Skip to main content

Advertisement

Log in

Global phosphoproteomic analysis identified key kinases regulating male meiosis in mouse

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Meiosis, a highly conserved process in organisms from fungi to mammals, is subjected to protein phosphorylation regulation. Due to the low abundance of phosphorylation, there is a lack of systemic characterization of phosphorylation regulation of meiosis in mammals. Using the phosphoproteomic approach, we profiled large-scale phosphoproteome of purified primary spermatocytes undergoing meiosis I, and identified 14,660 phosphorylation sites in 4419 phosphoproteins. Kinase-substrate phosphorylation network analysis followed by in vitro meiosis study showed that CDK9 was essential for meiosis progression to metaphase I and had enriched substrate phosphorylation sites in proteins involved in meiotic cell cycle. In addition, histones and epigenetic factors were found to be widely phosphorylated. Among those, HASPIN was found to be essential for male fertility. Haspin knockout led to misalignment of chromosomes, apoptosis of metaphase spermatocytes and a decreased number of sperm by deregulation of H3T3ph, chromosomal passenger complex (CPC) and spindle assembly checkpoint (SAC). The complicated protein phosphorylation and its important regulatory functions in meiosis indicated that in-depth studies of phosphorylation-mediated signaling could help us elucidate the mechanisms of meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX [66] partner repository with the dataset identifier PXD032089 (password: rp45).

Abbreviations

CDK:

Cyclin-dependent kinase

HASPIN:

Haploid germ cell-specific nuclear protein

H3T3:

Histone H3 threonine 3

CPC:

Chromosomal passenger complex

SAC:

Spindle assembly checkpoint

PP2A:

Serine-threonine protein phosphatase 2A

H2AX:

H2A Histone family, member X

SYCP3:

Synaptonemal complex protein 3

Ti4+-IMAC:

Titanium (IV) ion-immobilized metal affinity chromatography

LC–MS:

Liquid chromatography-mass spectrometry

REC8:

Meiotic recombination protein REC8 homolog

STAG3:

Cohesin subunit SA-3

SMC3:

Structural maintenance of chromosomes protein 3

SMC1:

Structural maintenance of chromosomes protein 1

KSPN:

Kinase-substrate phosphorylation network

iGPS:

GPS algorithm with the interaction filter

SRPK1:

Serine/arginine-rich protein-specific kinase 1

OA:

Okadaic acid

H3S10:

Histone H3 serine 10

H1FNT:

Testis-specific H1 histone

H1T:

Testicular H1 histone

HILS1:

Putative spermatid-specific linker histone H1-like protein

PcG:

Polycomb group

TUNEL:

TdT-mediated dUTP nick end labeling

Aurora B:

Serine/threonine-protein kinase aurora B

INCENP:

Inner centromere protein

BUBR1:

Bub1-related kinase

CENP-E:

Centromere-associated protein E

MCAK:

Mitotic centromere-associated kinesin

PTM:

Post-translational modification

DOT1L:

DOT1 like histone lysine methyltransferase

EZH1:

Enhancer of zeste homolog 1

VRK1:

Serine/threonine-protein kinase VRK1

KAT6B:

Histone acetyltransferase KAT6B

KDM7C:

Histone-lysine demethylase 7C

ARID5B:

AT-rich interactive domain-containing protein 5B

References

  1. Marston AL, Amon A (2004) Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol 5:983–997

    Article  CAS  PubMed  Google Scholar 

  2. Zickler D, Kleckner N (2015) Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol 7:a016626

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu D, Liao C, Wolgemuth DJ (2000) A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Dev Biol 224:388–400

    Article  CAS  PubMed  Google Scholar 

  4. Guo FZ, Zhang LS, Wei JL, Ren LH, Zhang J, Jing L et al (2016) Endosulfan inhibiting the meiosis process via depressing expressions of regulatory factors and causing cell cycle arrest in spermatogenic cells. Environ Sci Pollut Res Int 23:20506–20516

    Article  CAS  PubMed  Google Scholar 

  5. Du M, Yuan L, Zhang Z, Zhang C, Zhu M, Zhang Z et al (2021) PPP2R1B is modulated by ubiquitination and is essential for spermatogenesis. FASEB J 35:e21564

