Skip to main content

Advertisement

Log in

The role of HCN channels on the effects of T-type calcium channels and GABAA receptors in the absence epilepsy model of WAG/Rij rats

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In this study we used ivabradine (IVA), a hyperpolarization-activated cyclic nucleotide–gated (HCN) channel blocker, to identify its effect on spike-wave discharges (SWDs); and aimed to determine the role of IVA on the effects of T-type calcium channel blocker NNC 55-0396, GABAA receptor agonist muscimol and antagonist bicuculline in male WAG/Rij rats. After tripolar electrodes for electrocorticogram (ECoG) recordings were placed on the WAG/Rij rats' skulls, 5, 10, and 20 mg/kg IVA were intraperitoneally administered for 7 consecutive days and ECoG recordings were obtained on days 0th, 3rd, 6th, and 7th for three hours before and after injections. While acute injection of 5, 10, and 20 mg/kg IVA did not affect the total number and the mean duration of SWDs, subacute administration (7 days) of IVA decreased the SWDs parameters 24 hours after the 7th injection. Interestingly, when IVA was administered again 24 hours after the 6th IVA injection, it increased the SWDs parameters. Western-blot analyses showed that HCN1 and HCN2 expressions decreased and HCN4 increased in the 5-month-old WAG/Rij rats compared to the 1-month-old WAG/Rij and 5-month-old native Wistar rats, while subacute IVA administration increased the levels of HCN1 and HCN2 channels, except HCN4. Subacute administration of IVA reduced the antiepileptic activity of NNC, while the proepileptic activity of muscimol and the antiepileptic activity of bicuculline were abolished. It might be suggested that subacute IVA administration reduces absence seizures by changing the HCN channel expressions in WAG/Rij rats, and this affects the T-type calcium channels and GABAA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Arslan G, Avci B, Kocacan SE, Rzayev E, Ayyildiz M, Agar E (2019) The interaction between P2X7Rs and T-type calcium ion channels in penicillin-induced epileptiform activity. Neuropharmacology 149:1–12. https://doi.org/10.1016/j.neuropharm.2019.01.027

    Article  CAS  PubMed  Google Scholar 

  2. Assi A-A, Abdelnabi S, Attaai A, Abd-Ellatief RB (2022) Effect of ivabradine on cognitive functions of rats with scopolamine-induced dementia. Scientific Rep 12:16970. https://doi.org/10.1038/s41598-022-20963-5

  3. Atherton JF, Kitano K, Baufreton J, Fan K, Wokosin D, Tkatch T, Shigemoto R, Surmeier DJ, Bevan MD (2010) Selective Participation of Somatodendritic HCN Channels in Inhibitory But Not Excitatory Synaptic Integration in Neurons of the Subthalamic Nucleus. J Neurosci 30:16025–16040. https://doi.org/10.1523/jneurosci.3898-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benarroch EE (2013) HCN channels. Function Clin Implications 80:304–310. https://doi.org/10.1212/WNL.0b013e31827dec42

    Article  Google Scholar 

  5. Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-Activated Cation Channels: From Genes to Function. Physiological Reviews 89:847–885. https://doi.org/10.1152/physrev.00029.2008

    Article  CAS  PubMed  Google Scholar 

  6. Blumenfeld H, Klein JP, Schridde U, Vestal M, Rice T, Khera DS, Bashyal C, Giblin K, Paul-Laughinghouse C, Wang F, Phadke A, Mission J, Agarwal RK, Englot DJ, Motelow J, Nersesyan H, Waxman SG, Levin AR (2008) Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia 49:400–409. https://doi.org/10.1111/j.1528-1167.2007.01458.x

    Article  CAS  PubMed  Google Scholar 

  7. Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in epilepsy. Cold Spring Harbor Perspectives in Medicine 6(3):a022384. https://doi.org/10.1101/cshperspect.a022384

  8. Broicher T, Kanyshkova T, Meuth P, Pape H-C, Budde T (2008) Correlation of T-channel coding gene expression, IT, and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy. Mole Cellular Neurosc 39:384–399. https://doi.org/10.1016/j.mcn.2008.07.012

