Skip to main content

Advertisement

Log in

Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and neovascular age-related macular degeneration (nAMD) are among the leading causes of blindness. Due to the multifactorial nature of these vitreoretinal diseases, omics approaches are essential for a deeper understanding of the pathophysiologic processes underlying the evolution to a proliferative or neovascular etiology, in which patients suffer from an abrupt loss of vision. For many years, it was thought that the function of the vitreous was merely structural, supporting and protecting the surrounding ocular tissues. Proteomics studies proved that vitreous is more complex and biologically active than initially thought, and its changes reflect the physiological and pathological state of the eye. The vitreous is the scenario of a complex interplay between inflammation, fibrosis, oxidative stress, neurodegeneration, and extracellular matrix remodeling. Vitreous proteome not only reflects the pathological events that occur in the retina, but the changes in the vitreous itself play a central role in the onset and progression of vitreoretinal diseases. Therefore, this review offers an overview of the studies on the vitreous proteome that could help to elucidate some of the pathological mechanisms underlying proliferative and/or neovascular vitreoretinal diseases and to find new potential pharmaceutical targets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data reviewed in this paper is available in the original papers from proteomics and multiplex studies. These revised papers include the references [43,44,45,46,47,48, 52, 54, 59, 60, 62,63,64, 68,69,70,71, 98] for DR/PDR, [63, 93, 156, 157] for AMD, and [46, 188,189,190,191,192,193,194,195, 256] for RRD/PVR. The reviewed data is displayed in the supplementary table.

Abbreviations

2DE:

Two-dimensional electrophoresis

AAT:

Alpha-1-antitrypsin

AGEs:

Advanced glycation end products

AMD:

Age-related macular degeneration

Ang-1:

Angiopoietin 1

Ang-2:

Angiopoietin-2

APP:

Amyloid-beta A4 protein

BDNF:

Brain-derived neurotrophic factor

BRB:

Blood-retinal barrier

C3:

Complement C3

CA:

Carbonic anhydrase

CCN2:

Connective tissue growth factor

CE–MS:

Capillary electrophoresis coupled to mass spectrometry

CFH:

Complement factor H

CLU:

Clusterin

CNTF:

Ciliary neurotrophic factor

CNV:

Choroidal neovascularization

CSF3:

Granulocyte colony-stimulating factor

CXCL10:

C-X-C motif chemokine 10

DME:

Diabetic macular edema

DR:

Diabetic retinopathy

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

ENO2:

Gamma-enolase

ERM:

Epiretinal membranes

FGF:

Fibroblast growth factor

GDNF:

Glial cell-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

HIF-1:

Hypoxia-inducible factor

ICAM-1:

Intercellular adhesion molecule 1

IGFBPs:

Insulin-like growth factor-binding proteins

IGFs:

Insulin-like growth factors

IL1-β:

Interleukin-1 beta

IL-6:

Interleukin-6

IL-8:

Interleukin-8

IL-10:

Nterleukin-10

INF-γ:

Interferon-gamma

KKS:

Kallikrein-Kinin system

LC–MS:

Liquid chromatography coupled to mass spectrometry

MCP-1:

Monocyte chemoattractant protein-1

MMP9:

Matrix metalloproteinase 9

MMP2:

72 KDa type IV collagenase

MMPs:

Metalloproteinases

MNV:

Macular neovascularization

nAMD:

“Wet” or neovascular age-related macular degeneration

NGF:

Nerve growth factor

NT3:

Neurotrophin-3

NV:

Neovascularization

PDGF:

Platelet-derived growth factor

PDR:

Proliferative diabetic retinopathy

PECAM-1:

Platelet endothelial cell adhesion molecule

PEDF:

Pigment epithelium-derived factor

PlGF:

Placental growth factor

PVD:

Posterior vitreous detachment

PVR:

Proliferative vitreoretinopathy

RD:

Retinal detachment

ROS:

Reactive oxygen species

RPE:

Retinal pigment epithelium

RRD:

Rhegmatogenous retinal detachment

SRF:

Subretinal fluid

TGF-β:

Transforming growth factor

Tie-2:

Tyrosine kinase receptor

TIMP-1:

Metalloproteinase inhibitor 1

TIMP2:

Metalloproteinase inhibitor 2

TNF-α:

Tumor necrosis factor

TTR:

Transthyretin

VCAM-1:

Vascular cell adhesion protein-1

VEGF:

Vascular endothelial growth factor

VEGFR-1:

Vascular endothelial growth factor receptor 1

References

  1. Sabanayagam C, Cheng C-Y (2017) Global causes of vision loss in 2015: are we on track to achieve the Vision 2020 target? Lancet Glob Heal 5:e1164–e1165. https://doi.org/10.1016/S2214-109X(17)30412-6

    Article  Google Scholar 

  2. Bourne RRA, Flaxman SR, Braithwaite T et al (2017) Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Heal 5:e888–e897. https://doi.org/10.1016/S2214-109X(17)30293-0

    Article  Google Scholar 

  3. Ackland P, Resnikoff S, Bourne R (2018) World blindness and visual impairment: despite many successes, the problem is growing. Community Eye Heal 30:71–73

    Google Scholar 

  4. Swenor BK, Ehrlich JR (2021) Comment Ageing and vision loss: looking to the future. Lancet. https://doi.org/10.1016/S2214-109X(21)00031-0

    Article  Google Scholar 

  5. Yoshida S, Nakama T, Ishikawa K et al (2017) Periostin in vitreoretinal diseases. Cell Mol Life Sci 74:4329–4337. https://doi.org/10.1007/s00018-017-2651-5

    Article  CAS  Google Scholar 

  6. Kuiper EJ, De Smet MD, Van Meurs JC et al (2006) Association of connective tissue growth factor with fibrosis in vitreoretinal disorders in the human eye. Arch Ophthalmol 124:1457–1462. https://doi.org/10.1001/archopht.124.10.1457

    Article  CAS  Google Scholar 

  7. Constable IJ, Nagpal M (2013) Proliferative vitreoretinopathy. In: Retina, 5th edn. Elsevier, pp 1806–1825

  8. Pastor JC, Rojas J, Pastor-Idoate S et al (2016) Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 51:125–155. https://doi.org/10.1016/j.preteyeres.2015.07.005

    Article  Google Scholar 

  9. Semba RD, Enghild JJ, Venkatraman V et al (2013) The Human Eye Proteome Project: perspectives on an emerging proteome. Proteomics 13:2500–2511. https://doi.org/10.1002/pmic.201300075

    Article  CAS  Google Scholar 

  10. Ramke J, Gilbert CE (2017) Universal eye health: are we getting closer? Lancet Glob Heal 5:e843–e844. https://doi.org/10.1016/S2214-109X(17)30302-9

    Article  Google Scholar 

  11. Monteiro JP, Santos FM, Rocha AS et al (2015) Vitreous humor in the pathologic scope: Insights from proteomic approaches. PROTEOMICS Clin Appl 9:187–202. https://doi.org/10.1002/prca.201400133

    Article  CAS  Google Scholar 

  12. Velez G, Tang PH, Cabral T et al (2018) Personalized proteomics for precision health: identifying biomarkers of vitreoretinal disease. Transl Vis Sci Technol 7:12. https://doi.org/10.1167/tvst.7.5.12

    Article  Google Scholar 

  13. Kodama M, Matsuura T, Hara Y (2013) Structure of vitreous body and its relationship with liquefaction. J Biomed Sci Eng 06:739–745. https://doi.org/10.4236/jbise.2013.67091

    Article  Google Scholar 

  14. Chirila TV, Hong Y (2016) Chapter C2 the vitreous humor. Handbook of biomaterial properties. Springer New York, New York, pp 125–134

    Google Scholar 

  15. Sebag J (2010) Vitreous Anatomy, Aging, and Anomalous Posterior Vitreous Detachment. In: Encyclopedia of the Eye. Elsevier, pp 307–315

  16. Le Goff MM, Bishop PN (2008) Adult vitreous structure and postnatal changes. Eye 22:1214–1222. https://doi.org/10.1038/eye.2008.21

    Article  Google Scholar 

  17. De Smet MD, Gad Elkareem AM, Zwinderman AH (2013) The vitreous, the retinal interface in ocular health and disease. Ophthalmologica 230:165–178. https://doi.org/10.1159/000353447

    Article  Google Scholar 

  18. Alovisi C, Panico C, De Sanctis U, Eandi CM (2017) Vitreous substitutes: old and new materials in vitreoretinal surgery. Journal of ophthalmology. https://doi.org/10.1155/2017/3172138

    Article  Google Scholar 

  19. Holekamp NM (2010) The vitreous gel: more than meets the eye. Am J Ophthalmol 149:32-36.e1. https://doi.org/10.1016/j.ajo.2009.07.036

    Article  Google Scholar 

  20. Ahmad MT, Zhang P, Dufresne C et al (2018) The human eye proteome project: updates on an emerging proteome. Proteomics 18:1–31. https://doi.org/10.1002/pmic.201700394

    Article  CAS  Google Scholar 

  21. Mahajan VB, Skeie JM (2014) Translational vitreous proteomics. Proteomics Clin Appl 8:204–208. https://doi.org/10.1002/prca.201300062

    Article  CAS  Google Scholar 

  22. Ponsioen TL, Hooymans JMMM, Los LI (2010) Remodelling of the human vitreous and vitreoretinal interface—a dynamic process. Prog Retin Eye Res 29:580–595. https://doi.org/10.1016/j.preteyeres.2010.07.001

    Article  Google Scholar 

  23. World Health Organization (2019) World report on vision

  24. Flaxman SR, Bourne RRA, Resnikoff S et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Heal 5:e1221–e1234. https://doi.org/10.1016/S2214-109X(17)30393-5

    Article  Google Scholar 

  25. Santos AR, Ribeiro L, Bandello F et al (2017) Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: cross-sectional analyses of baseline data of the EUROCONDOR project. Diabetes 66:2503–2510. https://doi.org/10.2337/db16-1453

    Article  CAS  Google Scholar 

  26. Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2:1–13. https://doi.org/10.1172/jci.insight.93751

    Article  Google Scholar 

  27. Yau JWY, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564. https://doi.org/10.2337/dc11-1909

    Article  Google Scholar 

  28. Ting DSW, Cheung GCM, Wong TY (2016) Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol 44:260–277. https://doi.org/10.1111/ceo.12696

    Article  Google Scholar 

  29. Kusuhara S, Fukushima Y, Ogura S et al (2018) Pathophysiology of diabetic retinopathy: the old and the new. Diabetes Metab J 42:364–376. https://doi.org/10.4093/dmj.2018.0182

    Article  Google Scholar 

  30. Wang W, Lo ACY (2018) Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci 19:1–14. https://doi.org/10.3390/ijms19061816

    Article  CAS  Google Scholar 

  31. Rossino MG, Dal Monte M, Casini G (2019) Relationships between neurodegeneration and vascular damage in diabetic retinopathy. Front Neurosci 13:1–20. https://doi.org/10.3389/fnins.2019.01172

    Article  Google Scholar 

  32. Gale MJ, Scruggs BA, Flaxel CJ (2021) Diabetic eye disease: a review of screening and management recommendations. Clin Experiment Ophthalmol 49:128–145. https://doi.org/10.1111/ceo.13894

    Article  Google Scholar 

  33. Lechner J, O’Leary OE, Stitt AW (2017) The pathology associated with diabetic retinopathy. Vision Res 139:7–14. https://doi.org/10.1016/j.visres.2017.04.003

    Article  Google Scholar 

  34. Sohn EH, van Dijk HW, Jiao C et al (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci 113:E2655–E2664. https://doi.org/10.1073/pnas.1522014113

    Article  CAS  Google Scholar 

  35. Friedlander M (2007) Fibrosis and diseases of the eye. J Clin Invest 117:576–586. https://doi.org/10.1172/JCI31030

    Article  CAS  Google Scholar 

  36. Kandarakis SA, Piperi C, Topouzis F, Papavassiliou AG (2014) Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog Retin Eye Res 42:85–102. https://doi.org/10.1016/j.preteyeres.2014.05.002

    Article  CAS  Google Scholar 

  37. Nawaz IM, Rezzola S, Cancarini A et al (2019) Human vitreous in proliferative diabetic retinopathy: characterization and translational implications. Prog Retin Eye Res 109:110–119. https://doi.org/10.1016/j.preteyeres.2019.03.002

    Article  CAS  Google Scholar 

  38. Kroll P, Rodrigues EB, Meyer CH (2014) III.L. Proliferative diabetic vitreoretinopathy. In: Vitreous. Springer New York, New York, pp 421–434

  39. Csősz É, Deák E, Kalló G et al (2017) Diabetic retinopathy: proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms. J Proteomics 150:351–358. https://doi.org/10.1016/j.jprot.2016.06.034