    Article  CAS  PubMed  Google Scholar 

  6. Chauhan S, Diril MK, Lee JH, Bisteau X, Manoharan V, Adhikari D et al (2016) Cdk2 catalytic activity is essential for meiotic cell division in vivo. Biochem J 473:2783–2798

    Article  CAS  PubMed  Google Scholar 

  7. Fan Y, Cheng Y, Li Y, Chen B, Wang Z, Wei T et al (2020) Phosphoproteomic analysis of neonatal regenerative myocardium revealed important roles of checkpoint kinase 1 via activating mammalian target of rapamycin C1/ribosomal protein S6 kinase b-1 pathway. Circulation 141:1554–1569

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J et al (2020) Characterization of metabolic patterns in mouse oocytes during meiotic maturation. Mol Cell 80:525–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qi L, Liu Z, Wang J, Cui Y, Guo Y, Zhou T et al (2014) Systematic analysis of the phosphoproteome and kinase-substrate networks in the mouse testis. Mol Cell Proteomics 13:3626–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang M, Guo Y, Wang M, Zhou T, Xue Y, Du G et al (2017) The glial cell-derived neurotrophic factor (GDNF)-responsive phosphoprotein landscape identifies raptor phosphorylation required for spermatogonial progenitor cell proliferation. Mol Cell Proteomics 16:982–997

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li Y, Cheng Y, Zhu T, Zhang H, Li W, Guo Y et al (2019) The protein phosphorylation landscape of mouse spermatids during spermiogenesis. Proteomics 19:e1900055

    Article  PubMed  Google Scholar 

  12. Villen J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3:1630–1638

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hornbeck PV, Kornhauser JM, Latham V, Murray B, Nandhikonda V, Nord A et al (2019) 15 years of PhosphoSitePlus(R): integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res 47:D433–D441

    Article  CAS  PubMed  Google Scholar 

  14. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reyes C, Serrurier C, Gauthier T, Gachet Y, Tournier S (2015) Aurora B prevents chromosome arm separation defects by promoting telomere dispersion and disjunction. J Cell Biol 208:713–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G et al (2012) Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics 11:1070–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang L, Liu W, Zhao W, Song G, Wang G, Wang X et al (2014) Phosphorylation of CDK2 on threonine 160 influences silencing of sex chromosome during male meiosis. Biol Reprod 90:138

    Article  PubMed  Google Scholar 

  18. Willette RN, Eybye ME, Olzinski AR, Behm DJ, Aiyar N, Maniscalco K et al (2009) Differential effects of p38 mitogen-activated protein kinase and cyclooxygenase 2 inhibitors in a model of cardiovascular disease. J Pharmacol Exp Ther 330:964–970

    Article  CAS  PubMed  Google Scholar 

  19. Zhang XM, Zhang L, Wang G, Niu W, He Z, Ding L et al (2015) Suppression of mitochondrial fission in experimental cerebral ischemia: the potential neuroprotective target of p38 MAPK inhibition. Neurochem Int 90:1–8

    Article  PubMed  Google Scholar 

  20. Pfister, KB et al “Heteroaryl compounds as kinase inhibitors.” US, US 2012/0157433 A1

  21. Fukuhara T, Hosoya T, Shimizu S, Sumi K, Oshiro T, Yoshinaka Y et al (2006) Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc Natl Acad Sci USA 103:11329–11333

    Article  PubMed  PubMed Central  Google Scholar 

  22. Di Agostino S, Botti F, Di Carlo A, Sette C, Geremia R (2004) Meiotic progression of isolated mouse spermatocytes under simulated microgravity. Reproduction 128:25–32

    Article  PubMed  Google Scholar 

  23. Jordan PW, Karppinen J, Handel MA (2012) Polo-like kinase is required for synaptonemal complex disassembly and phosphorylation in mouse spermatocytes. J Cell Sci 125:5061–5072

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang H, Gao Q, Zheng W, Yin S, Wang L, Zhong L et al (2018) MOF influences meiotic expansion of H2AX phosphorylation and spermatogenesis in mice. PLoS Genet 14:e1007300

