Blumenfeld H (2005) Cellular and network mechanisms of spike-wave seizures. Epilepsia 46(Suppl 9):21–33. https://doi.org/10.1111/j.1528-1167.2005.00311.x
CAS
Article
PubMed
Google Scholar
Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE et al (2017) Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):522–530. https://doi.org/10.1111/epi.13670
Article
PubMed
Google Scholar
Panayiotopoulos CP (2001) Treatment of typical absence seizures and related epileptic syndromes. Paediatr Drugs 3(5):379–403. https://doi.org/10.2165/00128072-200103050-00006
CAS
Article
Google Scholar
Crunelli V, Leresche N (2002) Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 3(5):371–382. https://doi.org/10.1038/nrn811
CAS
Article
PubMed
Google Scholar
Depaulis A, Charpier S (2018) Pathophysiology of absence epilepsy: insights from genetic models. Neurosci Lett 667:53–65. https://doi.org/10.1016/j.neulet.2017.02.035
CAS
Article
PubMed
Google Scholar
Avoli M, Gloor P (1982) Role of the thalamus in generalized penicillin epilepsy: observations on decorticated cats. Exp Neurol 77(2):386–402. https://doi.org/10.1016/0014-4886(82)90252-7
CAS
Article
PubMed
Google Scholar
Vergnes M, Marescaux C (1992) Cortical and thalamic lesions in rats with genetic absence epilepsy. J Neural Transm Suppl 35:71–83. https://doi.org/10.1007/978-3-7091-9206-1_5
CAS
PubMed
Google Scholar
Avanzini G, de Curtis M, Marescaux C, Panzica F, Spreafico R, Vergnes M (1992) Role of the thalamic reticular nucleus in the generation of rhythmic thalamo-cortical activities subserving spike and waves. J Neural Transm Suppl 35:85–95. https://doi.org/10.1007/978-3-7091-9206-1_6
CAS
Article
PubMed
Google Scholar
Meeren HKM, Pijn JPM, van Luijtelaar ELJM, Coenen AML, Lopes da Silva FH (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22(4):1480–1495. https://doi.org/10.1523/jneurosci.22-04-01480.2002
CAS
Article
PubMed
PubMed Central
Google Scholar
Polack P-O, Mahon S, Chavez M, Charpier S (2009) Inactivation of the somatosensory cortex prevents paroxysmal oscillations in cortical and related thalamic neurons in a genetic model of absence epilepsy. Cereb Cortex 19(9):2078–2091. https://doi.org/10.1093/cercor/bhn237
Article
PubMed
Google Scholar
Beenhakker MP, Huguenard JR (2009) Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 62(5):612–632. https://doi.org/10.1016/j.neuron.2009.05.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Depaulis A, David O, Charpier S (2016) The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J Neurosci Methods 260:159–174. https://doi.org/10.1016/j.jneumeth.2015.05.022
Article
PubMed
Google Scholar
Slaght SJ, Leresche N, Deniau J-M, Crunelli V, Charpier S (2002) Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges. J Neurosci 22(6):2323–2334. https://doi.org/10.1523/jneurosci.22-06-02323.2002
CAS
Article
PubMed
PubMed Central
Google Scholar
Polack P-O, Guillemain I, Hu E, Deransart C, Depaulis A, Charpier S (2007) Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. J Neurosci 27(24):6590–6599. https://doi.org/10.1523/JNEUROSCI.0753-07.2007
CAS
Article
PubMed
PubMed Central
Google Scholar
Paz JT, Chavez M, Saillet S, Deniau J-M, Charpier S (2007) Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway. J Neurosci 27(4):929–941. https://doi.org/10.1523/JNEUROSCI.4677-06.2007
CAS
Article
PubMed
PubMed Central
Google Scholar