    Article  CAS  Google Scholar 

  40. Weber SR, Zhao Y, Gates C et al (2021) Proteomic analyses of vitreous in proliferative diabetic retinopathy: prior studies and future outlook. J Clin Med 10:2309. https://doi.org/10.3390/jcm10112309

    Article  Google Scholar 

  41. Youngblood H, Robinson R, Sharma A, Sharma S (2019) Proteomic biomarkers of retinal inflammation in diabetic retinopathy. Int J Mol Sci 20:4755. https://doi.org/10.3390/ijms20194755

    Article  CAS  Google Scholar 

  42. Hansen MS, Rasmussen M, Grauslund J et al (2022) Proteomic analysis of vitreous humour of eyes with diabetic macular oedema: a systematic review. Acta Ophthalmol. https://doi.org/10.1111/aos.15168

    Article  Google Scholar 

  43. Nakanishi T, Koyama R, Ikeda T, Shimizu A (2002) Catalogue of soluble proteins in the human vitreous humor: comparison between diabetic retinopathy and macular hole. J Chromatogr B Anal Technol Biomed Life Sci 776:89–100. https://doi.org/10.1016/S1570-0232(02)00078-8

    Article  CAS  Google Scholar 

  44. Yamane K, Minamoto A, Yamashita H et al (2003) Proteome analysis of human vitreous proteins. Mol Cell Proteomics 2:1177–1187. https://doi.org/10.1074/mcp.M300038-MCP200

    Article  CAS  Google Scholar 

  45. Minamoto A, Yamane K, Yokoyama T (2007) Proteomics of vitreous fluid. In: Thongboonkerd V (ed) Proteomics of human body fluids, 1st edn. Humana Press, Totowa, pp 495–507

    Google Scholar 

  46. Shitama T, Hayashi H, Noge S et al (2008) Proteome profiling of vitreoretinal diseases by cluster analysis. Proteomics Clin Appl 2:1265–1280. https://doi.org/10.1002/prca.200800017

    Article  CAS  Google Scholar 

  47. Kim SJ, Kim SJ, Park J et al (2006) Differential expression of vitreous proteins in proliferative diabetic retinopathy. Curr Eye Res 31:231–240. https://doi.org/10.1080/02713680600557030

    Article  CAS  Google Scholar 

  48. García-Ramírez M, Canals F, Hernández C et al (2007) Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): a new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy. Diabetologia 50:1294–1303. https://doi.org/10.1007/s00125-007-0627-y

    Article  CAS  Google Scholar 

  49. Simó R, Higuera M, García-Ramírez M et al (2008) Elevation of apolipoprotein A-I and apolipoprotein H levels in the vitreous fluid and overexpression in the retina of diabetic patients. Arch Ophthalmol 126:1076–1081. https://doi.org/10.1001/archopht.126.8.1076

    Article  Google Scholar 

  50. Ouchi M, West K, Crabb JW et al (2005) Proteomic analysis of vitreous from diabetic macular edema. Exp Eye Res 81:176–182. https://doi.org/10.1016/j.exer.2005.01.020

    Article  CAS  Google Scholar 

  51. Hernández C, García-Ramírez M, Colomé N et al (2013) Identification of new pathogenic candidates for diabetic macular edema using fluorescence-based difference gel electrophoresis analysis. Diabetes Metab Res Rev 29:499–506. https://doi.org/10.1002/dmrr.2419

    Article  CAS  Google Scholar 

  52. Wang H, Feng L, Hu J et al (2012) Characterisation of the vitreous proteome in proliferative diabetic retinopathy. Proteome Sci 10:1–11. https://doi.org/10.1186/1477-5956-10-15

    Article  CAS  Google Scholar 

  53. Gao BB, Clermont A, Rook S et al (2007) Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat Med 13:181–188. https://doi.org/10.1038/nm1534

    Article  CAS  Google Scholar 

  54. Gao B-B, Chen X, Timothy N et al (2008) Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res 7:2516–2525. https://doi.org/10.1021/pr800112g

    Article  CAS  Google Scholar 

  55. Funatsu H, Yamashita H, Nakamura S et al (2006) Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology 113:294–301. https://doi.org/10.1016/j.ophtha.2005.10.030

    Article  Google Scholar 

  56. Funatsu H, Noma H, Mimura T et al (2009) Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology 116:73–79. https://doi.org/10.1016/j.ophtha.2008.09.037

    Article  Google Scholar 

  57. Rocha AS, Santos FM, Monteiro JP et al (2014) Trends in proteomic analysis of human vitreous humor samples. Electrophoresis 35:2495–2508. https://doi.org/10.1002/elps.201400049

    Article  CAS  Google Scholar 

  58. Santos FM, Albuquerque T, Gaspar LM et al (2019) Refinement of two-dimensional electrophoresis for vitreous proteome profiling using an artificial neural network. Anal Bioanal Chem 411:5115–5126. https://doi.org/10.1007/s00216-019-01887-y

    Article  CAS  Google Scholar 

  59. Kim K, Kim SJ, Yu HG et al (2010) Verification of biomarkers for diabetic retinopathy by multiple reaction monitoring. J Proteome Res 9:689–699. https://doi.org/10.1021/pr901013d

    Article  CAS  Google Scholar 

  60. Wang H, Feng L, Hu J et al (2013) Differentiating vitreous proteomes in proliferative diabetic retinopathy using high-performance liquid chromatography coupled to tandem mass spectrometry. Exp Eye Res 108:110–119. https://doi.org/10.1016/j.exer.2012.11.023

    Article  CAS  Google Scholar 

  61. Li J, Lu Q, Lu P (2018) Quantitative proteomics analysis of vitreous body from type 2 diabetic patients with proliferative diabetic retinopathy. BMC Ophthalmol 18:151. https://doi.org/10.1186/s12886-018-0821-3

    Article  CAS  Google Scholar 

  62. Balaiya S, Zhou Z, Chalam KV (2017) Characterization of vitreous and aqueous proteome in humans with proliferative diabetic retinopathy and its clinical correlation. Proteomics Insights 8:1–10. https://doi.org/10.1177/1178641816686078

    Article  Google Scholar 

  63. Schori C, Trachsel C, Grossmann J et al (2018) The proteomic landscape in the vitreous of patients with age-related and diabetic retinal disease. Invest Ophthalmol Vis Sci 59:31–40. https://doi.org/10.1167/iovs.18-24122

    Article  CAS  Google Scholar 

  64. Loukovaara S, Nurkkala H, Tamene F et al (2015) Quantitative proteomics analysis of vitreous humor from diabetic retinopathy patients. J Proteome Res 14:5131–5143. https://doi.org/10.1021/acs.jproteome.5b00900

    Article  CAS  Google Scholar 

  65. Gardner TW, Sundstrom JM (2017) A proposal for early and personalized treatment of diabetic retinopathy based on clinical pathophysiology and molecular phenotyping. Vision Res 139:153–160. https://doi.org/10.1016/j.visres.2017.03.006

    Article  Google Scholar 

  66. Kim T, Sang JK, Kim K et al (2007) Profiling of vitreous proteomes from proliferative diabetic retinopathy and nondiabetic patients. Proteomics 7:4203–4215. https://doi.org/10.1002/pmic.200700745

    Article  CAS  Google Scholar 

  67. Kita T, Clermont AC, Murugesan N et al (2015) Plasma kallikrein-kinin system as a VEGF-independent mediator of diabetic macular edema. Diabetes 64:3588–3599. https://doi.org/10.2337/db15-0317

    Article  CAS  Google Scholar 

  68. Zou C, Han C, Zhao M et al (2018) Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis. Clin Proteomics 15:1–10. https://doi.org/10.1186/s12014-018-9187-z

    Article  CAS  Google Scholar 

  69. Koskela UE, Kuusisto SM, Nissinen AE et al (2013) High vitreous concentration of IL-6 and IL-8, but not of adhesion molecules in relation to plasma concentrations in proliferative diabetic retinopathy. Ophthalmic Res 49:108–114. https://doi.org/10.1159/000342977

    Article  CAS  Google Scholar 

  70. Klaassen I, de Vries EW, Vogels IMC et al (2017) Identification of proteins associated with clinical and pathological features of proliferative diabetic retinopathy in vitreous and fibrovascular membranes. PLoS ONE 12:1–21. https://doi.org/10.1371/journal.pone.0187304

    Article  CAS  Google Scholar 

  71. Srividya G, Jain M, Mahalakshmi K et al (2018) A novel and less invasive technique to assess cytokine profile of vitreous in patients of diabetic macular oedema. Eye 32:820–829. https://doi.org/10.1038/eye.2017.285

    Article  CAS  Google Scholar 

  72. Wang J, Chen S, Jiang F et al (2014) Vitreous and plasma VEGF levels as predictive factors in the progression of proliferative diabetic retinopathy after vitrectomy. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0110531

    Article  CAS  Google Scholar 

  73. Mesquita J, Castro-de-Sousa JP, Vaz-Pereira S et al (2018) Evaluation of the growth factors VEGF-a and VEGF-B in the vitreous and serum of patients with macular and retinal vascular diseases. Growth Factors 36:48–57. https://doi.org/10.1080/08977194.2018.1477140

    Article  CAS  Google Scholar 

  74. Mesquita J, Castro de Sousa J, Vaz-Pereira S et al (2017) VEGF-B levels in the vitreous of diabetic and non-diabetic patients with ocular diseases and its correlation with structural parameters. Med Sci 5:17. https://doi.org/10.3390/medsci5030017

    Article  CAS  Google Scholar 

  75. Zhao Y, Singh RP (2018) The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context 7:1–10. https://doi.org/10.7573/dic.212532

    Article  Google Scholar 

  76. Arrigo A, Aragona E, Bandello F (2022) VEGF-targeting drugs for the treatment of retinal neovascularization in diabetic retinopathy. Ann Med 54:1089–1111. https://doi.org/10.1080/07853890.2022.2064541

    Article  CAS  Google Scholar 

  77. Bressler SB, Liu D, Glassman AR et al (2017) Change in diabetic retinopathy through 2 years secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab. JAMA Ophthalmol 135:558–568. https://doi.org/10.1001/jamaophthalmol.2017.0821

    Article  Google Scholar 

  78. Cai S, Bressler NM (2015) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 372:1193–1203. https://doi.org/10.1056/NEJMoa1414264

    Article  CAS  Google Scholar 

  79. Zhang W, Qu X, Chen B et al (2016) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 133:48–61. https://doi.org/10.1161/CIRCULATIONAHA.115.017472.Critical

    Article  Google Scholar 

  80. Hernández C, Burgos R, Cantón A et al (2001) Vitreous levels of vascular cell adhesion molecule and vascular endothelial growth factor in patients with proliferative diabetic retinopathy: a case-control study. Diabetes Care 24:516–521. https://doi.org/10.2337/diacare.24.3.516

    Article  Google Scholar 

  81. Chen W, Lu Q, Lu L, Guan H (2017) Increased levels of alphaB-crystallin in vitreous fluid of patients with proliferative diabetic retinopathy and correlation with vascular endothelial growth factor. Clin Exp Ophthalmol 45:379–384. https://doi.org/10.1111/ceo.12891

    Article  Google Scholar 

  82. Ishizaki E, Takai S, Ueki M et al (2006) Correlation between angiotensin-converting enzyme, vascular endothelial growth factor, and matrix metalloproteinase-9 in the vitreous of eyes with diabetic retinopathy. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2005.08.066

    Article  Google Scholar 

  83. Abu El-Asrar AM, Mohammad G, Nawaz MI et al (2013) Relationship between vitreous levels of matrix metalloproteinases and vascular endothelial growth factor in proliferative diabetic retinopathy. PLoS ONE 8:1–11. https://doi.org/10.1371/journal.pone.0085857

    Article  CAS  Google Scholar 

  84. Izuta H, Chikaraishi Y, Adachi T et al (2009) Extracellular SOD and VEGF are increased in vitreous bodies from proliferative diabetic retinopathy patients. Mol Vis 15:2663–2672

    CAS  Google Scholar 

  85. Izuta H, Matsunaga N, Shimazawa M et al (2010) Proliferative diabetic retinopathy and relations among antioxidant activity, oxidative stress, and VEGF in the vitreous body. Mol Vis 16:130–136

    CAS  Google Scholar 

  86. Brzović-Šarić V, Landeka I, Šarić B et al (2015) Levels of selected oxidative stress markers in the vitreous and serum of diabetic retinopathy patients. Mol Vis 21:649–664

    Google Scholar 

  87. Funatsu H, Yamashita H, Nakanishi Y, Hori S (2002) Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy. Br J Ophthalmol 86:311–315. https://doi.org/10.1136/bjo.86.3.311

