Skip to main content

Advertisement

Log in

Leveraging multiomics approaches for producing lignocellulose degrading enzymes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

This article has been updated

Abstract

Lignocellulosic materials form the building block of 50% of plant biomass comprising non-chewable agri-components like wheat straw, rice stubbles, wood shavings and other crop residues. The degradation of lignin, cellulose and hemicellulose is complicated and presently being done by chemical process for industrial application through a very energy intensive process. Lignin degradation is primarily an oxidative process where the enzyme lignin peroxidase digests the polymer into smaller fragments. Being a recalcitrant component, higher lignin content poses a challenge of lower recovery of product for industrial use. Globally, the scientists are working on leveraging fungal biotechnology for using the lignocellulose degrading enzymes secreted by actinomycetes and basidiomycetes fungal groups. Enzymes contributing to degradation of lignin are mainly performing the function of modifying the lignin and degrading the lignin. Ligninolytic enzymes do not act as an independent reaction but are vital to complete the degradation process. Microbial enzyme technology is an emerging green tool in industrial biotechnology for commercial application. Bioprocessing of lignocellulosic biomass is challenged by limitations in enzymatic and conversion process where pretreatment and separation steps are done to remove lignin and hydrolyze carbohydrate into fermentable sugars. This review highlights recent advances in molecular biotechnology, lignin valorization, sequencing, decipher microbial membership, and characterize enzyme diversity through ‘omics’ techniques. Emerging techniques to characterize the interwoven metabolism and spatial interactions between anaerobes are also reviewed, which will prove critical to developing a predictive understanding of anaerobic communities to guide in microbiome engineering This requires more synergistic collaborations from microbial biotechnologists, bioprocess engineers, enzymologists, and other biotechnological fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Since it is a review article, the availability of data and material is not applicable.

Change history

  • 28 February 2022

    Affiliation has been updated as per author request

References

  1. Soltanian S et al (2020) A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers Manag 212:112792. https://doi.org/10.1016/j.enconman.2020.112792

    Article  CAS  Google Scholar 

  2. de Gonzalo G, Colpa DI, Habib MHM, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119. https://doi.org/10.1016/j.jbiotec.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  3. Del Río JC, Marques G, Rencoret J, Martínez ÁT, Gutiérrez A (2007) Occurrence of naturally acetylated lignin units. J Agric Food Chem 55(14):5461–5468. https://doi.org/10.1021/jf0705264

    Article  CAS  PubMed  Google Scholar 

  4. Kumar A, Chandra R (2020) Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6(2):e03170. https://doi.org/10.1016/j.heliyon.2020.e03170

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mirmohamadsadeghi S et al (2021) Pretreatment of lignocelluloses for enhanced biogas production: a review on influencing mechanisms and the importance of microbial diversity. Renew Sustain Energy Rev 135:110173. https://doi.org/10.1016/j.rser.2020.110173

    Article  CAS  Google Scholar 

  6. Nadar SS, Rao P, Rathod VK (2018) “Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: a review.” Food Res Int 108:309–330. https://doi.org/10.1016/j.foodres.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  7. Yimer D, Tilahun A (2018) Microbial biotechnology review in microbial enzyme production methods, assay techniques and protein separation and purifications. J Nutr Health Food Eng 8(1):1–7

    Google Scholar 

  8. Kumar A, Srivastva D, Chand R (2019) Rapid bioconversion of lignocellulosic biomass by fungi. Mycodegradation of Lignocelluloses. Springer, pp 137–165

    Chapter  Google Scholar 

  9. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules. https://doi.org/10.3390/biom4010117

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kyrpides NC et al (2014) Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol 12(8):e1001920

    Article  PubMed  PubMed Central  Google Scholar 

  11. López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6(1):1–12

    Article  Google Scholar 

  12. Sethi S, Datta A, Gupta BL, Gupta S (2013) Optimization of cellulase production from bacteria isolated from soil. Int Sch Res Notices. https://doi.org/10.5402/2013/985685

