Skip to main content
Log in

The Morse and Maslov indices for Schrödinger operators

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the spectrum of Schrödinger operators with matrixvalued potentials, utilizing tools from infinite-dimensional symplectic geometry. Using the spaces of abstract boundary values, we derive relations between the Morse and Maslov indices for a family of operators on a Hilbert space obtained by perturbing a given self-adjoint operator by a smooth family of bounded self-adjoint operators. The abstract results are applied to the Schrödinger operators with θ-periodic, Dirichlet, and Neumann boundary conditions. In particular, we derive an analogue of the Morse-Smale Index Theorem for multi-dimensional Schrödinger operators with periodic potentials. For quasi-convex domains in Rn, we recast the results, connecting the Morse and Maslov indices using the Dirichlet and Neumann traces on the boundary of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abbondandolo, Morse Theory for Hamiltonian Systems, Chapman & Hall/CRC, Boca Raton, FL, 2001.

    MATH  Google Scholar 

  2. S. Albeverio and K. Makarov, Attractors in a model related to the three body quantum problem, Acta Appl. Math. 48 (1997) 113–184.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. I. Arnold, Characteristic classes entering in quantization conditions, Funct. Anal. Appl. 1 (1967), 1–14.

    Article  Google Scholar 

  4. V. I. Arnold, Sturm theorems and symplectic geometry, Funct. Anal. Appl. 19 (1985), 1–10.

    MathSciNet  Google Scholar 

  5. J. Behrndt and J. Rohleder, An inverse problem of Calderón type with partial data, Comm. Partial Differential Equations, 37 (2012), 1141–1159.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Booss-Bavnbek and K. Furutani, The Maslov index: a functional analytical definition and the spectral flow formula, Tokyo J. Math. 21 (1998), 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Boos-Bavnbek and K. Wojciechowski, Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston, MA, 1993.

    Book  MATH  Google Scholar 

  8. R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9 (1956), 171–206.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Cappell, R. Lee, and E. Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994), 121–186.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Chardard and T. J. Bridges, Transversality of homoclinic orbits, the Maslov index, and the symplectic Evans function, Nonlinearity 28 (2015) 77–102.

    MathSciNet  MATH  Google Scholar 

  11. F. Chardard, F. Dias, and T. J. Bridges, Fast computation of the Maslov index for hyperbolic linear systems with periodic coefficients, J. Phys. A 39 (2006), 14545–14557.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Chardard, F. Dias, and T. J. Bridges, Computing the Maslov index of solitary waves. I. Hamiltonian systems on a four-dimensional phase space, Phys. D 238 (2009), 1841–1867; II. Phase space with dimension greater than four, Phys. D 240 (2011), 1334–1344.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207–253.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Cox, C. K. R. T. Jones, Y. Latushkin, and A. Sukhtayev, The Morse and Maslov indices for multidimentional Schrödinger operators with matrix valued potential, Trans. Amer. Math. Soc. 368 (2016), 8145–8207.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Cox, C. K. R. T. Jones, and J. Marzuola, A Morse index theorem for elliptic operators on bounded domains, Comm. Partial Differential Equations 40 (2015), 1467–1497.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Cox, C. K. R. T. Jones, and J. Marzuola, Manifold decompositions and indices of Schrödinger operators, Indiana U. Math. J. 66 (2017), 1573–1602.

    Article  MATH  Google Scholar 

  17. R. Cushman and J. J. Duistermaat, The behavior of the index of a periodic linear Hamiltonian system under iteration, Adv. Math. 23 (1977) 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Dalbono and A. Portaluri, Morse–Smale index theorems for elliptic boundary deformation problems, J. Differential Equations 253 (2012), 463–480.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ju. Daleckii and M. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence, RI, 1974.

    Google Scholar 

  20. J. Deng and C. Jones, Multi-dimensional Morse index theorems and a symplectic view of elliptic boundary value problems, Trans. Amer. Math. Soc. 363 (2011), 1487–1508.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. J. Duistermaat, On the Morse index in variational calculus, Adv. Math. 21 (1976), 173–195.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1989.