    Article  CAS  Google Scholar 

  88. Whitehead M, Osborne A, Widdowson PS et al (2019) Angiopoietins in diabetic retinopathy: current understanding and therapeutic potential. J Diabetes Res 2019:1–9. https://doi.org/10.1155/2019/5140521

    Article  CAS  Google Scholar 

  89. Joussen AM, Ricci F, Paris LP et al (2021) Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data. Eye 35:1305–1316. https://doi.org/10.1038/s41433-020-01377-x

    Article  Google Scholar 

  90. Sahni J, Patel SS, Dugel PU et al (2019) Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-a with faricimab in diabetic macular edema. Ophthalmology 126:1155–1170. https://doi.org/10.1016/j.ophtha.2019.03.023

    Article  Google Scholar 

  91. Nicolò M, Ferro Desideri L, Vagge A, Traverso CE (2021) Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases. Expert Opin Investig Drugs 30:193–200. https://doi.org/10.1080/13543784.2021.1879791

    Article  CAS  Google Scholar 

  92. Watanabe D, Suzuma K, Suzuma I et al (2005) Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol 139:476–481. https://doi.org/10.1016/j.ajo.2004.10.004

    Article  CAS  Google Scholar 

  93. Huber M, Wachtlin J (2012) Vitreous levels of proteins implicated in angiogenesis are modulated in patients with retinal or choroidal neovascularization. Ophthalmologica 228:188–193. https://doi.org/10.1159/000339952

    Article  CAS  Google Scholar 

  94. Patel JI, Hykin PG, Gregor ZJ et al (2005) Angiopoietin concentrations in diabetic retinopathy. Br J Ophthalmol 89:480–483. https://doi.org/10.1136/bjo.2004.049940

    Article  CAS  Google Scholar 

  95. Loukovaara S, Robciuc A, Holopainen JM et al (2013) Ang-2 up-regulation correlates with increased levels of MMP-9, VEGF, EPO and TGFβ1 in diabetic eyes undergoing vitrectomy. Acta Ophthalmol 91:531–539. https://doi.org/10.1111/j.1755-3768.2012.02473.x

    Article  CAS  Google Scholar 

  96. Simó R, Lecube A, Segura RM et al (2002) Free insulin growth factor-I and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy. Am J Ophthalmol 134:376–382

    Google Scholar 

  97. Al Kahtani E, Xu Z, Al Rashaed S et al (2017) Vitreous levels of placental growth factor correlate with activity of proliferative diabetic retinopathy and are not influenced by bevacizumab treatment. Eye 31:529–536. https://doi.org/10.1038/eye.2016.246

    Article  CAS  Google Scholar 

  98. Suzuki Y, Nakazawa M, Suzuki K et al (2011) Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol 55:256–263. https://doi.org/10.1007/s10384-011-0004-8

    Article  CAS  Google Scholar 

  99. Kovacs K, Marra KV, Yu G et al (2015) Angiogenic and inflammatory vitreous biomarkers associated with increasing levels of retinal ischemia. Investig Ophthalmol Vis Sci 56:6523–6530. https://doi.org/10.1167/iovs.15-16793

    Article  CAS  Google Scholar 

  100. Praidou A, Klangas I, Papakonstantinou E et al (2009) Vitreous and serum levels of platelet-derived growth factor and their correlation in patients with proliferative diabetic retinopathy. Curr Eye Res 34:152–161. https://doi.org/10.1080/02713680802585920

    Article  CAS  Google Scholar 

  101. Patel JI, Tombran-Tink J, Hykin PG et al (2006) Vitreous and aqueous concentrations of proangiogenic, antiangiogenic factors and other cytokines in diabetic retinopathy patients with macular edema: Implications for structural differences in macular profiles. Exp Eye Res 82:798–806. https://doi.org/10.1016/j.exer.2005.10.002

    Article  CAS  Google Scholar 

  102. Munk MR, Somfai GM, De Smet MD et al (2022) The role of intravitreal corticosteroids in the treatment of DME: predictive OCT biomarkers. Int J Mol Sci 23:7585

    CAS  Google Scholar 

  103. Chawan-Saad J, Wu M, Wu A, Wu L (2019) Corticosteroids for diabetic macular edema. Taiwan J Ophthalmol 9:233. https://doi.org/10.4103/tjo.tjo_68_19

    Article  Google Scholar 

  104. Wallsh JO, Gallemore RP (2021) Anti-VEGF-resistant retinal diseases: a review of the latest treatment options. Cells 10:1049. https://doi.org/10.3390/cells10051049

    Article  CAS  Google Scholar 

  105. Mysona BA, Matragoon S, Stephens M et al (2015) Imbalance of the nerve growth factor and its precursor as a potential biomarker for diabetic retinopathy. Biomed Res Int 2015:1–12. https://doi.org/10.1155/2015/571456

    Article  CAS  Google Scholar 

  106. Boss JD, Singh PK, Pandya HK et al (2017) Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Investig Opthalmology Vis Sci 58:5594. https://doi.org/10.1167/iovs.17-21973

    Article  CAS  Google Scholar 

  107. Yoshida S, Kubo Y, Kobayashi Y et al (2015) Increased vitreous concentrations of MCP-1 and IL-6 after vitrectomy in patients with proliferative diabetic retinopathy: possible association with post-operative macular oedema. Br J Ophthalmol 99:960–966. https://doi.org/10.1136/bjophthalmol-2014-306366

    Article  Google Scholar 

  108. Deuchler S, Schubert R, Singh P et al (2021) Vitreous expression of cytokines and growth factors in patients with diabetic retinopathy—an investigation of their expression based on clinical diabetic retinopathy grade. PLoS ONE 16:e0248439. https://doi.org/10.1371/journal.pone.0248439

    Article  CAS  Google Scholar 

  109. Kuo CYJ, Murphy R, Rupenthal ID, Mugisho OO (2022) Correlation between the progression of diabetic retinopathy and inflammasome biomarkers in vitreous and serum—a systematic review. BMC Ophthalmol 22:1–13. https://doi.org/10.1186/s12886-022-02439-2

    Article  Google Scholar 

  110. Minaker SA, Mason RH, Lahaie Luna G et al (2022) Changes in aqueous and vitreous inflammatory cytokine levels in diabetic macular oedema: a systematic review and meta-analysis. Acta Ophthalmol 100:e53–e70. https://doi.org/10.1111/aos.14891

    Article  CAS  Google Scholar 

  111. Funatsu H, Yamashita H, Sakata K et al (2005) Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology 112:806–816. https://doi.org/10.1016/j.ophtha.2004.11.045

    Article  Google Scholar 

  112. Yenihayat F, Özkan B, Kasap M et al (2018) Vitreous IL-8 and VEGF levels in diabetic macular edema with or without subretinal fluid. Int Ophthalmol. https://doi.org/10.1007/s10792-018-0874-6

    Article  Google Scholar 

  113. Noma H, Funatsu H, Yamasaki M et al (2008) Aqueous humour levels of cytokines are correlated to vitreous levels and severity of macular oedema in branch retinal vein occlusion. Eye 22:42–48. https://doi.org/10.1038/sj.eye.6702498

    Article  CAS  Google Scholar 

  114. Yoshimura T, Sonoda K-HH, Sugahara M et al (2009) Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS ONE 4:e8158. https://doi.org/10.1371/journal.pone.0008158

    Article  CAS  Google Scholar 

  115. Kimura K, Orita T, Kobayashi Y et al (2017) Concentration of acute phase factors in vitreous fluid in diabetic macular edema. Jpn J Ophthalmol 61:479–483. https://doi.org/10.1007/s10384-017-0525-x

    Article  CAS  Google Scholar 

  116. Ardeljan D, Chan CC (2013) Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 37:68–89. https://doi.org/10.1016/j.preteyeres.2013.07.003

    Article  CAS  Google Scholar 

  117. Lim LS, Mitchell P, Seddon JM et al (2012) Age-related macular degeneration. Lancet 379:1728–1738. https://doi.org/10.1016/S0140-6736(12)60282-7

    Article  Google Scholar 

  118. Wong WL, Su X, Li X et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Heal 2:e106–e116. https://doi.org/10.1016/S2214-109X(13)70145-1

    Article  Google Scholar 

  119. Rudnicka AR, Jarrar Z, Wormald R et al (2012) Age and gender variations in age-related macular degeneration prevalence in populations of European ancestry: a meta-analysis. Ophthalmology 119:571–580. https://doi.org/10.1016/j.ophtha.2011.09.027

    Article  Google Scholar 

  120. Age-Related Eye Disease Study Research Group (2005) Risk factors for the incidence of advanced age-related macular degeneration in the age-related eye disease study (AREDS). Ophthalmology 112:533-539.e1. https://doi.org/10.1016/j.ophtha.2004.10.047

    Article  Google Scholar 

  121. Lambert NG, ElShelmani H, Singh MK et al (2016) Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 54:64–102. https://doi.org/10.1016/j.preteyeres.2016.04.003

    Article  CAS  Google Scholar 

  122. Ambati J, Atkinson JP, Gelfand BD (2013) Immunology of age-related macular degeneration. Nat Rev Immunol 13:438–451. https://doi.org/10.1038/nri3459

    Article  CAS  Google Scholar 

  123. Apte RS (2021) Age-related macular degeneration. N Engl J Med 385:539–547. https://doi.org/10.1056/NEJMcp2102061

    Article  Google Scholar 

  124. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358:2606–2617. https://doi.org/10.1056/NEJMra0801537

    Article  CAS  Google Scholar 

  125. Thomas CJ, Mirza RG, Gill MK (2021) Age-related macular degeneration. Med Clin North Am 105:473–491. https://doi.org/10.1016/j.mcna.2021.01.003

    Article  Google Scholar 

  126. Age-Related Eye Disease Study Research Group (2005) The age-related eye disease study severity scale for age-related macular degeneration. Arch Ophthalmol 123:1484. https://doi.org/10.1001/archopht.123.11.1484

    Article  Google Scholar 

  127. Coleman HR, Chan C-C, Ferris FL, Chew EY (2008) Age-related macular degeneration. Lancet 372:1835–1845. https://doi.org/10.1016/S0140-6736(08)61759-6

    Article  CAS  Google Scholar 

  128. Klein ML, Ferris FL, Armstrong J et al (2008) Retinal precursors and the development of geographic atrophy in age-related macular degeneration. Ophthalmology 115:1026–1031. https://doi.org/10.1016/j.ophtha.2007.08.030

    Article  Google Scholar 

  129. Richer S, Ulanski L, Popenko NA et al (2016) Age-related macular degeneration beyond the age-related eye disease study II. Adv Ophthalmol Optom 1:335–369. https://doi.org/10.1016/j.yaoo.2016.03.018

    Article  Google Scholar 

  130. Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. Arch Ophthalmol 119:1417–1436. https://doi.org/10.1001/archopht.119.10.1417

    Article  Google Scholar 

  131. Seddon JM (2006) Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration. Arch Ophthalmol 124:995–1001. https://doi.org/10.1001/archopht.124.7.995

    Article  CAS  Google Scholar 

  132. Feng L, Nie K, Jiang H, Fan W (2019) Effects of lutein supplementation in age-related macular degeneration. PLoS ONE 14:1–13. https://doi.org/10.1371/journal.pone.0227048

    Article  CAS  Google Scholar 

  133. Chew EY, Clemons TE, Agrón E et al (2015) Effect of omega-3 fatty acids, lutein/zeaxanthin, or other nutrient supplementation on cognitive function. JAMA 314:791. https://doi.org/10.1001/jama.2015.9677

    Article  CAS  Google Scholar 

  134. Lem DW, Davey PG, Gierhart DL, Rosen RB (2021) A systematic review of carotenoids in the management of age-related macular degeneration. Antioxidants 10:1–37. https://doi.org/10.3390/antiox10081255

    Article  CAS  Google Scholar 

  135. Cabral De Guimaraes TA, Daich Varela M, Georgiou M, Michaelides M (2022) Treatments for dry age-related macular degeneration: therapeutic avenues, clinical trials and future directions. Br J Ophthalmol 106:297–304. https://doi.org/10.1136/bjophthalmol-2020-318452

    Article  Google Scholar 

  136. Thomas CN, Sim DA, Lee WH et al (2022) Emerging therapies and their delivery for treating age-related macular degeneration. Br J Pharmacol 179:1908–1937. https://doi.org/10.1111/bph.15459

    Article  CAS  Google Scholar 

  137. Stern JH, Tian Y, Funderburgh J, et al (2018) Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell 22:834–849. DOI: https://doi.org/10.1016/j.stem.2018.05.013