McCafferty C, David F, Venzi M, Lőrincz ML, Delicata F, Atherton Z et al (2018) Cortical drive and thalamic feed-forward inhibition control thalamic output synchrony during absence seizures. Nat Neurosci 21(5):744–756. https://doi.org/10.1038/s41593-018-0130-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Norden AD, Blumenfeld H (2002) The role of subcortical structures in human epilepsy. Epilepsy Behav 3(3):219–231. https://doi.org/10.1016/S1525-5050(02)00029-X
Article
PubMed
Google Scholar
Paz JT, Deniau J-M, Charpier S (2005) Rhythmic bursting in the cortico-subthalamo-pallidal network during spontaneous genetically determined spike and wave discharges. J Neurosci 25(8):2092–2101. https://doi.org/10.1523/JNEUROSCI.4689-04.2005
CAS
Article
PubMed
PubMed Central
Google Scholar
Kros L, Rooda E, Oscar HJ, Spanke JK, Alva P, van Dongen MN, Karapatis A et al (2015) Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol 77(6):1027–1049. https://doi.org/10.1002/ana.24399
CAS
Article
PubMed
PubMed Central
Google Scholar
Mark MD, Maejima T, Kuckelsberg D, Yoo JW, Hyde RA, Shah V et al (2011) Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J Neurosci 31(11):4311–4326. https://doi.org/10.1523/JNEUROSCI.5342-10.2011
CAS
Article
PubMed
PubMed Central
Google Scholar
Maejima T, Wollenweber P, Teusner LUC, Noebels JL, Herlitze S, Mark MD (2013) Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. J Neurosci 33(12):5162–5174. https://doi.org/10.1523/JNEUROSCI.5442-12.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Haroian AJ, Massopust LC, Young PA (1981) Cerebellothalamic projections in the rat: an autoradiographic and degeneration study. J Comp Neurol 197(2):217–236. https://doi.org/10.1002/cne.901970205
CAS
Article
PubMed
Google Scholar
Shinoda Y, Futami T, Kano M (1985) Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. II. Input-output organization of single thalamocortical neurons in the ventrolateral thalamus. Neurosci Res 2(3):157–180. https://doi.org/10.1016/0168-0102(85)90009-4
CAS
Article
PubMed
Google Scholar
Angaut P, Cicirata F, Serapide F (1985) Topographic organization of the cerebellothalamic projections in the rat. An autoradiographic study Neuroscience 15(2):389–401. https://doi.org/10.1016/0306-4522(85)90221-0
CAS
Article
PubMed
Google Scholar
Aumann TD, Horne MK (1996) A comparison of the ultrastructure of synapses in the cerebello-rubral and cerebello-thalamic pathways in the rat. Neurosci Lett 211(3):175–178. https://doi.org/10.1016/0304-3940(96)12757-9
CAS
Article
Google Scholar
Aumann TD, Horne MK (1996) Ramification and termination of single axons in the cerebellothalamic pathway of the rat. J Comp Neurol 376(3):420–430. https://doi.org/10.1002/(SICI)1096-9861(19961216)376:3%3c420:AID-CNE5%3e3.0.CO;2-4
CAS
Article
PubMed
Google Scholar
Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ (2000) Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res 124:141–172. https://doi.org/10.1016/S0079-6123(00)24014-4
CAS
Article
PubMed
Google Scholar
Yu W, Krook-Magnuson E (2015) Cognitive collaborations: bidirectional functional connectivity between the cerebellum and the hippocampus. Front Syst Neurosci 9:177. https://doi.org/10.3389/fnsys.2015.00177
Article
PubMed
PubMed Central
Google Scholar
Babb TL, Mitchell AG, Crandall PH (1974) Fastigiobulbar and dentatothalamic influences on hippocampal cobalt epilepsy in the cat. Electroencephalogr Clin Neurophysiol 36:141–154. https://doi.org/10.1016/0013-4694(74)90151-5
CAS
Article
PubMed
Google Scholar
Cooke PM, Snider RS (1955) Some cerebellar influences on electrically-induced cerebral seizures. Epilepsia 4:19–28. https://doi.org/10.1111/j.1528-1157.1955.tb03170.x
CAS
Article
PubMed
Google Scholar