    Article  CAS  Google Scholar 

  9. Cain SM, Snutch TP (2012) Voltage-gated calcium channels in epilepsy. Jasper’s Basic Mechanisms of the Epilepsies [Internet] 4th edition. National Center for Biotechnology Information (US)

  10. Cavalcante TMB, De Melo JdMA, Lopes LB, Bessa MC, Santos JG, Vasconcelos LC, Vieira Neto AE, Borges LTN, Fonteles MMF, Chaves Filho AJM, Macêdo D, Campos AR, Aguiar CCT, Vasconcelos SMM (2019) Ivabradine possesses anticonvulsant and neuroprotective action in mice. Biomed Pharmacotherapy 109:2499–2512. https://doi.org/10.1016/j.biopha.2018.11.096

    Article  CAS  Google Scholar 

  11. Cheong E, Shin H-S (2013) T-Type Ca2+ Channels in Normal and Abnormal Brain Functions. Physiological Reviews 93:961–992. https://doi.org/10.1152/physrev.00010.2012

    Article  CAS  PubMed  Google Scholar 

  12. Cheong E, Shin H-S (2014) T-type Ca2+ channels in absence epilepsy. Pflügers Archiv - European J Phys 466:719–734. https://doi.org/10.1007/s00424-014-1461-y

    Article  CAS  Google Scholar 

  13. Crunelli V, David F, Morais TP, Lorincz ML (2023) HCN channels and absence seizures. Neurobiol Dis 181:106107. https://doi.org/10.1016/j.nbd.2023.106107

    Article  CAS  PubMed  Google Scholar 

  14. David F, Çarçak N, Furdan S, Onat F, Gould T, Mészáros Á, Giovanni GD, Hernández VM, Chan CS, Lőrincz ML, Crunelli V (2018) Suppression of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Function in Thalamocortical Neurons Prevents Genetically Determined and Pharmacologically Induced Absence Seizures. J Neurosci 38:6615–6627. https://doi.org/10.1523/jneurosci.0896-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dieckmann-Schuppert A, Schnittler H-J (1997) A simple assay for quantification of protein in tissue sections, cell cultures, and cell homogenates, and of protein immobilized on solid surfaces. Cell Tissue Res 288:119–126. https://doi.org/10.1007/s004410050799

    Article  CAS  PubMed  Google Scholar 

  16. Fan J, Gandini MA, Zhang F-X, Chen L, Souza IA, Zamponi GW (2017) Down-regulation of T-type Cav3.2 channels by hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1): Evidence of a signaling complex. Channels 11:434–443. https://doi.org/10.1080/19336950.2017.1326233

    Article  PubMed  PubMed Central  Google Scholar 

  17. Futatsugi Y, Riviello JJ Jr (1998) Mechanisms of generalized absence epilepsy. Brain Development 20:75–79. https://doi.org/10.1016/S0387-7604(97)00107-1

    Article  CAS  PubMed  Google Scholar 

  18. Glauser TA, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D, Clark PO, Capparelli EV, Adamson PC (2010) Ethosuximide, Valproic Acid, and Lamotrigine in Childhood Absence Epilepsy. New England J Med 362:790–799. https://doi.org/10.1056/NEJMoa0902014

    Article  CAS  Google Scholar 

  19. Gunes H, Ozdemir E, Arslan G (2019) Coenzyme Q10 increases absence seizures in WAG/Rij rats: The role of the nitric oxide pathway. Epilepsy Res 154:69–73. https://doi.org/10.1016/j.eplepsyres.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  20. Huang Z, Lujan R, Kadurin I, Uebele VN, Renger JJ, Dolphin AC, Shah MM (2011) Presynaptic HCN1 channels regulate CaV3.2 activity and neurotransmission at select cortical synapses. Nature Neurosci 14:478–486. https://doi.org/10.1038/nn.2757