  138. Rizzolo LJ, Nasonkin IO, Adelman RA (2022) Retinal cell transplantation, biomaterials, and in vitro models for developing next-generation therapies of age-related macular degeneration. Stem Cells Transl Med 11:269–281. https://doi.org/10.1093/stcltm/szac001

    Article  Google Scholar 

  139. Yeong JL, Loveman E, Colquitt JL et al (2020) Visual cycle modulators versus placebo or observation for the prevention and treatment of geographic atrophy due to age-related macular degeneration. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD013154.pub2

    Article  Google Scholar 

  140. Wong WT, Dresner S, Forooghian F et al (2013) Treatment of geographic atrophy with subconjunctival sirolimus: results of a phase I/II clinical trial. Investig Opthalmology Vis Sci 54:2941. https://doi.org/10.1167/iovs.13-11650

    Article  CAS  Google Scholar 

  141. Boyer DS, Gonzalez VH, Kunimoto DY et al (2021) Safety and efficacy of intravitreal risuteganib for non-exudative AMD: a multicenter, phase 2a, randomized, clinical trial. Ophthalmic Surgery, Lasers Imaging Retin 52:327–335. https://doi.org/10.3928/23258160-20210528-05

    Article  Google Scholar 

  142. Wu J, Sun X (2019) Complement system and age-related macular degeneration: drugs and challenges. Drug Des Devel Ther 13:2413–2425. https://doi.org/10.2147/DDDT.S206355

    Article  CAS  Google Scholar 

  143. Kauper K, McGovern C, Sherman S et al (2012) Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Investig Opthalmology Vis Sci 53:7484. https://doi.org/10.1167/iovs.12-9970

    Article  CAS  Google Scholar 

  144. Sharma A, Parachuri N, Kumar N et al (2021) Terms non-exudative and non-neovascular: awaiting entry at the doors of AMD reclassification. Graefe’s Arch Clin Exp Ophthalmol 259:1381–1383. https://doi.org/10.1007/s00417-021-05164-6

    Article  Google Scholar 

  145. Spaide RF, Jaffe GJ, Sarraf D et al (2020) Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on neovascular age-related macular degeneration nomenclature study group. Ophthalmology 127:616–636. https://doi.org/10.1016/j.ophtha.2019.11.004

    Article  Google Scholar 

  146. Yonekawa Y, Miller J, Kim I (2015) Age-related macular degeneration: advances in management and diagnosis. J Clin Med 4:343–359. https://doi.org/10.3390/jcm4020343

    Article  CAS  Google Scholar 

  147. Tsai ASH, Cheung N, Gan ATL et al (2017) Retinal angiomatous proliferation. Surv Ophthalmol 62:462–492. https://doi.org/10.1016/j.survophthal.2017.01.008

    Article  Google Scholar 

  148. Yannuzzi LA, Negrão S, Iida T et al (2012) Retinal angiomatous proliferation in age–related macular degeneration. Retina 32:416–434. https://doi.org/10.1097/IAE.0b013e31823f9b3b

    Article  Google Scholar 

  149. Sivaprasad S, Hykin P (2013) What is new in the management of wet age-related macular degeneration? Br Med Bull 105:201–211

    CAS  Google Scholar 

  150. Chaili S, D. Adrean S (2020) Management strategies and visual results for the treatment of neovascular age-related macular degeneration. In: Visual impairment and blindness—what we know and what we have to know. IntechOpen, p 13

  151. Heier JS, Khanani AM, Quezada Ruiz C et al (2022) Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials. Lancet 399:729–740. https://doi.org/10.1016/S0140-6736(22)00010-1

    Article  CAS  Google Scholar 

  152. Fernandes AR, Zielińska A, Sanchez-Lopez E et al (2022) Exudative versus nonexudative age-related macular degeneration: physiopathology and treatment options. Int J Mol Sci 23:2592. https://doi.org/10.3390/ijms23052592

    Article  CAS  Google Scholar 

  153. De Guimaraes TAC, Georgiou M, Bainbridge JWB, Michaelides M (2021) Gene therapy for neovascular age-related macular degeneration: rationale, clinical trials and future directions. Br J Ophthalmol 105:151–157. https://doi.org/10.1136/bjophthalmol-2020-316195

    Article  Google Scholar 

  154. Fritsche LG, Fariss RN, Stambolian D et al (2014) Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet 15:151–171. https://doi.org/10.1146/annurev-genom-090413-025610

    Article  CAS  Google Scholar 

  155. Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-De la Paz L et al (2018) Age-related macular degeneration: new paradigms for treatment and management of AMD. Oxid Med Cell Longev 2018:1–14. https://doi.org/10.1155/2018/8374647

    Article  CAS  Google Scholar 

  156. Koss MJ, Hoffmann J, Nguyen N et al (2014) Proteomics of vitreous humor of patients with exudative age-related macular degeneration. PLoS ONE 9:1–11. https://doi.org/10.1371/journal.pone.0096895

    Article  CAS  Google Scholar 

  157. Nobl M, Reich M, Dacheva I et al (2016) Proteomics of vitreous in neovascular age-related macular degeneration. Exp Eye Res 146:107–117. https://doi.org/10.1016/j.exer.2016.01.001

    Article  CAS  Google Scholar 

  158. Amadio M, Govoni S, Pascale A (2016) Targeting VEGF in eye neovascularization: What’s new?: A comprehensive review on current therapies and oligonucleotide-based interventions under development. Pharmacol Res 103:253–269. https://doi.org/10.1016/j.phrs.2015.11.027

    Article  CAS  Google Scholar 

  159. Funk M, Karl D, Georgopoulos M et al (2009) Neovascular age-related macular degeneration: intraocular cytokines and growth factors and the influence of therapy with ranibizumab. Ophthalmology 116:2393–2399. https://doi.org/10.1016/j.ophtha.2009.05.039

    Article  Google Scholar 

  160. Holekamp NM, Bouck N, Volpert O (2002) Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol 134:220–227. https://doi.org/10.1016/S0002-9394(02)01549-0

    Article  CAS  Google Scholar 

  161. Duh EJ, Yang HS, Haller JA et al (2004) Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol 137:668–674. https://doi.org/10.1016/j.ajo.2003.11.015

    Article  CAS  Google Scholar 

  162. Koss MJ, Pfister M, Koch FH (2011) Inflammatory and angiogenic protein detection in the human vitreous: cytometric bead assay. J Ophthalmol 2011:1–4. https://doi.org/10.1155/2011/459251

    Article  CAS  Google Scholar 

  163. Zhao M, Bai Y, Xie W et al (2015) Interleukin-1β level is increased in vitreous of patients with neovascular age-related macular degeneration (nAMD) and polypoidal choroidal vasculopathy (PCV). PLoS ONE 10:e0125150. https://doi.org/10.1371/journal.pone.0125150

    Article  CAS  Google Scholar 

  164. Bai Y, Liang S, Yu W et al (2014) Semaphorin 3A blocks the formation of pathologic choroidal neovascularization induced by transforming growth factor beta. Mol Vis 20:1258–1270

    Google Scholar 

  165. Ecker SM, Pfahler SM, Hines JC et al (2012) Sequential in-office vitreous aspirates demonstrate vitreous matrix metalloproteinase-9 levels correlate with the amount of subretinal fluid in eyes with wet age-related macular degeneration. Mol Vis 18:1658–1667

    CAS  Google Scholar 

  166. Loyet KM, DeForge LE, Katschke KJ et al (2012) Activation of the alternative complement pathway in vitreous is controlled by genetics in age-related macular degeneration. Investig Ophthalmol Vis Sci 53:6628–6637. https://doi.org/10.1167/iovs.12-9587

    Article  CAS  Google Scholar 

  167. Idrees S, Sridhar J, Kuriyan AE (2019) Proliferative vitreoretinopathy: a review. Int Ophthalmol Clin 59:221–240. https://doi.org/10.1097/IIO.0000000000000258

    Article  Google Scholar 

  168. Garweg JG, Tappeiner C, Halberstadt M (2013) Pathophysiology of proliferative vitreoretinopathy in retinal detachment. Surv Ophthalmol 58:321–329. https://doi.org/10.1016/j.survophthal.2012.12.004

    Article  Google Scholar 

  169. Rodríguez De La Rúa E, Pastor JC, Aragón J et al (2005) Interaction between surgical procedure for repairing retinal detachment and clinical risk factors for proliferative vitreoretinopathy. Curr Eye Res 30:147–153. https://doi.org/10.1080/02713680490904142

    Article  Google Scholar 

  170. Kon CH, Tranos P, Aylward GW (2005) Risk factors in proliferative vitreoretinopathy. Vitreo-retinal surgery. Springer-Verlag, Berlin/Heidelberg, pp 121–134

    Google Scholar 

  171. Wiedemann P, Yandiev Y, Hui Y-N, Wang Y (2013) Pathogenesis of proliferative vitreoretinopathy. In: Ryan SJ, Hinton DR, Wiedemann P (eds) Retina, 5th edn. Elsevier, pp 1640–1646

    Google Scholar 

  172. Kwon OW, Song JH, Roh MI, Song JH (2010) Retinal detachment and proliferative vitreoretinopathy. In: Retinal pharmacotherapy, 1st edn. Elsevier, pp 154–162

  173. Tamiya S, Liu LH, Kaplan HJ (2010) Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact. Investig Ophthalmol Vis Sci 51:2755–2763. https://doi.org/10.1167/iovs.09-4725

    Article  Google Scholar 

  174. Sethi CS, Lewis GP, Fisher SK et al (2005) Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy. Investig Ophthalmol Vis Sci 46:329–342. https://doi.org/10.1167/iovs.03-0518

    Article  Google Scholar 

  175. Guidry C (2010) Proliferative vitreoretinopathy. In: Ocular disease, 2nd edn. Elsevier, pp 612–617

  176. Popovic MM, Muni RH, Nichani P, Kertes PJ (2022) Pars plana vitrectomy, scleral buckle, and pneumatic retinopexy for the management of rhegmatogenous retinal detachment: a meta-analysis. Surv Ophthalmol 67:184–196. https://doi.org/10.1016/j.survophthal.2021.05.008

    Article  Google Scholar 

  177. Savur F, Aydemir O, İlhan N (2020) The effect of infliximab and octreotide on cytokine levels experimental proliferative vitreoretinopathy. Cutan Ocul Toxicol 39:61–66. https://doi.org/10.1080/15569527.2019.1701000

    Article  CAS  Google Scholar 

  178. Tikhonovich MV, Erdiakov AK, Gavrilova SA (2018) Nonsteroid anti-inflammatory therapy suppresses the development of proliferative vitreoretinopathy more effectively than a steroid one. Int Ophthalmol 38:1365–1378. https://doi.org/10.1007/s10792-017-0594-3

    Article  Google Scholar 

  179. Schaub F, Hoerster R, Schiller P et al (2018) Prophylactic intravitreal 5-fluorouracil and heparin to prevent proliferative vitreoretinopathy in high-risk patients with retinal detachment: study protocol for a randomized controlled trial. Trials 19:384. https://doi.org/10.1186/s13063-018-2761-x

    Article  CAS  Google Scholar 

  180. Nourinia R, Borna F, Rahimi A et al (2019) Repeated injection of methotrexate into silicone oil-filled eyes for grade c proliferative vitreoretinopathy: a pilot study. Ophthalmologica 242:113–117. https://doi.org/10.1159/000500271

    Article  CAS  Google Scholar 

  181. Ghasemi Falavarjani K, Hashemi M, Modarres M, Hadavand Khani A (2014) Intrasilicone oil injection of bevacizumab at the end of retinal reattachment surgery for severe proliferative vitreoretinopathy. Eye 28:576–580. https://doi.org/10.1038/eye.2014.21

    Article  CAS  Google Scholar 

  182. Abdullatif AM, Macky TA, Abdullatif MM et al (2018) Intravitreal decorin preventing proliferative vitreoretinopathy in perforating injuries: a pilot study. Graefe’s Arch Clin Exp Ophthalmol 256:2473–2481. https://doi.org/10.1007/s00417-018-4105-7

    Article  CAS  Google Scholar 

  183. Lei H, Velez G, Cui J et al (2010) N-acetylcysteine suppresses retinal detachment in an experimental model of proliferative vitreoretinopathy. Am J Pathol 177:132–140. https://doi.org/10.2353/ajpath.2010.090604

    Article  CAS  Google Scholar 

  184. Aldeyra Therapeutics (2022) ClinicalTrials.gov Identifier: NCT04136366. The GUARD Trial - Part 1: A Phase 3 Clinical Trial for Prevention of Proliferative Vitreoretinopathy Stress. https://clinicaltrials.gov/ct2/show/NCT04136366. Accessed 31 Jul 2022

