Skip to main content

Advertisement

Log in

Omentin-1 induces mechanically activated fibroblasts lipogenic differentiation through pkm2/yap/pparγ pathway to promote lung fibrosis resolution

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease characterized by extensive extracellular matrix (ECM) deposition by activated myofibroblasts, which are specialized hyper-contractile cells that promote ECM remodeling and matrix stiffening. New insights on therapeutic strategies aimed at reversing fibrosis by targeting myofibroblast fate are showing promise in promoting fibrosis resolution. Previously, we showed that a novel adipocytokine, omentin-1, attenuated bleomycin (BLM)-induced lung fibrosis by reducing the number of myofibroblasts. Apoptosis, deactivation, and reprogramming of myofibroblasts are important processes in the resolution of fibrosis. Here we report that omentin-1 reverses established lung fibrosis by promoting mechanically activated myofibroblasts dedifferentiation into lipofibroblasts. Omentin-1 promotes myofibroblasts lipogenic differentiation by inhibiting dimerization and nuclear translocation of glycolytic enzymes pyruvate kinase isoform M2 (PKM2) and activation of the downstream Yes-associated protein (YAP) by increasing the cofactor fructose-1,6-bisphosphate (F1, 6BP, FBP). Moreover, omentin-1 activates proliferator-activated receptor gamma (PPARγ) signaling, the master regulator of lipogenesis, and promotes the upregulation of the lipogenic differentiation-related protein perilipin 2 (PLIN2) by suppressing the PKM2-YAP pathway. Ultimately, omentin-1 facilitates myofibroblasts transformation into the lipofibroblast phenotype, with reduced collagen synthesis and enhanced degradation properties, which are crucial mechanisms to clear the ECM deposition in fibrotic tissue, leading to fibrosis resolution. Our results indicate that omentin-1 targets mechanical signal accelerates fibrosis resolution and reverses established lung fibrosis by promoting myofibroblasts lipogenic differentiation, which is closely associated with ECM clearance in fibrotic tissue. These findings suggest that targeting mechanical force to promote myofibroblast lipogenic differentiation is a promising therapeutic strategy against persistent lung fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and materials availability

RNA-seq and microarray data reanalyzed in the paper are in publicly available libraries from GEO under accession nos. GSE135893. All data associated with this study are present in the paper or the Supplementary Materials.

References

  1. Gross TJ, Hunninghake GW (2001) Idiopathic pulmonary fibrosis. N Engl J Med 345:517–525. https://doi.org/10.1056/NEJMra003200

    Article  CAS  PubMed  Google Scholar 

  2. Wakwaya Y, Brown KK (2019) Idiopathic pulmonary fibrosis: epidemiology, diagnosis and outcomes. Am J Med Sci 357:359–369. https://doi.org/10.1016/j.amjms.2019.02.013

    Article  PubMed  Google Scholar 

  3. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092. https://doi.org/10.1056/NEJMoa1402582

    Article  CAS  PubMed  Google Scholar 

  4. Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, Raghu G, Sauter W, Girard M, Alves M et al (2019) Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med 380:2518–2528. https://doi.org/10.1056/NEJMoa1903076

    Article  CAS  PubMed  Google Scholar 

  5. Zhao X, Kwan JYY, Yip K, Liu PP, Liu FF (2020) Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov 19:57–75. https://doi.org/10.1038/s41573-019-0040-5

    Article  CAS  PubMed  Google Scholar 

  6. Zhang R, Jing W, Chen C, Zhang S, Abdalla M, Sun P, Wang G, You W, Yang Z, Zhang J et al (2022) Inhaled mRNA nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine model. Adv Mater 34:e2107506. https://doi.org/10.1002/adma.202107506

    Article  CAS  PubMed  Google Scholar 

  7. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816. https://doi.org/10.2353/ajpath.2007.070112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Merkt W, Zhou Y, Han H, Lagares D (2021) Myofibroblast fate plasticity in tissue repair and fibrosis: deactivation, apoptosis, senescence and reprogramming. Wound Repair Regen 29:678–691. https://doi.org/10.1111/wrr.12952

    Article  PubMed  Google Scholar 

  9. Kheirollahi V, Wasnick RM, Biasin V, Vazquez-Armendariz AI, Chu X, Moiseenko A, Weiss A, Wilhelm J, Zhang JS, Kwapiszewska G et al (2019) Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat Commun 10:2987. https://doi.org/10.1038/s41467-019-10839-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom TM et al (2019) An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 10:963. https://doi.org/10.1038/s41467-019-08831-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie T, Wang Y, Deng N, Huang G, Taghavifar F, Geng Y, Liu N, Kulur V, Yao C, Chen P et al (2018) Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep 22:3625–3640. https://doi.org/10.1016/j.celrep.2018.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. El Agha E, Moiseenko A, Kheirollahi V, De Langhe S, Crnkovic S, Kwapiszewska G, Szibor M, Kosanovic D, Schwind F, Schermuly RT et al (2017) Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 20:261-273.e263. https://doi.org/10.1016/j.stem.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Y, Zhang B, Hao C, Huang X, Li X, Huang Y, Luo Z (2017) Omentin-A novel adipokine in respiratory diseases. Int J Mol Sci. https://doi.org/10.3390/ijms19010073