    Article  CAS  PubMed  Google Scholar 

  21. Huang Z, Walker MC, Shah MM (2009) Loss of Dendritic HCN1 Subunits Enhances Cortical Excitability and Epileptogenesis. J Neurosci 29:10979–10988. https://doi.org/10.1523/jneurosci.1531-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iacone Y, Morais TP, David F, Delicata F, Sandle J, Raffai T, Parri HR, Weisser JJ, Bundgaard C, Klewe IV, Tamás G, Thomsen MS, Crunelli V, Lőrincz ML (2021) Systemic administration of ivabradine, a hyperpolarization-activated cyclic nucleotide-gated channel inhibitor, blocks spontaneous absence seizures. Epilepsia 62:1729–1743. https://doi.org/10.1111/epi.16926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jafarian M, Alipour ME, Karimzadeh F (2020) Experimental Models of Absence Epilepsy. Basic and Clinical Neuroscience Journal 11:715-726. https://doi.org/10.32598/bcn.11.6.731.1

  24. Kanyshkova T, Meuth P, Bista P, Liu Z, Ehling P, Caputi L, Doengi M, Chetkovich DM, Pape H-C, Budde T (2012) Differential regulation of HCN channel isoform expression in thalamic neurons of epileptic and non-epileptic rat strains. Neurobiol Dis 45:450–461. https://doi.org/10.1016/j.nbd.2011.08.032

    Article  CAS  PubMed  Google Scholar 

  25. Kaur S, Singh N, Jaggi AS (2019) Opening of T-type Ca2+ channels and activation of HCN channels contribute in stress adaptation in cold water immersion stress-subjected mice. Life Sci 232:116605. https://doi.org/10.1016/j.lfs.2019.116605

    Article  CAS  PubMed  Google Scholar 

  26. Kharouf Q, Pinares-Garcia P, Romanelli MN, Reid CA (2020) Testing broad-spectrum and isoform-preferring HCN channel blockers for anticonvulsant properties in mice. Epilepsy Research 168:106484. https://doi.org/10.1016/j.eplepsyres.2020.106484

    Article  CAS  PubMed  Google Scholar 

  27. Khazipov R, Zaynutdinova D, Ogievetsky E, Valeeva G, Mitrukhina O, Manent J-B, Represa A (2015) Atlas of the postnatal rat brain in stereotaxic coordinates. Front Neuroanatomy 9:161. https://doi.org/10.3389/fnana.2015.00161

  28. Kole MH, Bräuer AU, Stuart GJ (2007) Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model. J Physio 578:507–525. https://doi.org/10.1113/jphysiol.2006.122028

    Article  CAS  Google Scholar 

  29. Kuisle M, Wanaverbecq N, Brewster AL, Frère SGA, Pinault D, Baram TZ, Lüthi A (2006) Functional stabilization of weakened thalamic pacemaker channel regulation in rat absence epilepsy. J Physio 575:83–100. https://doi.org/10.1113/jphysiol.2006.110486

    Article  CAS  Google Scholar 

  30. Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape H-C, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:216–224. https://doi.org/10.1093/emboj/cdg032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lupica CR, Bell JA, Hoffman AF, Watson PL (2001) Contribution of the Hyperpolarization-Activated Current (I h) to Membrane Potential and GABA Release in Hippocampal Interneurons. Journal of Neurophysiology 86:261–268. https://doi.org/10.1152/jn.2001.86.1.261

    Article  CAS  PubMed  Google Scholar 

  32. Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A (2005) Evolving Concepts on the Pathophysiology of Absence Seizures: The Cortical Focus Theory. Archives Neurology 62:371–376. https://doi.org/10.1001/archneur.62.3.371

    Article  Google Scholar 

  33. Nishitani A, Kunisawa N, Sugimura T, Sato K, Yoshida Y, Suzuki T, Sakuma T, Yamamoto T, Asano M, Saito Y, Ohno Y, Kuramoto T (2019) Loss of HCN1 subunits causes absence epilepsy in rats. Brain Research 1706:209–217. https://doi.org/10.1016/j.brainres.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  34. Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J Comparative Neuro 471:241–276. https://doi.org/10.1002/cne.11039

    Article  CAS  Google Scholar 

  35. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: Sixth Edition. Academic Press, Cambridge

  36. Peeters BWMM, van Rijn CM, Vossen JMH, Coenen AML (1989) Effects of GABA-ergic agents on spontaneous non-convulsive epilepsy, EEG and behaviour, in the WAG/Rij inbred strain of rats. Life Sci 45:1171–1176. https://doi.org/10.1016/0024-3205(89)90505-5

