Skip to main content
Log in

Cytochrome P450 CYP709C56 metabolizing mesosulfuron-methyl confers herbicide resistance in Alopecurus aequalis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Multiple herbicide resistance in diverse weed species endowed by enhanced herbicide detoxification or degradation is rapidly growing into a great threat to herbicide sustainability and global food safety. Although metabolic resistance is frequently documented in the economically damaging arable weed species shortawn foxtail (Alopecurus aequalis Sobol.), relevant molecular knowledge has been lacking. Previously, we identified a field population of A. aequalis (R) that had evolved metabolic resistance to the commonly used acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron-methyl. RNA sequencing was used to discover potential herbicide metabolism-related genes, and four cytochrome P450s (CYP709C56, CYP71R18, CYP94C117, and CYP94E14) were identified with higher expressions in the R vs. susceptible (S) plants. Here the full-length P450 complementary DNA transcripts were each cloned with identical sequences between the S and R plants. Transgenic Arabidopsis overexpressing CYP709C56 became resistant to the sulfonylurea herbicide mesosulfuron-methyl and the triazolo-pyrimidine herbicide pyroxsulam. This resistance profile generally but does not completely in accordance with what is evident in the R A. aequalis. Transgenic lines exhibited enhanced capacity for detoxifying mesosulfuron-methyl into O-demethylated metabolite, which is in line with the detection of O-demethylated herbicide metabolite in vitro in transformed yeast. Structural modeling predicted that mesosulfuron-methyl binds to CYP709C56 involving amino acid residues Thr-328, Thr-500, Asn-129, Gln-392, Phe-238, and Phe-242 for achieving O-demethylation. Constitutive expression of CYP709C56 was highly correlated with the metabolic mesosulfuron-methyl resistance in A. aequalis. These results indicate that CYP709C56 degrades mesosulfuron-methyl and its up-regulated expression in A. aequalis confers resistance to mesosulfuron-methyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data are available in the manuscript and in the Supplementary Information.

Code availability

Not applicable.

References

  1. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  2. Bagavathiannan MV, Graham S, Ma Z, Barney JN, Coutts SR, Caicedo AL, De Clerck-Floate R, West NM, Blank L, Metcalf AL, Lacoste M, Moreno CR, Evans JA, Burke I, Beckie H (2019) Considering weed management as a social dilemma bridges individual and collective interests. Nat Plants 5:343–351

    Article  PubMed  Google Scholar 

  3. Yuan JS, Tranel PJ, Stewart CN (2007) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:6–13

    Article  CAS  PubMed  Google Scholar 

  4. Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347

    Article  CAS  PubMed  Google Scholar 

  5. Gaines TA, Patterson EL, Neve P (2019) Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. New Phytol 223:1770–1775

    Article  PubMed  Google Scholar 

  6. Tranel PJ (2017) Herbicide-resistance mechanisms: gene amplification is not just for glyphosate. Pest Manag Sci 73:2225–2226

    Article  CAS  PubMed  Google Scholar 

  7. Beckie HJ, Tardif FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35:15–28

    Article  CAS  Google Scholar 

  8. Délye C (2013) Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci 69:176–187

    Article  PubMed  CAS  Google Scholar 

  9. Ma R, Kaundun SS, Tranel PJ, Riggins CW, McGinness DL, Hager AG, Hawkes T, Mclndoe E, Riechers DE (2013) Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiol 163:363–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vila-Aiub MM, Balbi MC, Distéfano AJ, Fernández L, Hopp E, Yu Q, Powles SB (2012) Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Manag Sci 68:430–436

    Article  CAS  PubMed  Google Scholar 

  11. Petit C, Duhieu B, Boucansaud K, Délye C (2010) Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds. Plant Sci 178:501–509

    Article  CAS  Google Scholar 

  12. Busi R, Vila-Aiub MM, Powles SB (2011) Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum. Heredity 106:817–824

    Article  CAS  PubMed  Google Scholar 

  13. Iwakami S, Endo M, Saika H, Okuno J, Nakamura N, Yokoyama M, Watanabe H, Toki S, Uchino A, Inamura T (2014) Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in Echinochloa phyllopogon. Plant Physiol 165:618–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwakami S, Kamidate Y, Yamaguchi T, Ishizaka M, Endo M, Suda H, Nagai K, Sunohara Y, Toki S, Uchino A, Tominaga T, Matsumoto H (2019) CYP81A P450s are involved in concomitant cross-resistance to ALS and ACCase herbicides in Echinochloa phyllopogon. New Phytol 221:2112–2122