    Article  PubMed  PubMed Central  Google Scholar 

  25. Medvedeva YA, Lennartsson A, Ehsani R, Kulakovskiy IV, Vorontsov IE, Panahandeh P et al (2015) EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database 2015:v67

    Article  Google Scholar 

  26. Guo X, Zhang P, Qi Y, Chen W, Chen X, Zhou Z et al (2011) Proteomic analysis of male 4C germ cell proteins involved in mouse meiosis. Proteomics 11:298–308

    Article  CAS  PubMed  Google Scholar 

  27. Gohbara A, Katagiri K, Sato T, Kubota Y, Kagechika H, Araki Y et al (2010) In vitro murine spermatogenesis in an organ culture system. Biol Reprod 83:261–267

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T et al (2018) Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res 28:879–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A (1988) The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335:88–89

    Article  CAS  PubMed  Google Scholar 

  30. Hindriksen S, Lens S, Hadders MA (2017) The ins and outs of aurora B inner centromere localization. Front Cell Dev Biol 5:112

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xie J, Wooten M, Tran V, Chen BC, Pozmanter C, Simbolon C et al (2015) Histone H3 threonine phosphorylation regulates asymmetric histone inheritance in the drosophila male germline. Cell 163:920–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parra MT, Viera A, Gomez R, Page J, Carmena M, Earnshaw WC et al (2003) Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. J Cell Sci 116:961–974

    Article  CAS  PubMed  Google Scholar 

  33. Parra MT, Gomez R, Viera A, Llano E, Pendas AM, Rufas JS et al (2009) Sequential assembly of centromeric proteins in male mouse meiosis. PLoS Genet 5:e1000417

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kimmins S, Crosio C, Kotaja N, Hirayama J, Monaco L, Hoog C et al (2007) Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis. Mol Endocrinol 21:726–739

    Article  CAS  PubMed  Google Scholar 

  35. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andrews PD, Ovechkina Y, Morrice N, Wagenbach M, Duncan K, Wordeman L et al (2004) Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6:253–268

    Article  CAS  PubMed  Google Scholar 

  37. Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S et al (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488:116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R et al (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35:25–31

    Article  CAS  PubMed  Google Scholar 

  39. Satyanarayana A, Berthet C, Lopez-Molina J, Coppola V, Tessarollo L, Kaldis P (2008) Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development 135:3389–3400

    Article  CAS  PubMed  Google Scholar 

  40. Oqani RK, Lin T, Lee JE, Choi KM, Shin HY, Jin DI (2016) P-TEFb Kinase activity is essential for global transcription, resumption of meiosis and embryonic genome activation in pig. PLoS ONE 11:e152254

    Article  Google Scholar 

  41. Wang H, Jo YJ, Sun TY, Namgoong S, Cui XS, Oh JS et al (2016) Inhibition of CDK7 bypasses spindle assembly checkpoint via premature cyclin B degradation during oocyte meiosis. Biochim Biophys Acta 1863:2993–3000

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Zhang HY, Wang F, Sun QY, Qian WP (2021) The Cyclin B2/CDK1 complex conservatively inhibits separase activity in oocyte meiosis II. Front Cell Dev Biol 9:648053

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lowndes NF, Toh GW (2005) DNA repair: the importance of phosphorylating histone H2AX. Curr Biol 15:R99–R102

    Article  CAS  PubMed  Google Scholar 

  44. Kim S, Kim NH, Park JE, Hwang JW, Myung N, Hwang KT et al (2020) PRMT6-mediated H3R2me2a guides Aurora B to chromosome arms for proper chromosome segregation. Nat Commun 11:612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT et al (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306–310

    Article  CAS  PubMed  Google Scholar 

  46. Baba A, Ohtake F, Okuno Y, Yokota K, Okada M, Imai Y et al (2011) PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat Cell Biol 13:668–675

    Article  PubMed  Google Scholar 

  47. Dai J, Sultan S, Taylor SS, Higgins JM (2005) The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19:472–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soupsana K, Karanika E, Kiosse F, Christogianni A, Sfikas Y, Topalis P et al (2021) Distinct roles of haspin in stem cell division and male gametogenesis. Sci Rep 11:19901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berenguer I, López-Jiménez P, Mena I, et al (2021) Haspin participates in Aurora phosphorylation at centromeres and contributes to chromosome congression in male mouse meiosis. Cold Spring Harb Lab