    Article  CAS  PubMed  Google Scholar 

  37. Powell KL, Cain SM, Snutch TP, O’Brien TJ (2014) Low threshold T-type calcium channels as targets for novel epilepsy treatments. British Journal of Clinical Pharmacology 77:729–739. https://doi.org/10.1111/bcp.12205

  38. Sahin D, Yilmaz CU, Orhan N, Arican N, Kaya M, Gürses C, Ates N, Ahishali B (2017) Changes in electroencephalographic characteristics and blood-brain barrier permeability in WAG/Rij rats with cortical dysplasia. Epilepsy & Behavior 67:70–76. https://doi.org/10.1016/j.yebeh.2016.11.001

    Article  Google Scholar 

  39. Santoro B, Lee JY, Englot DJ, Gildersleeve S, Piskorowski RA, Siegelbaum SA, Winawer MR, Blumenfeld H (2010) Increased seizure severity and seizure-related death in mice lacking HCN1 channels. Epilepsia 51:1624–1627. https://doi.org/10.1111/j.1528-1167.2010.02554.x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sarkisova K, van Luijtelaar G (2011) The WAG/Rij strain: A genetic animal model of absence epilepsy with comorbidity of depressiony. Progress in Neuro-Psychopharmacology and Biological Psychiatry 35:854–876. https://doi.org/10.1016/j.pnpbp.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  41. Savelieva I, Camm AJ (2006) Novel If current inhibitor ivabradine: safety considerations. Adv Cardiol 43:79–96. https://doi.org/10.1159/000095430

    Article  CAS  PubMed  Google Scholar 

  42. Sciamanna G, Ponterio G, Vanni V, Laricchiuta D, Martella G, Bonsi P, Meringolo M, Tassone A, Mercuri NB, Pisani A (2020) Optogenetic Activation of Striatopallidal Neurons Reveals Altered HCN Gating in DYT1 Dystonia. Cell Reports 31:107644. https://doi.org/10.1016/j.celrep.2020.107644

    Article  CAS  PubMed  Google Scholar 

  43. Strauss U, Kole MHP, Bräuer AU, Pahnke J, Bajorat R, Rolfs A, Nitsch R, Deisz RA (2004) An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy. European Journal of Neuroscience 19:3048–3058. https://doi.org/10.1111/j.0953-816X.2004.03392.x

    Article  PubMed  Google Scholar 

  44. Unterberger I, Trinka E, Kaplan PW, Walser G, Luef G, Bauer G (2018) Generalized nonmotor (absence) seizures—What do absence, generalized, and nonmotor mean? Epilepsia 59:523–529. https://doi.org/10.1111/epi.13996

    Article  PubMed  Google Scholar 

  45. Woodman R, Student J, Miller C, Lockette W (2019) Ivabradine improves cognitive and behavioral responses following traumatic stress. The FASEB Journal 33:807.7-807.7. https://doi.org/10.1096/fasebj.2019.33.1_supplement.807.7

  46. Yue BW, Huguenard JR (2001) The role of H-current in regulating strength and frequency of thalamic network oscillations. Thalamus Related Syst 1:95–103. https://doi.org/10.1016/S1472-9288(01)00009-7

    Article  Google Scholar 

Download references

Funding

This work was supported by Scientific Research Projects of Ondokuz Mayıs University (PYO.TIP.1904.20.009).

Author information

Authors and Affiliations

Authors

Contributions

GA, EA, MA and EST planned the experiments; GA and EST conducted the electrophysiological experiments; EST and CG made biochemical experiments; GA, EST, and CG analyzed the data; GA, CG and EST made the graphics and statistical analysis; GA, EA, MA and EST wrote the manuscript.

Corresponding author

Correspondence to Gökhan Arslan.

Ethics declarations

Ethics Approval

The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. The experimental protocol was approved by the Local Ethics Committee of Ondokuz Mayis University (approval code no. 2019/48)

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 282 KB)

Supplementary file2 (PDF 83 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiryaki, E.S., Arslan, G., Günaydın, C. et al. The role of HCN channels on the effects of T-type calcium channels and GABAA receptors in the absence epilepsy model of WAG/Rij rats. Pflugers Arch - Eur J Physiol 476, 337–350 (2024). https://doi.org/10.1007/s00424-023-02900-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02900-1

Keywords

Navigation