))\) the vector field \(\vec \Gamma ({{\mathbf {x}}})\) is a classical solution of Eq. (A.1), hence it is a generalized solution of it, i.e. the relation (A.2) is valid. On the other hand, in view of (A.4), (A.5), (A.6) and claim (ii) , the correspondence \(W\rightarrow \vec \Gamma \) is continuous with respect to \(L_p\)-norm. Using the density of \(C^1(Q_r({{\mathbf {y}}}))\) in \(L_p(Q_r({{\mathbf {y}}}))\), we can extend the relation (A.2) by continuity from \(W\in C^1(Q_r({{\mathbf {y}}}))\) to \(W\in L_p(Q_r({{\mathbf {y}}}))\). We have proved claim (iii). \(\square \)

1.2 Periodic Potential Solutions

Let us look for solutions of the divergence Eq. (A.1) in the cube \(Q_1(\vec 0)\), which satisfy the periodic boundary condition ([3]). This means that we consider these solutions \(\vec \Gamma ({{\mathbf {x}}})\) defined on the whole \({{\mathbf {R}}}^d\), which are 1-periodic in all the variables \(x_1,\,x_2,\dots ,\,x_d\), i.e. they can be considered as defined on the torus \({{\mathbf {T}}}^d\). Recall that we mean these solutions in the distributional sense (see (A.3)). We shall consider potential solutions of (A.1), i.e. those \(\vec \Gamma ({{\mathbf {x}}})\), for which there is a scalar function \(\phi ({{\mathbf {x}}})\) such that \(\vec \Gamma ({{\mathbf {x}}})=\nabla \phi ({{\mathbf {x}}})\). Then this function should satisfy the Poisson equation

$$\begin{aligned} \Delta \phi =W. \end{aligned}$$
(A.7)

Recall that Fourier operator \({\mathcal {F}}\) on \({{\mathbf {T}}}^d\) maps isometrically the space \(L_2({{\mathbf {T}}}^d)\) onto the space \(\ell _2({{\mathbf {Z}}}^d)\) [12]. Denote by \(L_p^\#({{\mathbf {T}}}^d)\) the set of all functions \(f\in L_p({{\mathbf {T}}}^d)\), for which \(\int _{{{\mathbf {T}}}^d}f({{\mathbf {x}}})\,{\mathrm {d}}{{\mathbf {x}}}=0\), i.e. \({\mathcal {F}}(f)(\vec 0)=0\). Also denote \(\ell _p^0({{\mathbf {Z}}}^d):=\{g\in \ell _p({{\mathbf {Z}}}^d):\;g(\vec 0)=0\}\). We have the following claim:

Proposition A.2

Suppose that \(p>2\), \(1/p+1/q=1\), \(W\in L_2^\#({{\mathbf {T}}}^d)\) and

$$\begin{aligned} \vec G\in \ell _{q}\big ({{\mathbf {Z}}}^d\big ), \end{aligned}$$
(A.8)

where

$$\begin{aligned} \vec G(\vec k)=\frac{{\mathcal {F}}(W)(\vec k)}{2\pi i|\vec k|^2}\vec k. \end{aligned}$$
(A.9)

Then the vector function

$$\begin{aligned} \vec \Gamma ({{\mathbf {x}}})={\mathcal {F}}^{-1}(\vec G)({{\mathbf {x}}}) \end{aligned}$$
(A.10)

belongs to \(L_p^\#({{\mathbf {T}}}^d)\) and it is a potential solution of divergence Eq. (A.1). Furthermore,

$$\begin{aligned} |\Vert \vec \Gamma \Vert _p\le d\Vert \vec G\Vert _{\ell _{q}} . \end{aligned}$$
(A.11)