    Article  Google Scholar 

  13. Chandra R (2015) Advances in biodegradation and bioremediation of industrial waste. CRC Press

    Book  Google Scholar 

  14. Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N (2020) Lignocellulolytic enzymes in biotechnological and industrial processes: a review. Sustainability 12(18):7282

    Article  CAS  Google Scholar 

  15. Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkolazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41(6):941–962. https://doi.org/10.1093/femsre/fux049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chauhan PS, Jha B (2018) Pilot scale production of extracellular thermo-alkali stable laccase from Pseudomonas sp. S2 using agro waste and its application in organophosphorous pesticides degradation. J Chem Technol Biotechnol 93(4):1022–1030

    Article  CAS  Google Scholar 

  17. Chandra R, Singh R, Yadav S (2012) Effect of bacterial inoculum ratio in mixed culture for decolourization and detoxification of pulp paper mill effluent. J Chem Technol Biotechnol 87(3):436–444

    Article  CAS  Google Scholar 

  18. Niladevi KN, Prema P (2005) Mangrove actinomycetes as the source of ligninolytic enzymes. Actinomycetologica 19(2):40–47

    Article  CAS  Google Scholar 

  19. Woo HL, Hazen TC, Simmons BA, DeAngelis KM (2014) Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol 37(1):60–67

    Article  CAS  PubMed  Google Scholar 

  20. Katayama Y, Nishikawa S, Murayama A, Yamasaki M, Morohoshi N, Haraguchi T (1988) The metabolism of biphenyl structures in lignin by the soil bacterium (Pseudomonas paucimobilis SYK-6). FEBS Lett 233(1):129–133

    Article  CAS  Google Scholar 

  21. Suman SK, Dhawaria M, Tripathi D, Raturi V, Adhikari DK, Kanaujia PK (2016) Investigation of lignin biodegradation by Trabulsiella sp. isolated from termite gut. Int Biodeterior Biodegradation 112:12–17

    Article  CAS  Google Scholar 

  22. Pelmont J, Tournesac C, Mliki A, Barrelle M, Beguin C (1989) A new bacterial alcohol dehydrogenase active on degraded lignin and several low molecular weight aromatic compounds. FEMS Microbiol Lett 57(1):109–113

    Article  CAS  Google Scholar 

  23. Song YJ (2009) Characterization of aromatic hydrocarbon-degrading bacteria isolated from pine litter. Microbiol Biotechnol Lett 37(4):333–339

    CAS  Google Scholar 

  24. Rahman NHA, Abd Aziz S, Hassan MA (2013) Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils. BioResources 8(4):6136–6150

    Google Scholar 

  25. Asina F, Brzonova I, Voeller K, Kozliak E, Kubátová A, Yao B, Ji Y (2016) Biodegradation of lignin by fungi, bacteria and laccases. Bioresour Technol 220:414–424

    Article  CAS  PubMed  Google Scholar 

  26. Bušić A, Morzak G, Belskaya H, Šantek I (2018) Bioethanol production from renewable raw materials and its separation and purification : a review. Food Technol Biotechnol. https://doi.org/10.17113/ftb.56.03.18.5546

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kracher D, Ludwig R (2016) Cellobiose dehydrogenase: an essential enzyme for lignocellulose degradation in nature—a review. Bodenkultur 67:145–163

    Google Scholar 

  28. Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B (2018) Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18(11):768–778. https://doi.org/10.1002/elsc.201800039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41. https://doi.org/10.1186/1754-6834-6-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78(4):614–649. https://doi.org/10.1128/MMBR.00035-14

    Article  PubMed  PubMed Central  Google Scholar 

  31. Javed Z, Tripathi GD, Mishra M, Dashora K (2021) Actinomycetes—the microbial machinery for the organic-cycling, plant growth, and sustainable soil health. Biocatal Agric Biotechnol 31:101893