  185. Zahra Rabbani Khah, Beheshti S (2020) ClinicalTrials.gov Identifier: NCT04482543. Repeated Methotrexate for Proliferative Vitreoretinopathy Grade C. https://clinicaltrials.gov/ct2/show/NCT04482543. Accessed 31 Jul 2022

  186. Roca JA, Yon-Mendoza A, Huamán N, Wu L (2021) Adjunctive serial post-operative intravitreal methotrexate injections in the management of advanced proliferative vitreoretinopathy. Graefe’s Arch Clin Exp Ophthalmol 259:2913–2917. https://doi.org/10.1007/s00417-021-05206-z

    Article  CAS  Google Scholar 

  187. Chen G, Li T, Zheng Q et al (2011) Differential expression and significance of complement C4b and transthyretin in proliferative vitreoretinopathy. Chinese J Ophthalmol 47:726–731

    CAS  Google Scholar 

  188. Yu J, Liu F, Cui SJ et al (2008) Vitreous proteomic analysis of proliferative vitreoretinopathy. Proteomics 8:3667–3678. https://doi.org/10.1002/pmic.200700824

    Article  CAS  Google Scholar 

  189. Yu J, Peng R, Chen H et al (2012) Elucidation of the pathogenic mechanism of rhegmatogenous retinal detachment with proliferative vitreoretinopathy by proteomic analysis. Investig Ophthalmol Vis Sci 53:8146–8153. https://doi.org/10.1167/iovs.12-10079

    Article  CAS  Google Scholar 

  190. Yu J, Peng R, Chen H et al (2014) Kininogen 1 and insulin-like growth factor binding protein 6: candidate serum biomarkers of proliferative vitreoretinopathy. Clin Exp Optom 97:72–79. https://doi.org/10.1111/cxo.12088

    Article  Google Scholar 

  191. Santos F, Gaspar L, Ciordia S et al (2018) iTRAQ quantitative proteomic analysis of vitreous from patients with retinal detachment. Int J Mol Sci 19:1–22. https://doi.org/10.3390/ijms19041157

    Article  CAS  Google Scholar 

  192. Öhman T, Gawriyski L, Miettinen S et al (2021) Molecular pathogenesis of rhegmatogenous retinal detachment. Sci Rep 11:1–15. https://doi.org/10.1038/s41598-020-80005-w

    Article  CAS  Google Scholar 

  193. Banerjee S, Savant V, Scott RAHH et al (2007) Multiplex bead analysis of vitreous humor of patients with vitreoretinal disorders. Investig Ophthalmol Vis Sci 48:2203–2207. https://doi.org/10.1167/iovs.06-1358

    Article  Google Scholar 

  194. Roybal CN, Velez G, Toral MA et al (2018) Personalized proteomics in proliferative vitreoretinopathy implicate hematopoietic cell recruitment and mTOR as a therapeutic target. Am J Ophthalmol 186:152–163. https://doi.org/10.1016/j.ajo.2017.11.025

    Article  CAS  Google Scholar 

  195. Wladis EJ, Falk NS, Iglesias BV et al (2013) Analysis of the molecular biologic milieu of the vitreous in proliferative vitreoretinopathy. Retina 33:807–811. https://doi.org/10.1097/IAE.0b013e31826d350a

    Article  Google Scholar 

  196. Symeonidis C, Papakonstantinou E, Androudi S et al (2011) Interleukin-6 and the matrix metalloproteinase response in the vitreous during proliferative vitreoretinopathy. Cytokine 54:212–217. https://doi.org/10.1016/j.cyto.2011.02.001

    Article  CAS  Google Scholar 

  197. Canataroglu H, Varinli I, Ozcan AA et al (2005) Interleukin (IL)-6, interleukin (IL)-8 levels and cellular composition of the vitreous humor in proliferative diabetic retinopathy, proliferative vitreoretinopathy, and traumatic proliferative vitreoretinopathy. Ocul Immunol Inflamm 13:375–381. https://doi.org/10.1080/09273940490518900

    Article  CAS  Google Scholar 

  198. Citirik M, Kabatas EU, Batman C et al (2011) Vitreous vascular endothelial growth factor concentrations in proliferative diabetic retinopathy versus proliferative vitreoretinopathy. Ophthalmic Res 47:7–12. https://doi.org/10.1159/000324200

    Article  CAS  Google Scholar 

  199. Sydorova M, Lee MS (2005) Vascular endothelial growth factor levels in vitreous and serum of patients with either proliferative diabetic retinopathy or proliferative vitreoretinopathy. Ophthalmic Res 37:188–190. https://doi.org/10.1159/000086594

    Article  CAS  Google Scholar 

  200. Moysidis SN, Thanos A, Vavvas DG (2012) Mechanisms of inflammation in proliferative vitreoretinopathy: from bench to bedside. Mediators Inflamm. https://doi.org/10.1155/2012/815937

    Article  Google Scholar 

  201. Morescalchi F, Duse S, Gambicorti E et al (2013) Proliferative vitreoretinopathy after eye injuries: an overexpression of growth factors and cytokines leading to a retinal keloid. Mediators Inflamm. https://doi.org/10.1155/2013/269787

    Article  Google Scholar 

  202. Ricker LJAG, Dieudonné SC, Kessels AGH et al (2012) Antiangiogenic isoforms of vascular endothelial growth factor predominate in subretinal fluid of patients with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Retina 32:54–59. https://doi.org/10.1097/IAE.0b013e31821800b9

    Article  CAS  Google Scholar 

  203. Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:607–613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  Google Scholar 

  204. Joussen AM, Poulaki V, Le ML et al (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18:1450–1452. https://doi.org/10.1096/fj.03-1476fje

    Article  CAS  Google Scholar 

  205. Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30:343–358. https://doi.org/10.1016/j.preteyeres.2011.05.002

    Article  CAS  Google Scholar 

  206. Adamis AP (2002) Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol 86:363–365. https://doi.org/10.1136/bjo.86.4.363

    Article  CAS  Google Scholar 

  207. Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007:95103. https://doi.org/10.1155/2007/95103

    Article  CAS  Google Scholar 

  208. Whitcup SM, Sodhi A, Atkinson JP et al (2013) The role of the immune response in age-related macular degeneration. Int J Inflam. https://doi.org/10.1155/2013/348092

    Article  Google Scholar 

  209. Chaudhary R, Scott RAH, Wallace G et al (2020) Inflammatory and fibrogenic factors in proliferative vitreoretinopathy development. Transl Vis Sci Technol 9:1–17. https://doi.org/10.1167/tvst.9.3.23

    Article  Google Scholar 

  210. Dai Y, Dai C, Sun T (2020) Inflammatory mediators of proliferative vitreoretinopathy: hypothesis and review. Int Ophthalmol 40:1587–1601. https://doi.org/10.1007/s10792-020-01325-4

    Article  Google Scholar 

  211. Shaw PX, Stiles T, Douglas C et al (2016) Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Mol Sci 3:196–221. https://doi.org/10.3934/molsci.2016.2.196

    Article  CAS  Google Scholar 

  212. Capitão M, Soares R (2016) Angiogenesis and inflammation crosstalk in diabetic retinopathy. J Cell Biochem. https://doi.org/10.1002/jcb.25575

    Article  Google Scholar 

  213. Wang X, Ma W, Han S et al (2017) TGF-β participates choroid neovascularization through Smad2/3-VEGF/TNF-α signaling in mice with Laser-induced wet age-related macular degeneration. Sci Rep 7:9672. https://doi.org/10.1038/s41598-017-10124-4

    Article  Google Scholar 

  214. Fernando N, Natoli R, Valter K et al (2016) The broad-spectrum chemokine inhibitor NR58-3.14.3 modulates macrophage-mediated inflammation in the diseased retina. J Neuroinflammation 13:1–14. https://doi.org/10.1186/s12974-016-0514-x

    Article  CAS  Google Scholar 

  215. Rashid K, Akhtar-Schaefer I, Langmann T (2019) Microglia in retinal degeneration. Front Immunol 10:1–19. https://doi.org/10.3389/fimmu.2019.01975

    Article  CAS  Google Scholar 

  216. Cunha-Vaz J (2009) The blood-retinal barrier in retinal disease. Eur Ophthalmic Rev 3:105. https://doi.org/10.17925/eor.2009.03.02.105

    Article  Google Scholar 

  217. Campochiaro PA, Bryan JA, Conway BP, Jaccoma EH (1986) Intravitreal chemotactic and mitogenic activity: implication of blood-retinal barrier breakdown. Arch Ophthalmol 104:1685–1687. https://doi.org/10.1001/archopht.1986.01050230123046

    Article  CAS  Google Scholar 

  218. Gilbert C, Gilbert C, Unger W et al (1988) Inflammation and the formation of epiretinal membranes. Eye 2:S140–S156. https://doi.org/10.1038/eye.1988.140

    Article  Google Scholar 

  219. Taylor AW (2009) Ocular immune privilege. Eye 23:1885–1889. https://doi.org/10.1038/eye.2008.382

    Article  CAS  Google Scholar 

  220. Xu J, Chen LJ, Yu J et al (2018) Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy. Cell Physiol Biochem 48:705–717. https://doi.org/10.1159/000491897

    Article  CAS  Google Scholar 

  221. Kaur C, Foulds WS, Ling EA (2008) Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res 27:622–647. https://doi.org/10.1016/j.preteyeres.2008.09.003

    Article  CAS  Google Scholar 

  222. Rübsam A, Parikh S, Fort PE (2018) Role of inflammation in diabetic retinopathy. Int J Mol Sci 19:1–31. https://doi.org/10.3390/ijms19040942

    Article  CAS  Google Scholar 

  223. Rangasamy S, McGuire PG, Nitta CF et al (2014) Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PLoS ONE 9:1–10. https://doi.org/10.1371/journal.pone.0108508

    Article  CAS  Google Scholar 

  224. Harhaj NS, Felinski EA, Wolpert EB et al (2006) VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Investig Ophthalmol Vis Sci 47:5106–5115. https://doi.org/10.1167/iovs.06-0322

    Article  Google Scholar 

  225. Miyamoto K, Khosrof S, Bursell SE et al (2000) Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol 156:1733–1739. https://doi.org/10.1016/S0002-9440(10)65044-4

    Article  CAS  Google Scholar 

  226. Aveleira CA, Lin CM, Abcouwer SF et al (2010) TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes 59:2872–2882. https://doi.org/10.2337/db09-1606

    Article  CAS  Google Scholar 

  227. Bamforth SD, Lightman SL, Greenwood J (1997) Interleukin-1β-induced disruption of the retinal vascular barrier of the central nervous system is mediated through leukocyte recruitment and histamine. Am J Pathol 150:329–340

    CAS  Google Scholar 

  228. Haurigot V, Villacampa P, Ribera A et al (2009) Increased intraocular insulin-like growth factor-I triggers blood-retinal barrier breakdown. J Biol Chem 284:22961–22969. https://doi.org/10.1074/jbc.M109.014787

    Article  CAS  Google Scholar 

  229. Lu M, Perez VL, Ma N et al (1999) VEGF increases retinal vascular ICAM-1 expression in vivo. Invest Ophthalmol Vis Sci 40:1808–1812

    CAS  Google Scholar 

  230. Navaratna D, McGuire PG, Menicucci G, Das A (2007) Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes. Diabetes 56:2380–2387. https://doi.org/10.2337/db06-1694

    Article  CAS  Google Scholar 

  231. Giebel SJ, Menicucci G, McGuire PG, Das A (2005) Matrix metalloproteinases in early diabetic retinopathy and their role in alternation of the blood-retinal barrier. Lab Investig 85:597–607. https://doi.org/10.1038/labinvest.3700251

    Article  CAS  Google Scholar 

  232. Da Cunha AP, Zhang Q, Prentiss M et al (2018) The hierarchy of proinflammatory cytokines in ocular inflammation. Curr Eye Res 43:553–565. https://doi.org/10.1080/02713683.2017.1410180

    Article  CAS  Google Scholar 

  233. Liu X, Ye F, Xiong H et al (2015) IL-1β Induces IL-6 production in retinal Müller cells predominantly through the activation of P38 MAPK/NF-κB signaling pathway. Exp Cell Res 331:223–231. https://doi.org/10.1016/j.yexcr.2014.08.040

    Article  CAS  Google Scholar 

  234. Iyer SS, Pulskens WP, Sadler JJ et al (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 106:20388–20393. https://doi.org/10.1073/pnas.0908698106

    Article  Google Scholar 

  235. Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 9:857–865. https://doi.org/10.1038/ni.1636

    Article  CAS  Google Scholar 

  236. Liu RT, Gao J, Cao S et al (2013) Inflammatory mediators induced by amyloid-beta in the retina and RPE in vivo: implications for inflammasome activation in age-related macular degeneration. Investig Ophthalmol Vis Sci 54:2225–2237. https://doi.org/10.1167/iovs.12-10849

