Clinical phenotype of a patient carrying the homozygous P330L substitution in the DDC gene
A currently 2.5-year-old boy from healthy consanguineous parents, with uneventful pre- and perinatal period and family history was born on time with normal body weight, length and head circumference, and received 10 points on Apgar scale. Since infancy he was unable to suck, and recurrent vomiting with excessive salivation were observed. Since the age of 8 months, he suffered from episodes of anxiety, crying and increased sweating. Since the second year, a generalized weakness had appeared. On pyridoxine 50 mg/d and then 150 mg/d, the patient was quite stable. But at the age of 2 years, he suffered from SARS-CoV2 infection, and oculogyric crises appeared. Folinate was introduced with the initial clinical improvement—he became more active and stronger, with better sleep. Actually, he suffers from marked hypotonia and psychomotor development retardation, but mainly in gross motor skills. Further reduction of the patient’s overall activity and muscle tone was observed in the end of the day with evident improvement after sleeping. Additional analyses of MRI and EEG showed mild, non-specific abnormalities.
Diagnostic laboratory tests of CSF, urine and plasma of the patient
The CSF biogenic amine metabolite analysis showed reduced concentrations of homovanillic acid (HVA) 133 nmol/L (236–645 nmol/L) and 5-OH-indolacetic acid (5-HIAA) 10 nmol/L (97–367 nmol/L), and an increased concentration of 3-ortho methyl dopa (3-OMD) of 1029 nmol/L (0–50 nmol/L) and L-5HTP 133 nmol/L (0–25 nmol/L). The CSF 5-methyltetrahydrofolate (5-HTF) concentration was normal at 200 nmol/L (78–216 nmol/L) before folinate treatment. Curiously, HVA is relatively high. Interestingly, even if decreased, the HVA level is relatively high with respect to the other measured markers. The urine metabolites of dopamine precursors VLA and AVA were strongly increased in urine organic acid profile; this metabolite pattern is fully characteristic of an AADC deficiency.
The AADC activity in the plasma using l-Dopa as a substrate was 1.0 mU/L (reference range is 16–99 mU/L) and using L-5HTP it was 0.06 mU/L (reference range is 1.0–7.1 mU/L). Thus, AADC enzymatic activity was severely impaired for both substrates.
Genetic results
The proband’s WES analysis revealed the presence of DDC gene variant NM_001082971.2:c.989C > T in exon 10 (p.Pro330Leu) in 74 of 77 reads, indicating its homozygosity, which was further confirmed by Sanger sequencing (Fig. S1A). Biparental origin of the variant was confirmed by Sanger sequencing of the parental DNA (Fig. S1B). The variant was not reported previously according to GnomAD, ClinVar and HGMD databases. In the ACMG classification, it was initially assigned as likely pathogenic, which later, after the completion of in vitro studies, was changed into pathogenic.
Sequence comparison, modeling and frustration index of the CL for AADC reveal that Pro330 concurs to the functional flexibility of the CL
The sequence alignment of the CL region of human Group II α-decarboxylases (Fig. S2) shows that Pro330 is conserved in AADC and HDC or substituted by an alanine residue in CSAD and in the two GAD isoforms, highlighting that a small aliphatic residue is requested in that position. A model of the loop of AADC was already built from the coordinates of the solved pig enzyme modeling the solved loop region of the homologous human HDC [14]. The active site organization with the relevant residues playing a role in the PLP binding cleft and substrate aromatic side chain positioning have been already identified [2]. The CL is presumed to be highly flexible, and a Pro330 residue could serve as a hinge and thus dictate the freedom degrees of the CL to position the catalytic Tyr332 [12].