    Article  CAS  PubMed  Google Scholar 

  15. Saika H, Horita J, Taguchi-Shiobara F, Nonaka S, Nishizawa-Yokoi A, Iwakami S, Hori K, Matsumoto T, Tanaka T, Itoh T, Yano M, Kaku K, Shimizu T, Toki S (2014) A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis. Plant Physiol 166:1232–1240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cummins I, Wortley DJ, Sabbadin F, He ZS, Coxon CR, Straker HE, Sellars JD, Knight K, Edwards L, Hughes D, Kaundun SS, Hutchings SJ, Steel PG, Edwards R (2013) Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc Natl Acad Sci USA 110:5812–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Evans AF, O’Brien SR, Ma R, Hager AG, Riggins CW, Lambert KN, Riechers DE (2017) Biochemical characterization of metabolism-based atrazine resistance in Amaranthus tuberculatus and identification of an expressed GST associated with resistance. Plant Biotechnol J 15:1238–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan L, Yu Q, Han HP, Mao LF, Nyporko A, Fan LJ, Bai LY, Powles SB (2019) Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiol 181:1519–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. LeBaron HM, McFarland J (1990) Herbicide resistance in weeds and crops. Managing resistance to agrochemicals. American Chemical Society, Washington, pp 336–352

    Chapter  Google Scholar 

  20. Brazier M, Cole DJ, Edwards R (2002) O-Glucosyltransferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Phytochemistry 59:149–156

    Article  CAS  PubMed  Google Scholar 

  21. Cummins I, Moss S, Cole DJ, Edwards R (1997) Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Pestic Sci 51:244–250

    Article  CAS  Google Scholar 

  22. Conte SS, Lloyd AM (2011) Exploring multiple drug and herbicide resistance in plants—Spotlight on transporter proteins. Plant Sci 180:196–203

    Article  CAS  PubMed  Google Scholar 

  23. Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:reviews3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nelson DR (2009) The cytochrome p450 homepage. Hum Genom 4:59–65

    Article  CAS  Google Scholar 

  25. Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315

    Article  CAS  PubMed  Google Scholar 

  26. Dimaano NG, Iwakami S (2021) Cytochrome P450-mediated herbicide metabolism in plants: current understanding and prospects. Pest Manag Sci 77:22–32

    Article  CAS  PubMed  Google Scholar 

  27. Dimaano NG, Yamaguchi T, Fukunishi K, Tominaga T, Iwakami S (2020) Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon. Plant Mol Biol 102:403–416

    Article  CAS  PubMed  Google Scholar 

  28. Guo F, Iwakami S, Yamaguchi T, Uchino A, Sunohara Y, Matsumoto H (2019) Role of CYP81A cytochrome P450s in clomazone metabolism in Echinochloa phyllopogon. Plant Sci 283:321–328

    Article  CAS  PubMed  Google Scholar 

  29. Guo WL, Liu WT, Li LX, Yuan GH, Du L, Wang JX (2015) Molecular basis for resistance to fenoxaprop in shortawn foxtail (Alopecurus aequalis) from China. Weed Sci 63:416–424

    Article  Google Scholar 

  30. Zhao N, Yan YY, Ge LA, Zhu BL, Liu WT, Wang JX (2019) Target site mutations and cytochrome P450s confer resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl in Alopecurus aequalis. Pest Manag Sci 75:204–214

    Article  CAS  PubMed  Google Scholar 

  31. Zhao N, Li W, Bai S, Guo WL, Yuan GH, Wang F, Liu WT, Wang JX (2017) Transcriptome profiling to identify genes involved in mesosulfuron-methyl resistance in Alopecurus aequalis. Front Plant Sci 8:1391

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aizawa H (2014) Mesosulfuron-methyl. Handbook of metabolic pathways of xenobiotics. Wiley, Oxford, pp 1761–1763

    Google Scholar 

  33. Zhao N, Yan YY, Luo YL, Zou N, Liu WT, Wang JX (2019) Unravelling mesosulfuron-methyl phytotoxicity and metabolism-based herbicide resistance in Alopecurus aequalis: insight into regulatory mechanisms using proteomics. Sci Total Environ 670:486–497

    Article  CAS  PubMed  Google Scholar 

  34. Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D (2011) Cytochromes P450. In: The Arabidopsis book. American Society of Plant Biologists, Maryland, pp e0144

  35. Ghanizadeh H, Harrington KC (2017) Non-target site mechanisms of resistance to herbicides. Crit Rev Plant Sci 36:24–34

    Article  Google Scholar 

  36. Pompon D, Louerat B, Bronine A, Urban P (1996) Yeast expression of animal and plant P450s in optimized redox environments. Methods in enzymology. Academic Press, Massachusetts, pp 51–64

    Google Scholar 

  37. Yu Q, Powles SB (2014) Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiol 166:1106–1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gaines TA, Lorentz L, Figge A, Herrmann J, Maiwald F, Ott MC, Han HP, Busi R, Yu Q, Powles SB, Beffa R (2014) RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J 78:865–876

    Article  CAS  PubMed  Google Scholar 

  39. Duhoux A, Carrere S, Gouzy J, Bonin L, Delye C (2015) RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Mol Biol 87:473–487