  50. Lampson MA, Renduchitala K, Khodjakov A, Kapoor TM (2004) Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6:232–237

    Article  CAS  PubMed  Google Scholar 

  51. Petersen J, Hagan IM (2003) S. pombe aurora kinase/survivin is required for chromosome condensation and the spindle checkpoint attachment response. Curr Biol 13:590–597

    Article  CAS  PubMed  Google Scholar 

  52. Ritter A, Sanhaji M, Steinhauser K, Roth S, Louwen F, Yuan J (2015) The activity regulation of the mitotic centromere-associated kinesin by Polo-like kinase 1. Oncotarget 6:6641–6655

    Article  PubMed  Google Scholar 

  53. Zhang Y, Guo R, Cui Y, Zhu Z, Zhang Y, Wu H et al (2017) An essential role for PNLDC1 in piRNA 3′ end trimming and male fertility in mice. Cell Res 27:1392–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bellve AR (1993) Purification, culture, and fractionation of spermatogenic cells. Methods Enzymol 225:84–113

    Article  CAS  PubMed  Google Scholar 

  55. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  CAS  PubMed  Google Scholar 

  56. UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Article  Google Scholar 

  57. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2:100141

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S et al (2012) A travel guide to cytoscape plugins. Nat Methods 9:1069–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thissen D, Steinberg L, Kuang D (2002) Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. J. Educ Behav Stat 27:77–83

    Article  Google Scholar 

  60. Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE, Anagnostopoulos A et al (2019) Mouse genome database (MGD) 2019. Nucleic Acids Res 47:D801–D806

    Article  CAS  PubMed  Google Scholar 

  61. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S et al (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605–D612

    Article  CAS  PubMed  Google Scholar 

  62. Newby LK, Marber MS, Melloni C, Sarov-Blat L, Aberle LH, Aylward PE et al (2014) Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet 384:1187–1195

    Article  CAS  PubMed  Google Scholar 

  63. Krulikas LJ, McDonald IM, Lee B, Okumu DO, East MP, Gilbert T et al (2018) Application of integrated drug screening/kinome analysis to identify inhibitors of gemcitabine-resistant pancreatic cancer cell growth. SLAS Discov 23:850–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu F, Li W, Zhou X, Chen X, Zheng M, Cui Y et al (2021) PRSS55 plays an important role in the structural differentiation and energy metabolism of sperm and is required for male fertility in mice. J Cell Mol Med 25:2040–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Qi M, Sun H, Guo Y, Zhou Y, Gu X, Jin J et al (2022) m(6) A reader protein YTHDF2 regulates spermatogenesis by timely clearance of phase-specific transcripts. Cell Prolif 55:e13164

    Article  CAS  PubMed  Google Scholar 

  66. Ma J, Chen T, Wu S, Yang C, Bai M, Shu K et al (2019) iProX: an integrated proteome resource. Nucleic Acids Res 47:D1211–D1217

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Key R&D Program of China (2021YFC2700200), the Chinese National Natural Science Foundation (Grants Nos. 32071133, 82001611, 81971439), and the Fok Ying Tung Education Foundation (Grant No. 161037).

Author information

Authors and Affiliations

Authors

Contributions

XG, CS and YL conceived and designed the study. HL, HC, XZ, YQ, YW and LY performed most of the experiments. XZ and YG performed mass spectrometry experiments. BW conducted all of the mass spectrometry data analysis. YC constructed mouse models. JR, YZ, TZ, YC and HZ, analyzed the data. YL, CS and XG supervised the project. HL, YL, CS and XG wrote the manuscript, which was reviewed by all authors.

Corresponding authors

Correspondence to Yan Li, Chenghao Situ or Xuejiang Guo.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval

Animal experiments were performed in compliance with ethical regulations of Institutional Animal Care and Use Committee (IACUC) of Nanjing Medical University (No: IACUC-1707017).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, H., Zhang, X. et al. Global phosphoproteomic analysis identified key kinases regulating male meiosis in mouse. Cell. Mol. Life Sci. 79, 467 (2022). https://doi.org/10.1007/s00018-022-04507-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04507-8

Keywords

Navigation