Proof

For brevity we shall omit \(({{\mathbf {T}}}^d)\) and \(({{\mathbf {Z}}}^d)\) in the notations \(L_p({{\mathbf {T}}}^d)\), \(L_p^\#({{\mathbf {T}}}^d)\), \(l_q({{\mathbf {Z}}}^d)\) and \(\ell _q^0({{\mathbf {Z}}}^d)\). Notice that since the operator \({\mathcal {F}}^{-1}:\,\ell _2\rightarrow L_2\) is isometric, for any \(g\in \ell _2\;\) \(\Vert {\mathcal {F}}^{-1}(g)_2=\Vert g \Vert _{\ell _2}\). On the other hand, in view of the formula for \({\mathcal {F}}^{-1}\), given in Sect. 2, \({\mathcal {F}}^{-1}\) maps \(\ell _1\) into \(L_\infty \) and for any \(g\in \ell _1\) \(\Vert {\mathcal {F}}^{-1}(g)\Vert _\infty \le \Vert g \Vert _{\ell _1}\). Then by the Riesz-Thorin Interpolation Theorem ([10], Theorem 1.3.4) , \({\mathcal {F}}^{-1}\) maps \(\ell _q\) into \(L_p\) and for any \(g\in \ell _q\) \(\Vert {\mathcal {F}}^{-1}(g)\Vert _p\le \Vert g \Vert _{\ell _q}\). Notice that since \(p>2\), \(\ell _q\subset \ell _2\) and \(L_p\subset L_2\). Then since \({\mathcal {F}}^{-1}:\,\ell _2\rightarrow L_2\) is injective, \({\mathcal {F}}^{-1}:\,\ell _q\rightarrow L_p\) is injective too. It is clear that \({\mathcal {F}}^{-1}\) maps injectively \(\ell _q^0\) into \(L_p^\#\), It is easy to see that the analogous property is valid for vector functions: \({\mathcal {F}}^{-1}\) maps injectively \(\ell _q^0\) into \(L_p^\#\) and for any \(\vec H\in \ell _q^0\)

$$\begin{aligned} \Vert {\mathcal {F}}^{-1}(\vec H)\Vert _p\le d\Vert \vec H\Vert _{\ell _q}. \end{aligned}$$
(A.12)

Applying the Fourier transform to Eq. (A.7) and denoting \(u(\vec k)={\mathcal {F}}(\phi )(\vec k)\), we obtain:

$$\begin{aligned} (2\pi i)^2|\vec k|^2u(\vec k)={\mathcal {F}}(W)(\vec k). \end{aligned}$$

Since \(W\in L_2^\#\) (hence \({\mathcal {F}}(W)\in \ell _2\) and \({\mathcal {F}}(W)(\vec 0)=0\) ), the last equation has the solution

$$\begin{aligned} u(\vec k)=\frac{{\mathcal {F}}(W)(\vec k)}{(2\pi i)^2|\vec k|^2} . \end{aligned}$$

this solution belongs to the subspace \(\ell _2^0\) and it is unique there. Hence the function \(\phi ={\mathcal {F}}^{-1}(u)\) is a unique solution of (A.7) in the subspace \(L_2^\#\). Moreover, since \(|\vec k|^2\ u\in \ell _2\), this solution belongs to the Sobolev space \(W_2^2({{\mathbf {T}}}^d)\). Then \(\vec \Gamma =\nabla \phi \) is a solution of divergence Eq. (A.1) and it is expressed by (A.10). Furthermore, in view of (A.9), (A.8) and (A.12), inclusion \(\vec \Gamma \in L_p^\#\) and estimate (A.11) are valid. \(\square \)

Appendix B: Some Estimates

Let \(\Omega \) be a bounded open domain in \({{\mathbf {R}}}^d\).

Proposition B.1

Suppose that \(d>2\).