    Article  CAS  Google Scholar 

  237. Kutty RK, Samuel W, Boyce K et al (2016) Proinflammatory cytokines decrease the expression of genes critical for RPE function. Mol Vis 22:1156–1168

    CAS  Google Scholar 

  238. Wooff Y, Man SM, Aggio-Bruce R et al (2019) IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front Immunol 10:1–21. https://doi.org/10.3389/fimmu.2019.01618

    Article  CAS  Google Scholar 

  239. Karkhur S, Hasanreisoglu M, Vigil E et al (2019) Interleukin-6 inhibition in the management of non-infectious uveitis and beyond. J Ophthalmic Inflamm Infect. https://doi.org/10.1186/s12348-019-0182-y

    Article  Google Scholar 

  240. Gerhardinger C, Costa MB, Coulombe MC et al (2005) Expression of acute-phase response proteins in retinal Müller cells in diabetes. Investig Ophthalmol Vis Sci 46:349–357. https://doi.org/10.1167/iovs.04-0860

    Article  Google Scholar 

  241. Ortiz G, Salica JP, Chuluyan EH, Gallo JE (2014) Diabetic retinopathy: could the alpha-1 antitrypsin be a therapeutic option? Biol Res 47:1–9. https://doi.org/10.1186/0717-6287-47-58

    Article  CAS  Google Scholar 

  242. Copland DA, Theodoropoulou S, Liu J, Dick AD (2018) A perspective of AMD through the eyes of immunology. Investig Ophthalmol Vis Sci 59:AMD83–AMD92. https://doi.org/10.1167/iovs.18-23893

    Article  Google Scholar 

  243. Blum A, Pastukh N, Socea D, Jabaly H (2018) Levels of adhesion molecules in peripheral blood correlat with stages of diabetic retinopathy and may serve as bio markers for microvascular complications. Cytokine 106:76–79. https://doi.org/10.1016/j.cyto.2017.10.014

    Article  CAS  Google Scholar 

  244. Sorokin L (2010) The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10:712–723. https://doi.org/10.1038/nri2852

    Article  CAS  Google Scholar 

  245. Bharadwaj AS, Appukuttan B, Wilmarth PA et al (2013) Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 32:102–180. https://doi.org/10.1016/j.preteyeres.2012.08.004

    Article  Google Scholar 

  246. Barile GR, Chang SS, Park LS et al (1999) Soluble cellular adhesion molecules in proliferative vitreoretinopathy and proliferative diabetic retinopathy. Curr Eye Res 19:219–227. https://doi.org/10.1076/ceyr.19.3.219.5314

    Article  CAS  Google Scholar 

  247. Limb GA, Chignell AH (1999) Vitreous levels of intercellular adhesion molecule 1 (ICAM-1) as a risk indicator of proliferative vitreoretinopathy. Br J Ophthalmol 83:953–956. https://doi.org/10.1136/bjo.83.8.953

    Article  CAS  Google Scholar 

  248. Mukai R, Okunuki Y, Husain D et al (2018) The complement system is critical in maintaining retinal integrity during aging. Front Aging Neurosci 10:1–12. https://doi.org/10.3389/fnagi.2018.00015

    Article  CAS  Google Scholar 

  249. Clark SJ, Bishop PN (2018) The eye as a complement dysregulation hotspot. Semin Immunopathol 40:65–74. https://doi.org/10.1007/s00281-017-0649-6

    Article  Google Scholar 

  250. Toomey CB, Johnson LV, Bowes Rickman C (2018) Complement factor H in AMD: bridging genetic associations and pathobiology. Prog Retin Eye Res 62:38–57. https://doi.org/10.1016/j.preteyeres.2017.09.001

    Article  CAS  Google Scholar 

  251. Whitmore SS, Sohn EH, Chirco KR et al (2015) Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 45:1–29. https://doi.org/10.1016/j.preteyeres.2014.11.005

    Article  CAS  Google Scholar 

  252. Mullins RF, Schoo DP, Sohn EH et al (2014) The membrane attack complex in aging human choriocapillaris: relationship to macular degeneration and choroidal thinning. Am J Pathol 184:3142–3153. https://doi.org/10.1016/j.ajpath.2014.07.017

    Article  CAS  Google Scholar 

  253. Akhtar-Schäfer I, Wang L, Krohne TU et al (2018) Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol Med 10:1–27. https://doi.org/10.15252/emmm.201708259

    Article  CAS  Google Scholar 

  254. Yang MM, Wang J, Ren H et al (2016) Genetic investigation of complement pathway genes in type 2 diabetic retinopathy: an inflammatory perspective. Mediators Inflamm. https://doi.org/10.1155/2016/1313027

    Article  Google Scholar 

  255. Shahulhameed S, Vishwakarma S, Chhablani J et al (2020) A systematic investigation on complement pathway activation in diabetic retinopathy. Front Immunol 11:1–14. https://doi.org/10.3389/fimmu.2020.00154

    Article  CAS  Google Scholar 

  256. Wu Z, Ding N, Yu M et al (2016) Identification of potential biomarkers for rhegmatogenous retinal detachment associated with choroidal detachment by vitreous iTRAQ-based proteomic profiling. Int J Mol Sci 17:1–17. https://doi.org/10.3390/ijms17122052

    Article  CAS  Google Scholar 

  257. Sweigard JH, Matsumoto H, Smith KE et al (2015) Inhibition of the alternative complement pathway preserves photoreceptors after retinal injury. Sci Transl Med 7:21–24. https://doi.org/10.1126/scitranslmed.aab1482

    Article  CAS  Google Scholar 

  258. Bastiaans J, van Meurs JC, Mulder VC et al (2014) The role of thrombin in proliferative vitreoretinopathy. Investig Ophthalmol Vis Sci 55:4659–4666. https://doi.org/10.1167/iovs.14-14818

    Article  CAS  Google Scholar 

  259. Bastiaans J, Van Meurs JC, Van Holten-Neelen C et al (2013) Factor Xa and thrombin stimulate proinflammatory and pro-fibrotic mediator production by retinal pigment epithelial cells: a role in vitreoretinal disorders? Graefe’s Arch Clin Exp Ophthalmol 251:1723–1733. https://doi.org/10.1007/s00417-013-2335-2

    Article  Google Scholar 

  260. Sato K, Takeda A, Hasegawa E et al (2018) Interleukin-6 plays a crucial role in the development of subretinal fibrosis in a mouse model. Immunol Med 41:23–29. https://doi.org/10.1080/09114300.2018.1451609

    Article  Google Scholar 

  261. Fielding CA, Jones GW, McLoughlin RM et al (2014) Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 40:40–50. https://doi.org/10.1016/j.immuni.2013.10.022

    Article  CAS  Google Scholar 

  262. Pennock S, Rheaume MA, Mukai S, Kazlauskas A (2011) A novel strategy to develop therapeutic approaches to prevent proliferative vitreoretinopathy. Am J Pathol 179:2931–2940. https://doi.org/10.1016/j.ajpath.2011.08.043

    Article  CAS  Google Scholar 

  263. Abu El-Asrar AM, Imtiaz Nawaz M, Kangave D et al (2012) Osteopontin and other regulators of angiogenesis and fibrogenesis in the vitreous from patients with proliferative vitreoretinal disorders. Mediators Inflamm 2012:1–8. https://doi.org/10.1155/2012/493043

    Article  CAS  Google Scholar 

  264. Van Geest RJ, Klaassen I, Lesnik-Oberstein SY et al (2013) Vitreous TIMP-1 levels associate with neovascularization and TGF-β2 levels but not with fibrosis in the clinical course of proliferative diabetic retinopathy. J Cell Commun Signal 7:1–9. https://doi.org/10.1007/s12079-012-0178-y

    Article  Google Scholar 

  265. Mukherjee S, Guidry C (2007) The insulin-like growth factor system modulates retinal pigment epithelial cell tractional force generation. Investig Ophthalmol Vis Sci 48:1892–1899. https://doi.org/10.1167/iovs.06-1095

    Article  Google Scholar 

  266. Zhang H, Liu ZL (2012) Transforming growth factor-β neutralizing antibodies inhibit subretinal fibrosis in a mouse model. Int J Ophthalmol 5:307–311. https://doi.org/10.3980/j.issn.2222-3959.2012.03.11

    Article  CAS  Google Scholar 

  267. Miller CG, Budoff G, Prenner JL, Schwarzbauer JE (2017) Minireview: fibronectin in retinal disease. Exp Biol Med 242:1–7. https://doi.org/10.1177/1535370216675245

    Article  CAS  Google Scholar 

  268. Shu DY, Lovicu FJ (2017) Myofibroblast transdifferentiation: the dark force in ocular wound healing and fibrosis. Prog Retin Eye Res 60:44–65. https://doi.org/10.1016/j.preteyeres.2017.08.001

    Article  Google Scholar 

  269. Kimura K, Orita T, Liu Y et al (2015) Attenuation of EMT in RPE cells and subretinal fibrosis by an RAR-γ agonist. J Mol Med 93:749–758. https://doi.org/10.1007/s00109-015-1289-8

    Article  CAS  Google Scholar 

  270. Kita T, Hata Y, Arita R et al (2008) Role of TGF-β in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci USA 105:17504–17509. https://doi.org/10.1073/pnas.0804054105

    Article  Google Scholar 

  271. Choi K, Lee K, Ryu SW et al (2012) Pirfenidone inhibits transforming growth factor-β1-induced fibrogenesis by blocking nuclear translocation of smads in human retinal pigment epithelial cell line ARPE-19. Mol Vis 18:1010–1020

    CAS  Google Scholar 

  272. Yao H, Ge T, Zhang Y et al (2019) BMP7 antagonizes proliferative vitreoretinopathy through retinal pigment epithelial fibrosis in vivo and in vitro. FASEB J 33:3212–3224. https://doi.org/10.1096/fj.201800858RR

    Article  CAS  Google Scholar 

  273. Fan J, Shen W, Lee SR et al (2020) Targeting the Notch and TGF-β signaling pathways to prevent retinal fibrosis in vitro and in vivo. Theranostics 10:7956–7973. https://doi.org/10.7150/thno.45192

    Article  CAS  Google Scholar 

  274. Itoh Y, Kimoto K, Imaizumi M, Nakatsuka K (2007) Inhibition of RhoA/Rho-kinase pathway suppresses the expression of type I collagen induced by TGF-β2 in human retinal pigment epithelial cells. Exp Eye Res 84:464–472. https://doi.org/10.1016/j.exer.2006.10.017

    Article  CAS  Google Scholar 

  275. Dvashi Z, Goldberg M, Adir O et al (2015) TGF-β1 induced transdifferentiation of RPE cells is mediated by TAK1. PLoS ONE 10:1–16. https://doi.org/10.1371/journal.pone.0122229

    Article  CAS  Google Scholar 

  276. Khanum BNMK, Guha R, Sur VP et al (2017) Pirfenidone inhibits post-traumatic proliferative vitreoretinopathy. Eye 31:1317–1328. https://doi.org/10.1038/eye.2017.21

    Article  CAS  Google Scholar 

  277. Dvashi Z, Ben-Yaakov K, Weinberg T et al (2017) OM-101 decreases the fibrotic response associated with proliferative vitreoretinopathy. J Ophthalmol. https://doi.org/10.1155/2017/1606854

    Article  Google Scholar 

  278. Robbins SG, Mixon RN, Wilson DJ et al (1994) Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. Investig Ophthalmol Vis Sci 35:3649–3663

    CAS  Google Scholar 

  279. Cassidy L, Barry P, Shaw C et al (1998) Platelet derived growth factor and fibroblast growth factor basic levels in the vitreous of patients with vitreoretinal disorders. Br J Ophthalmol 82:181–185. https://doi.org/10.1136/bjo.82.2.181

    Article  CAS  Google Scholar 

  280. Campochiaro PA, Hackett SF, Vinores SA et al (1994) Platelet-derived growth factor is an autocrine growth stimulator in retinal pigmented epithelial cells. J Cell Sci 107:2459–2469

    CAS  Google Scholar 

  281. Cui J, Lei H, Samad A et al (2009) PDGF receptors are activated in human epiretinal membranes. Exp Eye Res 88:438–444. https://doi.org/10.1016/j.exer.2008.10.020

    Article  CAS  Google Scholar 

  282. Campochiaro PA (1997) Pathogenic mechanisms in proliferative vitreoretinopathy. Arch Ophthalmol 115:237. https://doi.org/10.1001/archopht.1997.01100150239014

    Article  CAS  Google Scholar 

  283. Akiyama H, Kachi S, E Silva RL et al (2006) Intraocular injection of an aptamer that binds PDGF-B: a potential treatment for proliferative retinopathies. J Cell Physiol 207:407–412. https://doi.org/10.1002/jcp.20583