Starting from the pig AADC structure and HDC loop region, we obtained a few possible CL conformations where Pro330 approaches the active site of the opposite monomer, as already suggested [6, 12, 14]. Although this loop seems to adopt the closed conformation in the highest-scored model, also open conformations are observed in some others. In general, all models based on native holo pig AADC (PDB 1js6) are in the open conformation and those based on HDC in complex with the ligand histidine methyl ester (PDB 4e1o) are in closed conformation, while those based on cDopa-bound holo pig AADC (PDB 1js3) are either in open or in closed form. These two alternative models, the quality of which was assessed as “good”, are shown in Fig. 1A. In particular, Pro330 is placed inside the active site of the opposite subunit when the CL is in closed conformation, while it is solvent exposed when the CL is open. The thermodynamic effect of the replacement of Pro330 with Leu was assessed for the two highest-scored models, one with both loops in the open conformation and the other with both in the closed form. In both CL conformational states, the P330L replacement was found unfavorable. However, the closed state is distorted much more (2.6 ± 0.2 kcal/mol) than the open one (0.6 ± 0.1 kcal/mol). Thus, upon P330L replacement, the open state of the protein is less disturbed. The difference of about 2.0 ± 0.2 kcal/mol corresponds roughly to a 30-fold shift of the conformational equilibrium toward the CL open state.
Following this view, the P330L replacement is expected to affect the positioning of the loop.
A deep inspection reveals that Pro330 represents a conformational constraint that allows the CL to bend and properly position Tyr332 bridging it to both His192’ and Ser193’ (the prime denotes residues of the neighboring subunit) (Fig. 1B). The bending is reinforced by a number of H-bonds concurring in holding in place the loop: Arg347 is involved in an H-bonding network with Asp345 and His335. On the opposite side, the CL is maintained into the active site groove by interactions with a structural motif (a beta sheet, residues 436–441) belonging to the CTD distant 4–5 Å from the flexible stretch, mainly by Thr331 reaching His439’. It is reasonable to propose that the substitution of Pro330 with Leu would lead to a loosening of the conformational role played by Pro and although the chemical nature of the residue is not altered, its conformational freedom could be affected, with possible consequences on Tyr332 proper positioning. To gain some insight into the setting/twisting of the unstructured CL into the opposite active site, we computed the frustration index of residue in the Pro330 and Leu330 AADC proteins. The frustration notion, arising from statistical physics and applied to biomolecules [32], is suitable to evaluate the conformational “freedom” of highly flexible regions [33]. The single residue frustration index of Pro330 is below -1 only for one monomer in the closed CL state (Table 1) and in the other cases it is neutrally frustrated. A substituted Leu in position 330 increases the frustration index, thus increasing the energetically favorable interactions for both the subunits in the open and closed CL state. This could mean that the mutated residue has no gross energetic disadvantage in itself. Then, we calculated the mutational and conformational frustration index of the contact pairs involving the residue at position 330 and its related network (Fig. 1C and D). The total number of highly frustrated interactions increases in mutational frustration when Leu is present at the place of Pro330 in the closed CL state. In configurational frustration, the number of highly frustrated interactions between WT and P330L variant is equal when the CL is in the closed state and decreases in the P330L with respect to the WT by one unfavorable interaction in the CL open state. Thus, the Pro-to-Leu substitution leads to a less frustrated open CL.
Table 1 Single-residue, mutational and configurational frustration level index of Pro330 (in the WT AADC) and Leu330 (in the P330L AADC variant) in the open and closed conformation of the CL for the two monomers of AADC Overall, the in silico analysis indicates the importance of Pro330 in keeping the CL well fitted to orient the catalytic residue Tyr332 properly.
Interestingly, the dimer hydrodynamic radius of apoWT is greater than those of the holoWT and its cDopa-bound form (Fig. 2 and Table 2). A slight difference is observed comparing holoAADC in the absence or presence of cDopa. It is not unprecedented that a small difference in compactness could give rise to small changes in this parameter, as in HDC whose oxidized more compact form is slightly smaller than the reduced one [34] due to the presence of only one additional disulfide bridge. Meanwhile, apoP330L radius is comparable to the apoWT one and does not evidence differences in apo-, holo-, and cDopa-bound state. This reinforces the fact that P330L variant is insensitive to possible modifications of compactness induced by coenzyme or ligand binding.