(i) If \(W\in L_{d/2}(\Omega )\), then for any \(u\in C_0^\infty (\Omega )\)

$$\begin{aligned} |\int _\Omega W({{\mathbf {x}}})|u({{\mathbf {x}}})|^2\, {\mathrm {d}}{{\mathbf {x}}}|\le C^2(d)\Vert W\Vert _{d/2}\int _\Omega |\nabla u({{\mathbf {x}}})|^2\, {\mathrm {d}}{{\mathbf {x}}}, \end{aligned}$$
(B.1)

where C(d) is expressed by (5.11),

(ii) Suppose that there is a vector field \(\vec \Gamma ({{\mathbf {x}}})\) on \(\Omega \) belonging to \(L_d(\Omega )\) and satisfying divergence Eq. (A.1) in the sense of distributions, where \(W\in L_1(\Omega )\). Then for any \(u\in C_0^\infty (\Omega )\)

$$\begin{aligned} |\int _{\Omega } W({{\mathbf {x}}})|u({{\mathbf {x}}})|^2\,{\mathrm {d}}{{\mathbf {x}}}|\le 2\,C(d)\,\Vert \vec \Gamma \Vert _d\int _{\Omega }|\nabla u({{\mathbf {x}}})|^2\, {\mathrm {d}}{{\mathbf {x}}}; \end{aligned}$$
(B.2)

Proof

(i) Using Hölder inequality, we get:

$$\begin{aligned} |\int _\Omega W({{\mathbf {x}}})|u({{\mathbf {x}}})|^2\, {\mathrm {d}}{{\mathbf {x}}}|\le \Vert W\Vert _{d/2}\Vert u\Vert _{q}^2, \end{aligned}$$

where \(q=\frac{2d}{d-2}\). On the other hand, by the Sobolev’s theorem, the space \(W_2^1({{\mathbf {R}}}^d)\) is embedded continuously into \(L_q({{\mathbf {R}}}^d)\). Hence continuing each function \(u\in C_0^\infty (\Omega )\) by zero from \(\Omega \) to the whole \({{\mathbf {R}}}^d\), we get:

$$\begin{aligned} \Vert u\Vert _{q}^2\le C^2(d)\int _\Omega |\nabla u({{\mathbf {x}}})|^2\, {\mathrm {d}}{{\mathbf {x}}}, \end{aligned}$$
(B.3)

([1, 25]). These circumstances imply the desired claim.

(ii) Making integration by parts, we get for \(u\in C_0^\infty (\Omega )\):

$$\begin{aligned} \int _{\Omega }W({{\mathbf {x}}})|u({{\mathbf {x}}})|^2\, {\mathrm {d}}{{\mathbf {x}}}= -2\int _{\Omega }\mathfrak {R}\big (\langle \vec \Gamma {{\mathbf {x}}}),\,\overline{u({{\mathbf {x}}})}\,\nabla u({{\mathbf {x}}})\rangle \big )\, {\mathrm {d}}{{\mathbf {x}}}. \end{aligned}$$

Using Schwartz’s inequality, we obtain:

$$\begin{aligned}&\int _{\Omega }W({{\mathbf {x}}})|u({{\mathbf {x}}})|^2\, {\mathrm {d}}{{\mathbf {x}}}\\&\quad \le 2\,\Vert \vec \Gamma u\Vert _2 \Vert \nabla u\Vert _2. \end{aligned}$$

On the other hand, by claim (i):

$$\begin{aligned} \Vert \vec \Gamma u\Vert _2\le C(d)\Big (\Vert |\vec \Gamma |^2\Vert _{d/2}\Big )^{1/2}\Vert \nabla u\Vert _2.= C(d)\Vert \vec \Gamma \Vert _d\Vert \nabla u\Vert _2. \end{aligned}$$

Te last two estimates imply the desired inequality (B.2). We have proved claim (ii). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenko, L. Conditions for Discreteness of the Spectrum to Schrödinger Operator Via Non-increasing Rearrangement, Lagrangian Relaxation and Perturbations. Integr. Equ. Oper. Theory 93, 37 (2021). https://doi.org/10.1007/s00020-021-02644-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02644-6

Mathematics Subject Classification

Keywords

Navigation