    Article  CAS  Google Scholar 

  284. Zheng X, Du L, Wang H, Gu Q (2012) A novel approach to attenuate proliferative vitreoretinopathy using ultrasound-targeted microbubble destruction and recombinant adeno-associated virus-mediated RNA interference targeting transforming growth factor-β2 and platelet-derived growth factor-B. J Gene Med 14:339–347. https://doi.org/10.1002/jgm.2629

    Article  CAS  Google Scholar 

  285. Lei H, Velez G, Hovland P et al (2009) Growth factors outside the PDGF family drive experimental PVR. Investig Ophthalmol Vis Sci 50:3394–3403. https://doi.org/10.1167/iovs.08-3042

    Article  Google Scholar 

  286. Pennock S, Kim D, Mukai S et al (2013) Ranibizumab is a potential prophylaxis for proliferative vitreoretinopathy, a nonangiogenic blinding disease. Am J Pathol 182:1659–1670. https://doi.org/10.1016/j.ajpath.2013.01.052

    Article  CAS  Google Scholar 

  287. Lei H, Kazlauskas A (2009) Growth factors outside of the platelet-derived growth factor (PDGF) family employ reactive oxygen species/Src family kinases to activate PDGF receptor α and thereby promote proliferation and survival of cells. J Biol Chem 284:6329–6336. https://doi.org/10.1074/jbc.M808426200

    Article  CAS  Google Scholar 

  288. Lei H, Rheaume M-AA, Kazlauskas A (2010) Recent developments in our understanding of how platelet-derived growth factor (PDGF) and its receptors contribute to proliferative vitreoretinopathy. Exp Eye Res 90:376–381. https://doi.org/10.1016/j.exer.2009.11.003

    Article  CAS  Google Scholar 

  289. Pennock S, Haddock LJ, Mukai S, Kazlauskas A (2014) Vascular endothelial growth factor acts primarily via platelet-derived growth factor receptor α to promote proliferative vitreoretinopathy. Am J Pathol 184:3052–3068. https://doi.org/10.1016/j.ajpath.2014.07.026

    Article  CAS  Google Scholar 

  290. Van Geest RJ, Lesnik-Oberstein SY, Tan HS et al (2012) A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy. Br J Ophthalmol 96:587–590. https://doi.org/10.1136/bjophthalmol-2011-301005

    Article  Google Scholar 

  291. Kuiper EJ, Van Nieuwenhoven FA, de Smet MD et al (2008) The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy. PLoS ONE 3:1–7. https://doi.org/10.1371/journal.pone.0002675

    Article  CAS  Google Scholar 

  292. Klaassen I, van Geest RJ, Kuiper EJ et al (2015) The role of CTGF in diabetic retinopathy. Exp Eye Res 133:37–48. https://doi.org/10.1016/j.exer.2014.10.016

    Article  CAS  Google Scholar 

  293. Wei Q, Zhang T, Jiang R et al (2017) Vitreous fibronectin and fibrinogen expression increased in eyes with proliferative diabetic retinopathy after intravitreal anti-VEGF therapy. Investig Ophthalmol Vis Sci 58:5783–5791. https://doi.org/10.1167/iovs.17-22345

    Article  CAS  Google Scholar 

  294. Pinazo-Durán MD, Gallego-Pinazo R, García-Medina JJ et al (2014) Oxidative stress and its downstream signaling in aging eyes. Clin Interv Aging 9:637–652. https://doi.org/10.2147/CIA.S52662

    Article  CAS  Google Scholar 

  295. Berra A, Ferreira S, Stanga P, Llesuy S (2002) Age-related antioxidant capacity of the vitreous and its possible relationship with simultaneous changes in photoreceptors, retinal pigment epithelium and Bruchs’ membrane in human donors’ eyes. Arch Gerontol Geriatr 34:371–377. https://doi.org/10.1016/S0167-4943(02)00013-4

    Article  CAS  Google Scholar 

  296. Santos FM, Mesquita J, Castro-de-Sousa JP et al (2022) Vitreous humor proteome: targeting oxidative stress, inflammation, and neurodegeneration in vitreoretinal diseases. Antioxidants 11:505. https://doi.org/10.3390/antiox11030505

    Article  CAS  Google Scholar 

  297. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016:1–23. https://doi.org/10.1155/2016/3164734

    Article  CAS  Google Scholar 

  298. Ankamah E, Sebag J, Ng E, Nolan JM (2019) Vitreous antioxidants, degeneration, and vitreo-retinopathy: exploring the links. Antioxidants 9:1–20. https://doi.org/10.3390/antiox9010007

    Article  CAS  Google Scholar 

  299. Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 33:399–417. https://doi.org/10.1016/j.mam.2012.03.009

    Article  CAS  Google Scholar 

  300. Kowluru RA, Kowluru A, Mishra M, Kumar B (2015) Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 48:40–61. https://doi.org/10.1016/j.preteyeres.2015.05.001

    Article  CAS  Google Scholar 

  301. Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9:315–327. https://doi.org/10.1007/s11154-008-9090-4

    Article  CAS  Google Scholar 

  302. Rodríguez ML, Pérez S, Mena-Mollá S et al (2019) Oxidative stress and microvascular alterations in diabetic retinopathy: future therapies. Oxid Med Cell Longev 2019:1–18. https://doi.org/10.1155/2019/4940825

    Article  CAS  Google Scholar 

  303. Kang Q, Yang C (2020) Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 37:1–17. https://doi.org/10.1016/j.redox.2020.101799

    Article  CAS  Google Scholar 

  304. Datta S, Cano M, Ebrahimi K et al (2017) The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 60:201–218. https://doi.org/10.1016/j.preteyeres.2017.03.002

    Article  CAS  Google Scholar 

  305. Maugeri A, Barchitta M, Mazzone MG et al (2018) Complement system and age-related macular degeneration: implications of gene-environment interaction for preventive and personalized medicine. Biomed Res Int. https://doi.org/10.1155/2018/7532507

    Article  Google Scholar 

  306. Krohne TU, Stratmann NK, Kopitz J, Holz FG (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90:465–471. https://doi.org/10.1016/j.exer.2009.12.011

    Article  CAS  Google Scholar 

  307. Sinha D, Valapala M, Shang P et al (2016) Lysosomes: regulators of autophagy in the retinal pigmented epithelium. Exp Eye Res 144:46–53. https://doi.org/10.1016/j.exer.2015.08.018

    Article  CAS  Google Scholar 

  308. Kwon YH, Kim YA, Yoo YH (2017) Loss of pigment epithelial cells is prevented by autophagy. In: Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging, 11th edn. Elsevier, pp 105–117

  309. Wang AL, Lukas TJ, Yuan M et al (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS ONE 4:1–13. https://doi.org/10.1371/journal.pone.0004160

    Article  Google Scholar 

  310. Hyttinen JMT, Błasiak J, Niittykoski M et al (2017) DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells—implications for age-related macular degeneration (AMD). Ageing Res Rev 36:64–77. https://doi.org/10.1016/j.arr.2017.03.006

    Article  CAS  Google Scholar 

  311. Marmorstein LY, Munier FL, Arsenijevic Y et al (2002) Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc Natl Acad Sci 99:13067–13072. https://doi.org/10.1073/pnas.202491599

    Article  CAS  Google Scholar 

  312. Frey T, Antonetti DA (2011) Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species. Antioxidants Redox Signal 15:1271–1284. https://doi.org/10.1089/ars.2011.3906

    Article  CAS  Google Scholar 

  313. Beatty S, Koh HH, Phil M et al (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134. https://doi.org/10.1016/S0039-6257(00)00140-5

    Article  CAS  Google Scholar 

  314. Rivera JC, Dabouz R, Noueihed B et al (2017) Ischemic retinopathies: oxidative stress and inflammation. Oxid Med Cell Longev 2017:1–16. https://doi.org/10.1155/2017/3940241

    Article  CAS  Google Scholar 

  315. Ko JA, Sotani Y, Ibrahim DG, Kiuchi Y (2017) Role of macrophage migration inhibitory factor (MIF) in the effects of oxidative stress on human retinal pigment epithelial cells. Cell Biochem Funct 35:426–432. https://doi.org/10.1002/cbf.3292

    Article  CAS  Google Scholar 

  316. Yang I-H, Lee J-J, Wu P-C et al (2020) Oxidative stress enhanced the transforming growth factor-β2-induced epithelial-mesenchymal transition through chemokine ligand 1 on ARPE-19 cell. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-60785-x

    Article  CAS  Google Scholar 

  317. Tong Y, Zhou YL, Wang YX et al (2016) Retinal pigment epithelium cell-derived exosomes: possible relevance to CNV in wet-age related macular degeneration. Med Hypotheses 97:98–101. https://doi.org/10.1016/j.mehy.2016.10.027

    Article  CAS  Google Scholar 

  318. Atienzar-Aroca S, Flores-Bellver M, Serrano-Heras G et al (2016) Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells. J Cell Mol Med 20:1457–1466. https://doi.org/10.1111/jcmm.12834

    Article  CAS  Google Scholar 

  319. Kang G-Y, Bang JY, Choi AJ et al (2014) Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration. J Proteome Res 13:581–595. https://doi.org/10.1021/pr400751k

    Article  CAS  Google Scholar 

  320. Athanasiou D, Aguilà M, Bevilacqua D et al (2013) The cell stress machinery and retinal degeneration. FEBS Lett 587:2008–2017. https://doi.org/10.1016/j.febslet.2013.05.020

    Article  CAS  Google Scholar 

  321. Schmidt K-G, Bergert H, Funk R (2008) Neurodegenerative diseases of the retina and potential for protection and recovery. Curr Neuropharmacol 6:164–178. https://doi.org/10.2174/157015908784533851

    Article  CAS  Google Scholar 

  322. Paulus YM, Campbell JP (2015) Neuroprotection and retinal diseases. Dev Ophthalmol 55:322–329. https://doi.org/10.1159/000434703

    Article  Google Scholar 

  323. Simó R, Stitt AW, Gardner TW (2018) Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia 61:1902–1912. https://doi.org/10.1007/s00125-018-4692-1

    Article  Google Scholar 

  324. Barber AJ, Baccouche B (2017) Neurodegeneration in diabetic retinopathy: potential for novel therapies. Vision Res 139:82–92. https://doi.org/10.1016/j.visres.2017.06.014

    Article  Google Scholar 

  325. Zafar S, Sachdeva M, Frankfort BJ, Channa R (2019) Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies. Curr Diab Rep. https://doi.org/10.1007/s11892-019-1134-5

    Article  Google Scholar 

  326. Nian S, C.Y. Lo A (2019) Protecting the aging retina. In: Neuroprotection. IntechOpen, p 13

  327. Chinskey ND, Besirli CG, Zacks DN (2013) Retinal neuroprotection in dry age-related macular degeneration. Drug Discov Today Ther Strateg 10:e21–e24. https://doi.org/10.1016/j.ddstr.2012.07.001

    Article  Google Scholar 

  328. Lo ACY, Woo TTY, Wong RLM, Wong D (2011) Apoptosis and other cell death mechanisms after retinal detachment: Implications for photoreceptor rescue. Ophthalmologica 226:10–17. https://doi.org/10.1159/000328206

    Article  Google Scholar 

  329. Murakami Y, Notomi S, Hisatomi T et al (2013) Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res 37:114–140. https://doi.org/10.1016/j.preteyeres.2013.08.001

    Article  Google Scholar 

  330. Cuenca N, Fernández-Sánchez L, Campello L et al (2014) Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 43:17–75. https://doi.org/10.1016/j.preteyeres.2014.07.001

    Article  CAS  Google Scholar 

  331. Fortuny C, Flannery JG (2018) Mutation-independent gene therapies for rod-cone dystrophies. pp 75–81

  332. Madeira MH, Boia R, Santos PF et al (2015) Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators Inflamm. https://doi.org/10.1155/2015/673090

    Article  Google Scholar 

  333. Ponnalagu M, Subramani M, Jayadev C et al (2017) Retinal pigment epithelium-secretome: a diabetic retinopathy perspective. Cytokine 95:126–135. https://doi.org/10.1016/j.cyto.2017.02.013

    Article  CAS  Google Scholar 

  334. Kubay OV, Charteris DG, Newland HS, Raymond GL (2005) Retinal detachment neuropathology and potential strategies for neuroprotection. Surv Ophthalmol 50:463–475. https://doi.org/10.1016/j.survophthal.2005.06.004

    Article  CAS  Google Scholar 

  335. Altmann C, Schmidt MHH (2018) The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci. https://doi.org/10.3390/ijms19010110