    Article  CAS  Google Scholar 

  32. Kirby R (2005) Actinomycetes and lignin degradation. Adv Appl Microbiol 58:125–168

    Article  Google Scholar 

  33. Shivlata L, Satyanarayana T (2015) Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Front Microbiol 6:1014. https://doi.org/10.3389/fmicb.2015.01014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ravindran R, Jaiswal AK (2016) Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering. https://doi.org/10.3390/bioengineering3040030

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kameshwar AKS, Qin W (2017) Qualitative and quantitative methods for isolation and characterization of lignin-modifying enzymes secreted by microorganisms. BioEnergy Res 10(1):248–266

    Article  CAS  Google Scholar 

  36. Sim S-L, He T, Tscheliessnig A, Mueller M, Tan RBH, Jungbauer A (2012) Protein precipitation by polyethylene glycol: a generalized model based on hydrodynamic radius. J Biotechnol 157(2):315–319

    Article  CAS  PubMed  Google Scholar 

  37. Boeris V, Balce I, Vennapusa RR, Rodríguez MA, Picó G, Lahore MF (2012) Production, recovery and purification of a recombinant β-galactosidase by expanded bed anion exchange adsorption. J Chromatogr B 900:32–37

    Article  CAS  Google Scholar 

  38. Bhattacharjee S et al (2012) Formation of high-capacity protein-adsorbing membranes through simple adsorption of poly (acrylic acid)-containing films at low pH. Langmuir 28(17):6885–6892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nguyen HH, Kim M (2017) An overview of techniques in enzyme immobilization. Appl Sci Converg Technol 26(6):157–163. https://doi.org/10.5757/asct.2017.26.6.157

    Article  Google Scholar 

  40. Naresh V, Lee N (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Switzerland) 21(4):1–35. https://doi.org/10.3390/s21041109

    Article  CAS  Google Scholar 

  41. Coskun O (2016) Separation techniques: chromatography. North Clin Istanbul 3(2):156–160. https://doi.org/10.14744/nci.2016.32757

    Article  Google Scholar 

  42. Ramos OL, Malcata FX (2017) Food-grade enzymes ☆. In: Moo-Young E III (ed) Comprehensive biotechnology. Pergamon, Oxford, pp 587–603

    Chapter  Google Scholar 

  43. Masoodi KZ, Lone SM, Rasool RS (2021) Chapter 23—study of principle of centrifugation. In: Masoodi KZ, Lone SM, Rasool B (eds) Advanced methods in molecular biology and biotechnology. Academic Press, pp 133–137

    Chapter  Google Scholar 

  44. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18

    Article  CAS  Google Scholar 

  45. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161

    Article  CAS  Google Scholar 

  46. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13(2–3):81–84

    Article  CAS  Google Scholar 

  47. Steudler S, Böhmer U, Weber J, Bley T (2015) Biomass measurement by flow cytometry during solid-state fermentation of basidiomycetes. Cytom Part A 87(2):176–188

    Article  Google Scholar 

  48. Lizardi-Jiménez MA, Hernández-Martínez R (2017) Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech 7(1):44

    Article  PubMed  PubMed Central  Google Scholar 

  49. Maulini-Duran C, Abraham J, Rodríguez-Pérez S, Cerda A, Jiménez-Peñalver P, Gea T, Sánchez A (2015) Gaseous emissions during the solid state fermentation of different wastes for enzyme production at pilot scale. Bioresour Technol 179:211–218

    Article  CAS  PubMed  Google Scholar 

  50. Cheah WY et al (2020) Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res J 7(1):1115

    Article  Google Scholar 

  51. Bhatia S (2018) Technologies and procedures involved in enzyme production. Introduction to pharmaceutical biotechnology, vol 2. IOP Publishing, pp 2–42