Table 2 Hydrodynamic radius of apo, holo and cDopa-bound WT and P330L AADC in 100 mM potassium phosphate, pH 7.4 The structural features of P330L AADC are not affected by amino acid substitution but CL flexibility is compromised
The far UV CD spectra of apo and holo P330L show a similar profile and secondary structure content and are not different from the corresponding ones of the WT suggesting that the overall fold is not affected by the amino acid substitution (Fig. 3A). This is also mirrored by similar values of thermostability at 222 nm (Table 3). Moreover, intrinsic fluorescence (Fig. 3B) and near UV (Fig. 3C) spectra of P330L of both holo and apo enzymes are well superimposable to those of the WT, suggesting that the amino acid alteration on the highly mobile CL element has not determined changes in terms of tertiary structure in the protein. Notably, the visible CD (Fig. 3C) and absorbance spectra (inset Fig. 3C) of P330L AADC present the same signals associated with the tautomeric equilibrium of PLP bound to the active site Lys303 in forms of enolimine and ketoenamine tautomers as the WT [35], suggesting that the PLP binding mode is not altered by substitution. However, while the fluorescence emission of the ketoenamine tautomer of P330L is identical to that of the WT (λmax = 513 nm), the emission signal of the P330L enolimine fluorophore displays a smaller quantum yield (about 70%) with an identical emission maximum (λem = 387 nm) concomitant with a small increased contribution of the 513 nm emission signal due to energy transfer to the ketoenamine tautomer [36], revealing that the enolimine emission is somewhat quenched and the 3’-OH proton transfer to the aldimine nitrogen is more favored in P330L AADC than in the WT enzyme. This is indicative of a subtle dissimilar microenvironment in the variant such as a change in the PLP microenvironment [37]. The attribution of the 335 nm species to the enolimine tautomer is corroborated by the fact that (i) the apoenzyme does not display fluorescence signal when excited at 335 nm (data not shown) and (ii) the excitation spectra of the species that are emitted at about 520 nm and 390 nm are due to a component whose excitation spectrum is centered at 347 nm for WT and 343 nm for P330L (Fig. S4) that could be more properly related to a sp2-carbon, since a possible sp3 carbon of a carbinoamine or a gem-diamine would have contributed at more blue-shifted wavelengths [38]. In addition, these spectra show slight differences in wavelength maxima of P330L with regard to the WT, still reinforcing the idea of altered PLP orientation.
Table 3 Thermostability at 222 nm of holo-, apo- and cDopa-bound WT and P330L AADC in 100 mM potassium phosphate buffer, pH 7.4 However, this has no consequence on the PLP equilibrium dissociation constant that results in 123 ± 19 nM, a value almost identical to that of the WT (101 ± 10 nM) measured under the same experimental conditions.
Given the proximity of the substituted amino acid to the tryptic site (Lys334-His335 bond) of the WT enzyme [9], we determined the trypsin accessibility to P330L with respect to the WT in the unliganded form or complexed with DME, the esterified form of l-Dopa unable to undergo decarboxylation [14]. While both unliganded WT and P330L show a rate of proteolysis of about 0.082 min−1 under the same experimental conditions, DME-P330L proteolysis slightly slows down (0.036 min−1). WT-DME, instead, shows a marked protection from digestion (Fig. 4A and B), thus suggesting that a Leu residue in that position does not dramatically alter CL exposure in the absence of a ligand, but eventually exerts its effect on CL flexibility, possibly hindering loop closure upon the active site. In this sense, limited proteolysis data suggest that the task of Pro330 is to concur in governing CL flexibility.
The kinetic competence of P330L is highly compromised
When P330L AADC variant was incubated with both substrates L-Dopa and L-5HTP (for details see under “Materials and methods”), a drop in the catalytic activity is observed. Table 4 shows the kinetic parameters and evidences how the highly affected activity versus l-Dopa (0.15% in terms of catalytic efficiency) seems to be driven mainly by a decrease in kcat (0.5% that of the WT), while Km increases by 3.5-fold that of the WT. A similar behavior is seen with L-5HTP with kcat resulting in 1.6% that of the WT, while Km is increased 3.2-fold leading to a catalytic efficiency of 0.5% that of the WT. Thus, the P330L substitution compromises catalysis rather than overall protein structural features.