    Article  Google Scholar 

  336. Rutar M, Valter K, Natoli R, Provis JM (2014) Synthesis and propagation of complement C3 by microglia/monocytes in the aging retina. PLoS ONE. https://doi.org/10.1371/journal.pone.0093343

    Article  Google Scholar 

  337. Spooren A, Kolmus K, Laureys G et al (2011) Interleukin-6, a mental cytokine. Brain Res Rev 67:157–183. https://doi.org/10.1016/j.brainresrev.2011.01.002

    Article  CAS  Google Scholar 

  338. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8:1254–1266. https://doi.org/10.7150/ijbs.4679

    Article  CAS  Google Scholar 

  339. Tosi GM, Orlandini M, Galvagni F (2018) The controversial role of TGF-β in neovascular age-related macular degeneration pathogenesis. Int J Mol Sci 19:1–16. https://doi.org/10.3390/ijms19113363

    Article  CAS  Google Scholar 

  340. Dobolyi A, Vincze C, Pál G, Lovas G (2012) The neuroprotective functions of transforming growth factor beta proteins. Int J Mol Sci 13:8219–8258. https://doi.org/10.3390/ijms13078219

    Article  CAS  Google Scholar 

  341. Calvo P, Pastor A, De La Cruz R (2018) Vascular endothelial growth factor: an essential neurotrophic factor for motoneurons? Neural Regen Res 13:1181–1182. https://doi.org/10.4103/1673-5374.235024

    Article  CAS  Google Scholar 

  342. Jünemann AGM, Rejdak R, Huchzermeyer C et al (2015) Elevated vitreous body glial fibrillary acidic protein in retinal diseases. Graefe’s Arch Clin Exp Ophthalmol 253:2181–2186. https://doi.org/10.1007/s00417-015-3127-7

    Article  CAS  Google Scholar 

  343. Lee SY, Surbeck JW, Drake M et al (2020) Increased glial fibrillary acid protein and vimentin in vitreous fluid as a biomarker for proliferative vitreoretinopathy. Investig Ophthalmol Vis Sci 61:1–8. https://doi.org/10.1167/IOVS.61.5.22

    Article  Google Scholar 

  344. Eastlake K, Heywood WE, Banerjee P et al (2018) Comparative proteomic analysis of normal and gliotic PVR retina and contribution of Müller glia to this profile. Exp Eye Res 177:197–207. https://doi.org/10.1016/j.exer.2018.08.016

    Article  CAS  Google Scholar 

  345. Nakazawa T, Takeda M, Lewis GP et al (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Investig Ophthalmol Vis Sci 48:2760–2768. https://doi.org/10.1167/iovs.06-1398

    Article  Google Scholar 

  346. Verardo MR, Lewis GP, Takeda M et al (2008) Abnormal reactivity of Müller cells after retinal detachment in mice deficient in GFAP and vimentin. Investig Ophthalmol Vis Sci 49:3659–3665. https://doi.org/10.1167/iovs.07-1474

    Article  Google Scholar 

  347. Haque A, Polcyn R, Matzelle D, Banik NL (2018) New insights into the role of neuron-specific enolase in neuroinflammation, neurodegeneration, and neuroprotection. Brain Sci. https://doi.org/10.3390/brainsci8020033

    Article  Google Scholar 

  348. Gold M, El Khoury J (2015) β-amyloid, microglia, and the inflammasome in Alzheimer’s disease. Semin Immunopathol 37:607–611. https://doi.org/10.1007/s00281-015-0518-0

    Article  CAS  Google Scholar 

  349. Vizin T, Kos J (2015) Gamma-enolase: a well-known tumour marker, with a less-known role in cancer. Radiol Oncol 49:217–226. https://doi.org/10.1515/raon-2015-0035

    Article  CAS  Google Scholar 

  350. Ratnayaka JA, Serpell LC, Lotery AJ (2015) Dementia of the eye: the role of amyloid beta in retinal degeneration. Eye 29:1013–1026. https://doi.org/10.1038/eye.2015.100

    Article  CAS  Google Scholar 

  351. Luibl V, Isas JM, Kayed R et al (2006) Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 116:378–385. https://doi.org/10.1172/JCI25843

    Article  CAS  Google Scholar 

  352. Gupta VBV, Gupta VBV, Chitranshi N et al (2016) One protein, multiple pathologies: multifaceted involvement of amyloid β in neurodegenerative disorders of the brain and retina. Cell Mol Life Sci 73:4279–4297. https://doi.org/10.1007/s00018-016-2295-x

    Article  CAS  Google Scholar 

  353. Zheng L, Kågedal K, Dehvari N et al (2009) Oxidative stress induces macroautophagy of amyloid β-protein and ensuing apoptosis. Free Radic Biol Med 46:422–429. https://doi.org/10.1016/j.freeradbiomed.2008.10.043

    Article  CAS  Google Scholar 

  354. Kannan R, Sreekumar PG, Hinton DR (2012) Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 31:576–604. https://doi.org/10.1016/j.preteyeres.2012.06.001

    Article  CAS  Google Scholar 

  355. Zhou P, Kannan R, Spee C et al (2014) Protection of retina by αB crystallin in sodium iodate induced retinal degeneration. PLoS ONE 9:1–15. https://doi.org/10.1371/journal.pone.0098275

    Article  CAS  Google Scholar 

  356. Böhm MRR, Pfrommer S, Chiwitt C et al (2012) Crystallin-β-b2-overexpressing NPCs support the survival of injured retinal ganglion cells and photoreceptors in rats. Investig Ophthalmol Vis Sci 53:8265–8279. https://doi.org/10.1167/iovs.12-10334

    Article  CAS  Google Scholar 

  357. Kayama M, Nakazawa T, Thanos A et al (2011) Heat shock protein 70 (HSP70) is critical for the photoreceptor stress response after retinal detachment via modulating anti-apoptotic Akt kinase. Am J Pathol 178:1080–1091. https://doi.org/10.1016/j.ajpath.2010.11.072

    Article  CAS  Google Scholar 

  358. Golestaneh N, Chu Y, Xiao Y-Y et al (2018) Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis 8:1–13. https://doi.org/10.1038/cddis.2016.453

    Article  CAS  Google Scholar 

  359. Zhang M, Jiang N, Chu Y et al (2020) Dysregulated metabolic pathways in age-related macular degeneration. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-59244-4

    Article  CAS  Google Scholar 

  360. Yu B, Egbejimi A, Dharmat R et al (2018) Phagocytosed photoreceptor outer segments activate mTORC1 in the retinal pigment epithelium. Sci Signal 11:1–14. https://doi.org/10.1126/scisignal.aag3315

    Article  CAS  Google Scholar 

  361. Zhao C, Yasumura D, Li X et al (2011) mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice. J Clin Invest 121:369–383. https://doi.org/10.1172/JCI44303

    Article  CAS  Google Scholar 

  362. Gale J, Aiello LP, Sebag J (2014) I.E. Diabetic Vitreopathy. In: Vitreous. Springer New York, New York, pp 57–79

  363. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058–a005058. https://doi.org/10.1101/cshperspect.a005058

    Article  Google Scholar 

  364. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  Google Scholar 

  365. Vaughan-Thomas A, Gilbert SJ, Duance VC (2000) Elevated levels of proteolytic enzymes in the aging human vitreous. Investig Ophthalmol Vis Sci 41:3299–3304

    CAS  Google Scholar 

  366. Kowluru RA, Zhong Q, Santos JM (2012) Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert Opin Investig Drugs 21:797–805. https://doi.org/10.1517/13543784.2012.681043

    Article  CAS  Google Scholar 

  367. Symeonidis C, Diza E, Papakonstantinou E et al (2007) Correlation of the extent and duration of rhegmatogenous retinal detachment with the expression of matrix metalloproteinases in the vitreous. Retina 27:1279–1285. https://doi.org/10.1097/IAE.0b013e3180592c00

    Article  Google Scholar 

  368. Symeonidis C, Papakonstantinou E, Souliou E et al (2011) Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Acta Ophthalmol 89:339–345. https://doi.org/10.1111/j.1755-3768.2009.01701.x

    Article  CAS  Google Scholar 

  369. Jin M, Kashiwagi K, Iizuka Y et al (2001) Matrix metalloproteinases in human diabetic and nondiabetic vitreous. Retina 21:28–33. https://doi.org/10.1097/00006982-200102000-00005

    Article  CAS  Google Scholar 

  370. Bishop PN (2015) The role of extracellular matrix in retinal vascular development and preretinal neovascularization. Exp Eye Res 133:30–36. https://doi.org/10.1016/j.exer.2014.10.021

    Article  CAS  Google Scholar 

  371. Singh M, Tyagi SC (2017) Metalloproteinases as mediators of inflammation and the eyes: molecular genetic underpinnings governing ocular pathophysiology. Int J Ophthalmol 10:1308–1318. https://doi.org/10.18240/ijo.2017.08.20

    Article  Google Scholar 

  372. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–529. https://doi.org/10.1172/JCI31487

    Article  CAS  Google Scholar 

  373. Ioachim E, Stefaniotou M, Gorezis S et al (2005) Immunohistochemical study of extracellular matrix components in epiretinal membranes of vitreoproliferative retinopathy and proliferative diabetic retinopathy. Eur J Ophthalmol 15:384–391. https://doi.org/10.1177/112067210501500312

    Article  CAS  Google Scholar 

  374. Hussain AA, Lee Y, Zhang JJ, Marshall J (2011) Disturbed matrix metalloproteinase activity of Bruch’s membrane in age-related macular degeneration. Investig Ophthalmol Vis Sci 52:4459–4466. https://doi.org/10.1167/iovs.10-6678

    Article  CAS  Google Scholar 

  375. Lambert V, Wielockx B, Munaut C et al (2003) MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J 17:2290–2292. https://doi.org/10.1096/fj.03-0113fje

    Article  CAS  Google Scholar 

  376. Matsuo T (1998) TIMP-1 and TIMP-2 levels in vitreous and subretinal fluid. Jpn J Ophthalmol 42:377–380. https://doi.org/10.1016/S0021-5155(98)00038-0

    Article  CAS  Google Scholar 

  377. Rodrigues M, Xin X, Jee K et al (2013) VEGF secreted by hypoxic Muller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes 62:3863–3873. https://doi.org/10.2337/db13-0014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Fátima Millhano Santos acknowledges a doctoral fellowship [SFRH/BD/112526/2015] from the Portuguese Foundation for Science and Technology (FCT). This work was developed within the scope of the CICS-UBI projects UIDB/00709/2020 and UIDP/00709/2020, financed by national funds through the FCT/MCTES. It was also funded by the European Regional Development Fund through the “Programa Operacional Regional do Centro (Centro 2020)—Sistema de Apoio à Investigação Científica e Tecnológica—Programas Integrados de IC&DT”, Centro-01-0145-FEDER-000019-C4-Centro de Competências em Cloud Computing. CNB-CSIC proteomics lab is a member of Proteored, PRB3-ISCIII, supported by grant PT17/0019/0001. CNB-CSIC has been designated Centre of Excellence “Severo Ochoa” and is funded by the Spanish Government through Grant SEV2017-0712. This work was also supported by national funds from FCT in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences-UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB. The authors acknowledge the COMBINE project “CombinatiOn aptaMer-drug Based therapeutics for ocular neovascular dIsease: wheN two are bettEr than one”, funded by BInov 2021, Innovation Grant of the Southern Regional Section and Autonomous Regions (SRSRA) of Portuguese Pharmacists Order.

Funding

Fundação para a Ciência e a Tecnologia (Grant no. SFRH/BD/112526/2015, UIDB/00709/2020, UIDP/04378/2020, UIDP/00709/2020, UIDB/04378/2020); European Regional Development Fund (Grant no. Centro-01-0145-FEDER-000019-C4); Fondo Europeo de Desarrollo Regional (Grant no. PT17/0019/0001); Spanish Government (Grant no. SEV2017-0712); Portuguese Pharmacists Order (Grant no. BInov 2021)

Author information

Authors and Affiliations

Authors

Contributions

FMS: conceptualization, formal analysis, writing—original draft, and writing—review and editing. SC: conceptualization; writing—review and editing. JM: conceptualization; writing—review and editing. JPCS: conceptualization; writing—review and editing. AP: supervision; writing—review and editing. CTT: supervision, conceptualization, and writing—review and editing. LAPP: supervision, conceptualization, and writing—review and editing.

Corresponding authors

Correspondence to Fátima Milhano dos Santos or Luís António Paulino Passarinha.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 277 KB)

Supplementary file2 (XLSX 390 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, F.M., Ciordia, S., Mesquita, J. et al. Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases. Cell. Mol. Life Sci. 80, 22 (2023). https://doi.org/10.1007/s00018-022-04670-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04670-y

Keywords

Navigation