    Google Scholar 

  52. Harrison STL (2011). In: Moo-Young E II (ed) Cell disruption”. Academic Press, Burlington, pp 619–640

    Google Scholar 

  53. Lee CH (2017) A simple outline of methods for protein isolation and purification. Endocrinol Metab (Seoul, Korea) 32(1):18–22. https://doi.org/10.3803/EnM.2017.32.1.18

    Article  CAS  Google Scholar 

  54. Alessi AM et al (2018) Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. Biotechnol Biofuels 11(1):1–16

    Article  Google Scholar 

  55. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75(5):955–962

    Article  CAS  PubMed  Google Scholar 

  56. Silva JP, Ticona ARP, Hamann PRV, Quirino BF, Noronha EF (2021) Deconstruction of lignin: from enzymes to microorganisms. Molecules 26(8):2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amer B, Baidoo EEK (2021) Omics-driven biotechnology for industrial applications. Front Bioeng Biotechnol 9:30

    Article  Google Scholar 

  58. Mello BL et al (2017) Targeted metatranscriptomics of compost-derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity. Biotechnol Biofuels 10:254. https://doi.org/10.1186/s13068-017-0944-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parro V, Moreno-Paz M, González-Toril E (2007) Analysis of environmental transcriptomes by DNA microarrays. Environ Microbiol 9(2):453–464

    Article  CAS  PubMed  Google Scholar 

  60. Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol Bioinforma 12:EBO-S36436

    Article  Google Scholar 

  61. Yadav RK et al (2014) Construction of sized eukaryotic cDNA libraries using low input of total environmental metatranscriptomic RNA. BMC Biotechnol 14(1):1–6

    Article  Google Scholar 

  62. An J et al (2020) Recent advances in enzyme-nanostructure biocatalysts with enhanced activity. Catalysts 10(3):338

    Article  CAS  Google Scholar 

  63. Shin HY, Park TJ, Il Kim M (2015) Recent research trends and future prospects in nanozymes. J Nanomater. https://doi.org/10.1155/2015/756278

    Article  Google Scholar 

  64. Korschelt K, Tahir MN, Tremel W (2018) A step into the future: applications of nanoparticle enzyme mimics. Chemistry 24(39):9703–9713. https://doi.org/10.1002/chem.201800384

    Article  CAS  PubMed  Google Scholar 

  65. Chapman R, Stenzel MH (2019) All wrapped up: stabilization of enzymes within single enzyme nanoparticles. J Am Chem Soc 141(7):2754–2769. https://doi.org/10.1021/jacs.8b10338

    Article  CAS  PubMed  Google Scholar 

  66. Scott D, Toney M, Muzikár M (2008) Harnessing the mechanism of glutathione reductase for synthesis of active site bound metallic nanoparticles and electrical connection to electrodes. J Am Chem Soc 130(3):865–874. https://doi.org/10.1021/ja074660g

    Article  CAS  PubMed  Google Scholar 

  67. van Etten MPC, Zijlstra B, Hensen EJM, Filot IAW (2021) Enumerating active sites on metal nanoparticles: understanding the size dependence of cobalt particles for CO dissociation. ACS Catal 11(14):8484–8492. https://doi.org/10.1021/acscatal.1c00651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093. https://doi.org/10.1039/c3cs35486e

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KD: Corresponding author, Conceptualizing and finalizing the draft manuscript. MG and RS: statistical analysis and diagrams. ZJ and GDT: molecular biotechnology information processing. MM, AB and SS: review, proof reading and content processing

Corresponding author

Correspondence to Kavya Dashora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No animal or human studies were carried out by the authors. Under authors’ observation, collection of dung was done by a trained person from the gaushala.

Consent for publication

On behalf of all the authors, I am authorized to give the consent for publishing this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashora, K., Gattupalli, M., Javed, Z. et al. Leveraging multiomics approaches for producing lignocellulose degrading enzymes. Cell. Mol. Life Sci. 79, 132 (2022). https://doi.org/10.1007/s00018-022-04176-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04176-7

Keywords

Navigation