Table 4 Kinetic parameters of WT and P330L AADC in 100 mM potassium phosphate buffer, pH 7.4 at 25 °C To unravel the molecular reason for the loss of catalytic competence, we carried out a spectral analysis of coenzyme modification upon substrate binding. The addition of 2 mM l-Dopa to 10 μM P330L AADC in potassium phosphate buffer, pH 7.4 at 25 °C, determines an immediate increase at 420 nm that slowly decreases with time concomitant with an increase at about 328 nm (Fig. 5A). Interestingly, the WT at the same pH value shows different spectral signals with a 420 nm band converting into a 390 nm absorbing species attributed to a more reactive external aldimine form [39, 40] (see below). HPLC analysis of the reaction mixture reveals that about 20% of the coenzyme decreases (Fig. 5B), being converted into 15% of pyridoxamine 5’-phosphate (PMP) (arising from the ability of AADC to catalyze multiple side reactions in addition to the main decarboxylation one [41,42,43,44], as evidenced in other AADC variants [20]) and 5% of the Pictet–Spengler adduct, a cyclic compound formed by spontaneous non-enzymatic nucleophilic addition of the aromatic ring of the aromatic substrate to the nitrogen atom of the external aldimine complex [9]. The formation of this compound depletes the original PLP content and leads to enzyme inactivation. Its recovery is a hallmark of coenzyme exposure to the solvent and has been already detected in several AADC deficiency variants [19, 20], especially when compromised catalysis is due to structural disassembling. This is not the case for P330L that, as other so-called catalytic variants such as L353P [20], forms very low amounts of cyclic compound not responsible for the measured drop of activity.
The addition of 2 mM l-5HTP to 10 μM P330L AADC in potassium phosphate buffer, pH 7.4, at 25 °C leads to a slow increase at 420 nm that continues to increase with time (Fig. 5C). The HPLC analysis shows that PLP slowly decreases, being converted into PLP-L-5HTP cyclic adduct, and serotonin linearly increases (Fig. 5D).
Altogether, the marked decrease in catalytic efficiency of P330L is not driven by a gross protein structural change or by an opening of the active site, since the cyclic adduct formation (signature of PLP exposure to the solvent) is kept at negligible levels.
The substitution of Pro330 with Leu affects the conformation of the internal aldimine that triggers a dropped kinetic capability of the external aldimine
Up to now, the only clue indicating an alteration at the active site microenvironment triggered by the Pro-to-Leu substitution is the anomalous behavior of the enolimine tautomer of the internal aldimine and the absence of the external aldimine with L-Dopa absorbing at 390 nm typical of the WT and associated with more efficient catalysis [39, 40]. Firstly, we determined the pH dependency of the internal aldimine absorbance bands to investigate the tautomeric equilibrium. The equilibrium between the ketoenamine and the enolimine tautomers of WT AADC has been already determined and attributed to a residue with pKa of about 7.3 controlling it [40]. Interestingly, the equilibrium distribution of tautomers of the internal aldimine of P330L as a function of pH shows that the ketoenamine absorbance band displays a pKa of 8.2 ± 0.2, while the enolimine absorbance signal seems to be mostly insensitive of pH (Fig. 6A and inset). If the fluorescence emission of P330L is evaluated upon excitation at 420 nm as a function of pH, the emission of the ketoenamine at 513 nm shows a pH dependence with a measured pKa (8.5 ± 0.2) (Fig. 6B and inset) that overlaps with the value obtained in absorbance. Curiously, if excitation is set at 335 nm, the 387 nm emission increases with pH with a pKa of 8.3 ± 0.1 concomitantly with the decrease of the 513 nm emission band (Fig. 6B and inset). Since fluorescence probes the excited states while absorbance the ground states, it should be inferred that P330L substitution leads to a proton shift competition between the 3’-OH of the excited state of the enolimine and the aldimine nitrogen of the ketoenamine excited state under the control of an acid/base group that influences the tautomeric equilibrium. A role for such a catalytic acid–base chemistry could be advanced for Thr246 placed near the 3’-oxygen of PLP [6] and in contact with His192 and Ser193 which, in turn, are strictly connected to the CL. Thus, the different pKa value of the residue/s controlling the internal aldimine tautomeric equilibrium in P330L with respect to the WT could be a consequence of CL misplacing and should be mirrored by some alteration in the catalytic external aldimine intermediate when the substrates bind the coenzyme and start the catalytic process.