    Article  PubMed  PubMed Central  Google Scholar 

  14. Raghow R, Lurie S, Seyer JM, Kang AH (1985) Profiles of steady state levels of messenger RNAs coding for type I procollagen, elastin, and fibronectin in hamster lungs undergoing bleomycin-induced interstitial pulmonary fibrosis. J Clin Invest 76:1733–1739. https://doi.org/10.1172/JCI112163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T, Meldrum E, Sanders YY, Thannickal VJ (2014) Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med 6:231ra247. https://doi.org/10.1126/scitranslmed.3008182

  16. Zhou Y, Hao C, Li C, Huang X, Li X, Tang Y, Huang Y, Tang S, Liu W, Feng D et al (2018) Omentin-1 protects against bleomycin-induced acute lung injury. Mol Immunol 103:96–105. https://doi.org/10.1016/j.molimm.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Zhang Y, Cheng H, Li X, Feng D, Yue S, Xu J, Xie H, Luo Z (2022) Therapeutic effects of omentin-1 on pulmonary fibrosis by attenuating fibroblast activation via AMP-activated protein kinase pathway. Biomedicines. https://doi.org/10.3390/biomedicines10112715

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu F, Lagares D, Choi KM, Stopfer L, Marinkovic A, Vrbanac V, Probst CK, Hiemer SE, Sisson TH, Horowitz JC et al (2015) Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol 308:L344-357. https://doi.org/10.1152/ajplung.00300.2014

    Article  CAS  PubMed  Google Scholar 

  19. Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI, Calvi CL, Peter L, Chung MI, Taylor CJ, Jetter C, et al (2020) Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv 6:eaba1972. https://doi.org/10.1126/sciadv.aba1972

  20. Degryse AL, Tanjore H, Xu XC, Polosukhin VV, Jones BR, McMahon FB, Gleaves LA, Blackwell TS, Lawson WE (2010) Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 299:L442–L452. https://doi.org/10.1152/ajplung.00026.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, Tschumperlin DJ (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190:693–706. https://doi.org/10.1083/jcb.201004082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kottmann RM, Kulkarni AA, Smolnycki KA, Lyda E, Dahanayake T, Salibi R, Honnons S, Jones C, Isern NG, Hu JZ et al (2012) Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-beta. Am J Respir Crit Care Med 186:740–751. https://doi.org/10.1164/rccm.201201-0084OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie N, Tan Z, Banerjee S, Cui H, Ge J, Liu RM, Bernard K, Thannickal VJ, Liu G (2015) Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med 192:1462–1474. https://doi.org/10.1164/rccm.201504-0780OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Satyanarayana G, Turaga RC, Sharma M, Wang S, Mishra F, Peng G, Deng X, Yang J, Liu ZR (2021) Pyruvate kinase M2 regulates fibrosis development and progression by controlling glycine auxotrophy in myofibroblasts. Theranostics 11:9331–9341. https://doi.org/10.7150/thno.60385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mei S, Xu Q, Hu Y, Tang R, Feng J, Zhou Y, Xing S, Gao Y, He Z (2022) Integrin beta3-PKM2 pathway-mediated aerobic glycolysis contributes to mechanical ventilation-induced pulmonary fibrosis. Theranostics 12:6057–6068. https://doi.org/10.7150/thno.72328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nayak MK, Ghatge M, Flora GD, Dhanesha N, Jain M, Markan KR, Potthoff MJ, Lentz SR, Chauhan AK (2021) The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood 137:1658–1668. https://doi.org/10.1182/blood.2020007140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, van den Bosch MW, Quinn SR, Domingo-Fernandez R, Johnston DG et al (2015) Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21:65–80. https://doi.org/10.1016/j.cmet.2014.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang P, Sun C, Zhu T, Xu Y (2015) Structural insight into mechanisms for dynamic regulation of PKM2. Protein Cell 6:275–287. https://doi.org/10.1007/s13238-015-0132-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Srivastava SP, Li J, Kitada M, Fujita H, Yamada Y, Goodwin JE, Kanasaki K, Koya D (2018) SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis. Cell Death Dis 9:997. https://doi.org/10.1038/s41419-018-1057-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamaguchi H, Taouk GM (2020) A potential role of YAP/TAZ in the interplay between metastasis and metabolic alterations. Front Oncol 10:928. https://doi.org/10.3389/fonc.2020.00928

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499. https://doi.org/10.1126/science.1188015

    Article  CAS  PubMed  Google Scholar 

  32. Upagupta C, Shimbori C, Alsilmi R, Kolb M (2018) Matrix abnormalities in pulmonary fibrosis. Eur Respir Rev. https://doi.org/10.1183/16000617.0033-2018