    MATH  Google Scholar 

  23. K. Furutani, Fredholm-Lagrangian-Grassmannian and the Maslov index, J. Geom. Phys. 51 (2004), 269–331.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Gesztesy and M. Mitrea, A description of all self-adjoint extensions of the Laplacian and Krein-type resolvent formulas in nonsmooth domains, J. Anal. Math. 113 (2011), 53–172.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Gesztesy and M. Mitrea, Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, Amer. Math. Soc., Providence, RI, 2008, pp. 105–173.

    Chapter  Google Scholar 

  26. M. A. de Gosson, The Principles of Newtonian and Quantum Mechanics, Imperial College Press, London, 2001.

    Book  MATH  Google Scholar 

  27. P. Howard and A. Sukhtayev, The Maslov and Morse indices for Schrödinger operators on [0, 1], J. Differential Equations 260 (2016), 4499–4549.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. K. R. T. Jones, Y. Latushkin, and R. Marangel, The Morse and Maslov indices for matrix Hill’s equations, Proc. Symp. Pure Math. 87 (2013), 205–233.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. K. R. T. Jones, Y. Latushkin, and S. Sukhtaiev, Counting spectrum via the Maslov index for one dimensional θ-periodic Schrödinger operators, Proc. Amer. Math. Soc. 145 (2016), 363–377.

    Article  MATH  Google Scholar 

  30. Y. Karpeshina, Perturbation Theory for the Schrödinger Operator with a Periodic Potential, Springer-Verlag, Berlin, 1997.

    Book  MATH  Google Scholar 

  31. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1980.

    MATH  Google Scholar 

  32. D. McDuff and D. Salamon Introduction to Symplectic Topology, second edition, Clarendon Press, Oxford, 1998.

    MATH  Google Scholar 

  33. J. Milnor, Morse Theory, Princeton Univ. Press, Princeton, NJ, 1963.

    MATH  Google Scholar 

  34. B. S. Pavlov and M. D. Faddeev, Scattering on a hollow resonator with a small opening, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 126 (1983), 159–169.

    MathSciNet  MATH  Google Scholar 

  35. A. Portaluri and N. Waterstraat, A Morse-Smale index theorem for indefinite elliptic systems and bifurcation, J. Differential Equations 258, 1715–1748.

  36. M. Reed and B. Simon, Methods of Modern Mathematical Physics. Volume 1, Academic Press, London, 1980.

    MATH  Google Scholar 

  37. J. Robbin and D. Salamon, The Maslov index for paths, Topology 32 (1993), 827–844.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Salamon and K. Wehrheim, Instanton Floer homology with Lagrangian boundary conditions, Geom. Topol. 12 (2008), 747–918.

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Smale, On the Morse index theorem, J. Math. Mech. 14 (1965), 1049–1055; The Collected Papers by Stephen Smale, V. 2, City University of Hong Kong, 2000, pp. 535–543.

    MathSciNet  MATH  Google Scholar 

  41. R. C. Swanson, Fredholm intersection theory and elliptic boundary deformation problems, J. Differential Equations 28 (1978), I, 189–201, II, 202–219.

    Article  MathSciNet  Google Scholar 

  42. M. E. Taylor, Partial Differential Equations I. Basic Theory, Springer-Verlag, 2011.

    Book  MATH  Google Scholar 

  43. K. Uhlenbeck, The Morse Index Theorem in Hilbert spaces, J. Differential Geom. 8 (1973), 555–564.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Latushkin.

Additional information

Partially supported by the NSF grants DMS-1067929 and DMS-1710989, by the Simons Foundation, and by the Research Council and the Research Board of the University of Missouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latushkin, Y., Sukhtaiev, S. & Sukhtayev, A. The Morse and Maslov indices for Schrödinger operators. JAMA 135, 345–387 (2018). https://doi.org/10.1007/s11854-018-0043-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0043-x

Navigation