Interestingly, the P330L variant in the presence of L-Dopa forms a 420 nm absorbing band (not converting into a 390 nm species over the entire pH range as, instead, the WT accumulates [39, 40]) that decreases with time concomitant with an increase at 328 nm (Fig. S3). By loading onto HPLC the reaction mixtures at pH 6.5, 7.5 and 8.5, it can be observed that dopamine is linearly formed during 1 h with concomitant small conversion of the PLP cofactor into PMP and Pictet–Spengler adduct that globally deplete less than 20% of the total coenzyme (Fig. S3). Thus, these coenzymatic species are not responsible for low activity of P330L.
The anomalous catalytic behavior of P330L AADC is also confirmed by the dependence of the catalytic parameters on pH. Both log kcat and log kcat/Km plot increase as a function of pH with a pKa of 6.9 ± 0.1 and 7.0 ± 0.2, respectively (Fig. 6C). Since this pKa value is present in both plots, it can be assigned to a residue (probably the same) essential for catalysis. Interestingly, this pH dependence is rather different from that exhibited by the WT enzyme where the acidic pKa value on the log kcat and log kcat/Km plots (pKa around 6.3) was attributed to the 4-N’-deprotonation of the external aldimine leading to the 390 nm species [40]. Since in P330L the 390 nm external aldimine does not form, it is reasonable to attribute the pKa of 7 to a residue of the enzyme implicated in catalysis. The easiest attribution is His192 implicated in deprotonating the catalytic Tyr332, as suggested [35, 44]. The same could be proposed also to the pKa of about 6.3 of the WT AADC. The increase of 1 pH unit mirrors that of the internal aldimine and should be a direct consequence of alteration of polarity of the microenvironment/catalytic intermediate positioning in the P330L variant.
The absence of the 390 nm absorbing species that was attributed to an enolimine species [40, 44] more reactive than the 420 nm ketoenamine tautomer (that builds up, but is rapidly converted into the 390 nm species at physiological pH [39] and is the only form present at acidic pH for the WT [40]) led us to consider if the binding mode of external aldimine is somehow altered in the P330L variant.
The addition to WT AADC of 2 mM DME determines the appearance of two bands: one absorbing at 398 nm, indicative of the external aldimine intermediate, and the other at 328 nm [45]. While the 398 nm species remains unchanged with time, the 328 nm form increases (Fig. 7A). The spectral modifications could be attributed both to oxidation of the aromatic substrate and to a small amount of the Pictet–Spengler adduct produced, as the HPLC determination reveals (Fig. 7C). When 2 mM DME is added to 10 μM P330L along with a band absorbing at 393 nm and another at 325 nm, another band at 500 nm appears attributable to a quinonoid species as for other variants belonging to the same loop 3 region [14] (Fig. 7B). The HPLC analysis of the reaction mixture evidences a slight propensity for P330L to produce the irreversible cyclic adduct, which is almost absent in the WT (Fig. 7C). This behavior is reminiscent of that of the nicked AADC [9], a species cleaved by trypsin (as reported above) between residues Lys334–His335 on the CL, unable to perform decarboxylation but able to bind and perform other reactions on some aromatic amino acids and or amines or derivatives [44]. In particular, nicked AADC is able to bind DME leading to the formation of a quinonoid species at 500 nm [45]. This was interpreted as a mispositioning of the external aldimine. Here, we can add that each time the CL is somehow displaced by an alteration of the H-bonding network, this leads to catalytic inability enhancing the inherent propensity of PLP to react non-enzymatically with its aromatic substrates/analogs.