Dow RS, Fernandez-Guardiola A, Manni E (1962) The influence of the cerebellum on experimental epilepsy. Electroencephalogr Clin Neurophysiol 14:383–398. https://doi.org/10.1016/0013-4694(62)90115-3
CAS
Article
PubMed
Google Scholar
Rucci FS, Giretti ML, La Rocca M (1968) Cerebellum and hyperbaric oxygen. Electroencephalogr Clin Neurophysiol 25(4):359–371. https://doi.org/10.1016/0013-4694(68)90177-6
CAS
Article
PubMed
Google Scholar
Streng ML, Krook-Magnuson E (2020) The cerebellum and epilepsy. Epilepsy Behav 121:1069090. https://doi.org/10.1016/j.yebeh.2020.106909
Article
Google Scholar
Cooper IS, Amin I, Gilman S (1973) The effect of chronic cerebellar stimulation upon epilepsy in man. Trans Am Neurol Assoc 98:192–196
CAS
PubMed
Google Scholar
van Buren JM, Wood JH, Oakley J, Hambrecht F (1978) Preliminary evaluation of cerebellar stimulation by double-blind stimulation and biological criteria in the treatment of epilepsy. J Neurosurg 48(3):407–416. https://doi.org/10.3171/jns.1978.48.3.0407
Article
PubMed
Google Scholar
Wright GD, McLellan DL, Brice JG (1984) A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. J Neurol Neurosurg Psychiatr 47(8):769–774. https://doi.org/10.1136/jnnp.47.8.769
CAS
Article
Google Scholar
Davis R, Emmonds SE (1992) Cerebellar stimulation for seizure control: 17-year study. Stereotact Funct Neurosurg 58(1–4):200–208. https://doi.org/10.1159/000098996
CAS
Article
PubMed
Google Scholar
Chkhenkeli SA, Sramka M, Lortkipanidze GS, Rakviashvili TN, Bregvadze ES, Magalashvili GE et al (2004) Electrophysiological effects and clinical results of direct brain stimulation for intractable epilepsy. Clin Neurol Neurosurg 106(4):318–329. https://doi.org/10.1016/j.clineuro.2004.01.009
Article
PubMed
Google Scholar
Velasco F, Carrillo-Ruiz JD, Brito F, Velasco M, Velasco AL, Marquez I et al (2005) Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia 46(7):1071–1081. https://doi.org/10.1111/j.1528-1167.2005.70504.x
Article
PubMed
Google Scholar
Krauss GL, Koubeissi MZ (2007) Cerebellar and thalamic stimulation treatment for epilepsy. Acta Neurochir Suppl 97(Pt 2):347–356. https://doi.org/10.1007/978-3-211-33081-4_40
CAS
Article
PubMed
Google Scholar
Kros L, Eelkman Rooda OHJ, de Zeeuw CI, Hoebeek FE (2015) Controlling cerebellar output to treat refractory epilepsy. Trends Neurosci 38(12):787–799. https://doi.org/10.1016/j.tins.2015.10.002
CAS
Article
PubMed
Google Scholar
Berényi A, Belluscio M, Mao D, Buzsáki G (2012) Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337(6095):735–737. https://doi.org/10.1126/science.1223154
CAS
Article
PubMed
PubMed Central
Google Scholar
Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K et al (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1):64–70. https://doi.org/10.1038/nn.3269
CAS
Article
PubMed
Google Scholar
Takeuchi Y, Berényi A (2020) Oscillotherapeutics—time-targeted interventions in epilepsy and beyond. Neurosci Res 152:87–107. https://doi.org/10.1016/j.neures.2020.01.002
CAS
Article
PubMed
Google Scholar
Krook-Magnuson E, Szabo GG, Armstrong C, Oijala M, Soltesz I (2014) Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro. https://doi.org/10.1523/ENEURO.0005-14.2014
Article
PubMed
PubMed Central
Google Scholar
Streng ML, Krook-Magnuson E (2020) Excitation, but not inhibition, of the fastigial nucleus provides powerful control over temporal lobe seizures. J Physiol (Lond ) 598(1):171–187. https://doi.org/10.1113/JP278747
CAS
Article
Google Scholar