    Article  PubMed  PubMed Central  Google Scholar 

  33. McKleroy W, Lee TH, Atabai K (2013) Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol Lung Cell Mol Physiol 304:L709-721. https://doi.org/10.1152/ajplung.00418.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Glasser SW, Hagood JS, Wong S, Taype CA, Madala SK, Hardie WD (2016) Mechanisms of lung fibrosis resolution. Am J Pathol 186:1066–1077. https://doi.org/10.1016/j.ajpath.2016.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song S, Fu Z, Guan R, Zhao J, Yang P, Li Y, Yin H, Lai Y, Gong G, Zhao S et al (2022) Intracellular hydroxyproline imprinting following resolution of bleomycin-induced pulmonary fibrosis. Eur Respir J. https://doi.org/10.1183/13993003.00864-2021

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhao A, Xiao H, Zhu Y, Liu S, Zhang S, Yang Z, Du L, Li X, Niu X, Wang C et al (2022) Omentin-1: a newly discovered warrior against metabolic related diseases. Expert Opin Ther Targets 26:275–289. https://doi.org/10.1080/14728222.2022.2037556

    Article  CAS  PubMed  Google Scholar 

  37. Yu QY, Tang XX (2022) Irreversibility of pulmonary fibrosis. Aging Dis 13:73–86. https://doi.org/10.14336/AD.2021.0730

  38. Redente EF, Black BP, Backos DS, Bahadur AN, Humphries SM, Lynch DA, Tuder RM, Zemans RL, Riches DWH (2021) Persistent, progressive pulmonary fibrosis and epithelial remodeling in mice. Am J Respir Cell Mol Biol 64:669–676. https://doi.org/10.1165/rcmb.2020-0542MA

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Selman M, Pardo A (2014) Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am J Respir Crit Care Med 189:1161–1172. https://doi.org/10.1164/rccm.201312-2221PP

    Article  CAS  PubMed  Google Scholar 

  40. Mora AL, Rojas M, Pardo A, Selman M (2017) Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 16:755–772. https://doi.org/10.1038/nrd.2017.170

    Article  CAS  PubMed  Google Scholar 

  41. Schipke J, Kuhlmann S, Hegermann J, Fassbender S, Kuhnel M, Jonigk D, Muhlfeld C (2021) Lipofibroblasts in structurally normal, fibrotic, and emphysematous human lungs. Am J Respir Crit Care Med 204:227–230. https://doi.org/10.1164/rccm.202101-0043LE

    Article  PubMed  Google Scholar 

  42. Atabai K, Yang CD, Podolsky MJ (2020) You say you want a resolution (of fibrosis). Am J Respir Cell Mol Biol 63:424–435. https://doi.org/10.1165/rcmb.2020-0182TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, et al (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73. https://doi.org/10.1126/scisignal.2000431

  44. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186. https://doi.org/10.1038/nature06667

    Article  CAS  PubMed  Google Scholar 

  45. Nandi S, Razzaghi M, Srivastava D, Dey M (2020) Structural basis for allosteric regulation of pyruvate kinase M2 by phosphorylation and acetylation. J Biol Chem 295:17425–17440. https://doi.org/10.1074/jbc.RA120.015800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Genovese T, Cuzzocrea S, Di Paola R, Mazzon E, Mastruzzo C, Catalano P, Sortino M, Crimi N, Caputi AP, Thiemermann C, Vancheri C (2005) Effect of rosiglitazone and 15-deoxy-Delta 12,14-prostaglandin J2 on bleomycin-induced lung injury. Eur Respir J 25:225–234. https://doi.org/10.1183/09031936.05.00049704

    Article  CAS  PubMed  Google Scholar 

  47. Oliver-De La Cruz J, Nardone G, Vrbsky J, Pompeiano A, Perestrelo AR, Capradossi F, Melajova K, Filipensky P, Forte G (2019) Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials 205:64–80. https://doi.org/10.1016/j.biomaterials.2019.03.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

National Natural Science Foundation of China 82070068 (LZQ), National Natural Science Foundation of China 81870059 (LZQ), National Natural Science Foundation of China 82200085 (ZY), Natural Science Foundation of Changsha kq2202116 (ZY), and Central South University 2022ZZTS0837 (ZYN).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ZYN, ZY, LZQ; Data curation: ZYN, ZY; Formal analysis: ZYN, ZY, LC; Investigation: ZYN, FJF, CYF, LXH, CHP; Project administration: LZQ, ZY, ZYN; Resources: LZQ, ZY, HY, FDD; Software: QYJ, SM; Supervision: LZQ, ZY, YSJ, ZWS; Validation: LZQ, ZY; Writing—original draft: ZYN, ZY and Writing—review & editing: ZYN, ZWS, ZY, LZQ.

Corresponding authors

Correspondence to Ziqiang Luo or Yan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval and consent to participate

The animal study protocol was approved by the ethics committee of the Central South University Science Research Center (Changsha, China) (protocol code: 2020sydw0715).

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 3879 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fu, J., Li, C. et al. Omentin-1 induces mechanically activated fibroblasts lipogenic differentiation through pkm2/yap/pparγ pathway to promote lung fibrosis resolution. Cell. Mol. Life Sci. 80, 308 (2023). https://doi.org/10.1007/s00018-023-04961-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04961-y

Keywords

Navigation