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci 104(12):5163–5168. https://doi.org/10.1073/pnas.0700293104
CAS
Article
PubMed
PubMed Central
Google Scholar
Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci 102(49):17816–17821. https://doi.org/10.1073/pnas.0509030102
CAS
Article
PubMed
PubMed Central
Google Scholar
Fünfschilling U, Reichardt LF (2002) Cre-mediated recombination in rhombic lip derivatives. Genesis 33(4):160–169. https://doi.org/10.1002/gene.10104
CAS
Article
PubMed
PubMed Central
Google Scholar
Barski JJ, Dethleffsen K, Meyer M (2000) Cre recombinase expression in cerebellar Purkinje cells. Genesis 28(3–4):93–98. https://doi.org/10.1002/1526-968x(200011/12)28:3/4<93::aid-gene10>3.0.co;2-w
CAS
Article
PubMed
Google Scholar
Galliano E, Gao Z, Schonewille M, Todorov B, Simons E, Pop AS et al (2013) Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Cell Rep 3(4):1239–1251. https://doi.org/10.1016/j.celrep.2013.03.023
CAS
Article
PubMed
Google Scholar
Kandel A, Buzsáki G (1993) Cerebellar neuronal activity correlates with spike and wave EEG patterns in the rat. Epilepsy Res 16(1):1–9. https://doi.org/10.1016/0920-1211(93)90033-4
CAS
Article
PubMed
Google Scholar
Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 322(1):121–135. https://doi.org/10.1002/cne.903220110
CAS
Article
PubMed
Google Scholar
Ngomba RT, Santolini I, Biagioni F, Molinaro G, Simonyi A, van Rijn CM et al (2011) Protective role for type-1 metabotropic glutamate receptors against spike and wave discharges in the WAG/Rij rat model of absence epilepsy. Neuropharmacology 60(7–8):1281–1291. https://doi.org/10.1016/j.neuropharm.2011.01.007
CAS
Article
PubMed
Google Scholar
D’Amore V, von Randow C, Nicoletti F, Ngomba RT, van Luijtelaar G (2015) Anti-absence activity of mGlu1 and mGlu5 receptor enhancers and their interaction with a GABA reuptake inhibitor: effect of local infusions in the somatosensory cortex and thalamus. Epilepsia 56(7):1141–1151. https://doi.org/10.1111/epi.13024
CAS
Article
PubMed
Google Scholar
Wang JQ, Mao L (2000) Sustained behavioral stimulation following selective activation of Group I metabotropic glutamate receptors in rat striatum. Pharmacol Biochem Behav 65(3):439–447. https://doi.org/10.1016/S0091-3057(99)00245-2
CAS
Article
PubMed
Google Scholar
Cornea-Hbert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409(2):187–209. https://doi.org/10.1002/(sici)1096-9861(19990628)409:2%3c187:aid-cne2%3e3.0.co;2-p
Article
Google Scholar
Kim JE, Chae S, Kim S, Jung Y-J, Kang M-G, Do Heo W et al (2021) Cerebellar 5HT-2A receptor mediates stress-induced onset of dystonia. Sci Adv. https://doi.org/10.1126/sciadv.abb5735
Article
PubMed
PubMed Central
Google Scholar
Venzi M, David F, Bellet J, Cavaccini A, Bombardi C, Crunelli V et al (2016) Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures. Neuropharmacology 108:292–304. https://doi.org/10.1016/j.neuropharm.2016.04.016
CAS
Article
PubMed
PubMed Central
Google Scholar
Song I, Kim D, Choi S, Sun M, Kim Y, Shin H-S (2004) Role of the alpha1G T-type calcium channel in spontaneous absence seizures in mutant mice. J Neurosci 24(22):5249–5257. https://doi.org/10.1523/JNEUROSCI.5546-03.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G et al (2016) Upholding WAG/Rij rats as a model of absence epileptogenesis: hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 71:388–408. https://doi.org/10.1016/j.neubiorev.2016.09.017
CAS
Article
PubMed
Google Scholar
Noebels JL (1984) A single gene error of noradrenergic axon growth synchronizes central neurones. Nature 310(5976):409–411. https://doi.org/10.1038/310409a0
CAS
Article
PubMed
Google Scholar
Todorov B, Kros L, Shyti R, Plak P, Haasdijk ED, Raike RS et al (2012) Purkinje cell-specific ablation of Cav21 channels is sufficient to cause cerebellar ataxia in mice. Cerebellum 11(1):246–258. https://doi.org/10.1007/s12311-011-0302-1
CAS
Article
PubMed
Google Scholar
Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6(4):297–311. https://doi.org/10.1038/nrn1646
CAS
Article
PubMed
Google Scholar
De Zeeuw CI, Lisberger SG, Raymond JL (2021) Diversity and dynamism in the cerebellum. Nat Neurosci 24(2):160–167. https://doi.org/10.1038/s41593-020-00754-9
CAS
Article
PubMed
Google Scholar
Gornati SV, Schäfer CB, Eelkman Rooda OHJ, Nigg AL, De Zeeuw CI, Hoebeek FE (2018) Differentiating cerebellar impact on thalamic nuclei. Cell Rep 23(9):2690–2704. https://doi.org/10.1016/j.celrep.2018.04.098
CAS
Article
PubMed
PubMed Central
Google Scholar
Cope DW, Di Giovanni G, Fyson SJ, Orbán G, Errington AC, Lorincz ML et al (2009) Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat Med 15(12):1392–1398. https://doi.org/10.1038/nm.2058
CAS
Article
PubMed
PubMed Central
Google Scholar
Sorokin JM, Davidson TJ, Frechette E, Abramian AM, Deisseroth K, Huguenard JR et al (2017) Bidirectional control of generalized epilepsy networks via rapid real-time switching of firing mode. Neuron 93(1):194–210. https://doi.org/10.1016/j.neuron.2016.11.026
CAS
Article
PubMed
Google Scholar
Clemente-Perez A, Makinson SR, Higashikubo B, Brovarney S, Cho FS, Urry A et al (2017) Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep 19(10):2130–2142. https://doi.org/10.1016/j.celrep.2017.05.044
CAS
Article
PubMed
Google Scholar
Cerminara NL, Lang EJ, Sillitoe RV, Apps R (2015) Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 16(2):79–93. https://doi.org/10.1038/nrn3886
CAS
Article
PubMed
PubMed Central
Google Scholar
Burle J, Helmchen C, Grsser-Cornehls U (1997) Diverse effects of Purkinje cell loss on deep cerebellar and vestibular nuclei neurons in Purkinje cell degeneration mutant mice: a possible compensatory mechanism. J Comp Neurol 384(4):580–596. https://doi.org/10.1002/(SICI)1096-9861(19970811)384:4%3c580:AID-CNE7%3e3.0.CO;2-Z
Article
Google Scholar
Mark MD, Krause M, Boele H-J, Kruse W, Pollok S, Kuner T et al (2015) Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity. J Neurosci 35(23):8882–8895. https://doi.org/10.1523/JNEUROSCI.0891-15.2015
CAS
Article
PubMed
PubMed Central
Google Scholar
Zwingman TA, Neumann PE, Noebels JL, Herrup K (2001) Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J Neurosci 21(4):1169–1178. https://doi.org/10.1523/jneurosci.21-04-01169.2001
CAS
Article
PubMed
PubMed Central
Google Scholar
Mark MD, Schwitalla JC, Groemmke M, Herlitze S (2017) Keeping our calcium in balance to maintain our balance. Biochem Biophys Res Commun 483(4):1040–1050. https://doi.org/10.1016/j.bbrc.2016.07.020
CAS
Article
PubMed
Google Scholar
Marcián V, Filip P, Bareš M, Brázdil M (2016) Cerebellar dysfunction and ataxia in patients with epilepsy: coincidence, consequence, or cause? Tremor Other Hyperkinet Mov 6:376. https://doi.org/10.7916/D8KH0NBT
Article
Google Scholar
Young GB, Oppenheimer SR, Gordon BA, Wells GA, Assis LP, Kreeft JH et al (1994) Ataxia in institutionalized patients with epilepsy. Can J Neurol Sci 21(3):252–258. https://doi.org/10.1017/s0317167100041238
CAS
Article
PubMed
Google Scholar
Lawson JA, Vogrin S, Bleasel AF, Cook MJ, Bye AM (2000) Cerebral and cerebellar volume reduction in children with intractable epilepsy. Epilepsia 41(11):1456–1462. https://doi.org/10.1111/j.1528-1157.2000.tb00122.x
CAS
Article
PubMed
Google Scholar
Hagemann G, Lemieux L, Free SL, Krakow K, Everitt AD, Kendall BE et al (2002) Cerebellar volumes in newly diagnosed and chronic epilepsy. J Neurol 249(12):1651–1658. https://doi.org/10.1007/s00415-002-0843-9
CAS
Article
PubMed
Google Scholar
Park KM, Han YH, Kim TH, Mun CW, Shin KJ, Ha SY et al (2015) Cerebellar white matter changes in patients with newly diagnosed partial epilepsy of unknown etiology. Clin Neurol Neurosurg 138:25–30. https://doi.org/10.1016/j.clineuro.2015.07.017
Article
PubMed
Google Scholar
Ming X, Prasad N, Thulasi V, Elkins K, Shivamurthy VKN (2021) Possible contribution of cerebellar disinhibition in epilepsy. Epilepsy Behav 118:107944. https://doi.org/10.1016/j.yebeh.2021.107944
Article
PubMed
Google Scholar
Martins WA, Paglioli E, Hemb M, Palmini A (2016) Dysplastic cerebellar epilepsy: complete seizure control following resection of a ganglioglioma. Cerebellum 15(4):535–541. https://doi.org/10.1007/s12311-015-0705-5
Article
PubMed
Google Scholar
Allen JA, Roth BL (2011) Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 51:117–144. https://doi.org/10.1146/annurev-pharmtox-010510-100553
CAS
Article
PubMed
Google Scholar
Sriram K, Insel PA (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol 93(4):251–258. https://doi.org/10.1124/mol.117.111062
CAS
Article
PubMed
PubMed Central
Google Scholar
Citraro R, Russo E, Ngomba RT, Nicoletti F, Scicchitano F, Whalley BJ et al (2013) CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res 106(1–2):74–82. https://doi.org/10.1016/j.eplepsyres.2013.06.004
CAS
Article
PubMed
Google Scholar
Eelkman Rooda OHJ, Kros L, Faneyte SJ, Holland PJ, Gornati SV, Poelman HJ et al (2021) Single-pulse stimulation of cerebellar nuclei stops epileptic thalamic activity. Brain Stimul. https://doi.org/10.1016/j.brs.2021.05.002
Article
PubMed
Google Scholar
Sitnikova E, van Luijtelaar G (2009) Electroencephalographic precursors of spike-wave discharges in a genetic rat model of absence epilepsy: power spectrum and coherence EEG analyses. Epilepsy Res 84(2–3):159–171. https://doi.org/10.1016/j.eplepsyres.2009.01.016
Article
PubMed
Google Scholar
Lüttjohann A, van Luijtelaar G (2012) The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy. Neurobiol Dis 47(1):49–60. https://doi.org/10.1016/j.nbd.2012.03.023
Article
PubMed
Google Scholar
Sorokin JM, Paz JT, Huguenard JR (2016) Absence seizure susceptibility correlates with pre-ictal β oscillations. J Physiol Paris 110(4 Pt A):372–381. https://doi.org/10.1016/j.jphysparis.2017.05.004
Article
PubMed
Google Scholar
Spoida K, Eickelbeck D, Karapinar R, Eckhardt T, Mark MD, Jancke D et al (2016) Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of g protein pathways. Curr Biol 26(9):1206–1212. https://doi.org/10.1016/j.cub.2016.03.007
CAS
Article
PubMed
Google Scholar
Eickelbeck D, Rudack T, Tennigkeit SA, Surdin T, Karapinar R, Schwitalla J-C et al (2020) Lamprey Parapinopsin (“UVLamP”): a Bistable UV-Sensitive Optogenetic Switch for Ultrafast Control of GPCR Pathways. ChemBioChem 21(5):612–617. https://doi.org/10.1002/cbic.201900485
CAS
Article
PubMed
Google Scholar
Karapinar R, Schwitalla JC, Eickelbeck D, Pakusch J, Mücher B, Grömmke M et al (2021) Reverse optogenetics of G protein signaling by zebrafish non-visual opsin Opn7b for synchronization of neuronal networks. Nat Commun. https://doi.org/10.1038/s41467-021-24718-0
Article
PubMed
PubMed Central
Google Scholar