    Article  CAS  PubMed  Google Scholar 

  40. Gardin JA, Gouzy J, Carrere S, Delye C (2015) ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genom 16:590

    Article  CAS  Google Scholar 

  41. Bai S, Zhao YF, Zhou YM, Wang ML, Li YH, Luo XY, Li LX (2020) Identification and expression of main genes involved in non-target site resistance mechanisms to fenoxaprop-p-ethyl in Beckmannia syzigachne. Pest Manag Sci 76:2619–2626

    Article  CAS  PubMed  Google Scholar 

  42. Liu WT, Bai S, Zhao N, Jia SS, Li W, Zhang LL, Wang JX (2018) Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum (L.). BMC Plant Biol 18:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan BJ, Zhang YH, Li J, Fang JP, Liu TT, Dong LY (2019) Transcriptome profiling to identify cytochrome P450 genes involved in penoxsulam resistance in Echinochloa glabrescens. Pestic Biochem Physiol 158:112–120

    Article  CAS  PubMed  Google Scholar 

  44. Pan L, Yu Q, Wang JZ, Han HP, Mao LF, Nyporko A, Maguza A, Fan LJ, Bai LY, Powles SB (2021) An ABCC-type transporter endowing glyphosate resistance in plants. Proc Natl Acad Sci USA 118:e2100136118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han HP, Yu Q, Beffa R, González S, Maiwald F, Wang J, Powles SB (2020) Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. Plant J 105:79–92

    Article  PubMed  CAS  Google Scholar 

  46. Guo WL, Lv LL, Zhang LL, Li Q, Wu CX, Lu XT, Liu WT, Wang JX (2016) Herbicides cross resistance of a multiple resistant short-awn foxtail (Alopecurus aequalis Sobol.) population in wheat field. Chil J Agric Res 76:163–169

    Article  Google Scholar 

  47. Pan G, Zhang XY, Liu KD, Zhang JW, Wu XZ, Zhu J, Tu JM (2006) Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. Plant Mol Biol 61:933–943

    Article  CAS  PubMed  Google Scholar 

  48. Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66:194–211

    Article  CAS  PubMed  Google Scholar 

  49. Hamberger B, Bak S (2013) Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc B 368:20120426

    Article  CAS  Google Scholar 

  50. Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schröder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804

    Article  CAS  PubMed  Google Scholar 

  51. He J, Chen QW, Xin PY, Yuan J, Ma YH, Wang XM, Xu MM, Chu JF, Peters RJ, Wang GD (2019) CYP72A enzymes catalyse 13-hydrolyzation of gibberellins. Nat Plants 5:1057–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Imaishi H, Matumoto S (2007) Isolation and functional characterization in yeast of CYP72A18, a rice cytochrome P450 that catalyzes (omega-1)-hydroxylation of the herbicide pelargonic acid. Pestic Biochem Physiol 88:71–77

    Article  CAS  Google Scholar 

  53. Kandel S, Morant M, Benveniste I, Blee E, Werck-Reichhart D, Pinot F (2005) Cloning, functional expression, and characterization of CYP709C1, the first sub-terminal hydroxylase of long chain fatty acid in plants induction by chemicals and methyl jasmonate. J Biol Chem 280:35881–35889

    Article  CAS  PubMed  Google Scholar 

  54. Xu WY, Di C, Zhou SX, Liu J, Li L, Liu FX, Yang XL, Ling Y, Su Z (2015) Rice transcriptome analysis to identify possible herbicide quinclorac detoxification genes. Front Genet 6:306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yu XZ, Lu CJ, Tang S, Zhang Q (2020) Transcriptomic analysis of cytochrome P450 genes and pathways involved in chromium toxicity in Oryza sativa. Ecotoxicology 29:503–513

    Article  CAS  PubMed  Google Scholar 

  56. Jennings GK, Hsu MH, Shock LS, Johnson EF, Hackett JC (2018) Noncovalent interactions dominate dynamic heme distortion in cytochrome P450 4B1. J Biol Chem 293:11433–11446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thom R, Cummins I, Dixon DP, Edwards R, Cole DJ, Lapthorn AJ (2002) Structure of a Tau class glutathione S-transferase from wheat active in herbicide detoxification. Biochemistry 41:7008–7020

    Article  CAS  PubMed  Google Scholar 

  58. Neve P, Powles S (2005) High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity 95:485–492

    Article  CAS  PubMed  Google Scholar 

  59. Neve P, Powles S (2005) Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. Theor Appl Genet 110:1154–1166

    Article  CAS  PubMed  Google Scholar 

  60. Busi R, Neve P, Powles S (2013) Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation. Evol Appl 6:231–242

    Article  CAS  PubMed  Google Scholar 

  61. Zhao N, Yan Y, Du L, Zhang X, Liu W, Wang J (2020) Unravelling the effect of two herbicide resistance mutations on acetolactate synthase kinetics and growth traits. J Exp Bot 71:3535–3542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, Ismail HM, Hemingway J, Ranson H, Albert A, Wondji CS (2014) A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol 15:R27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2014) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  Google Scholar 

  64. Bautista MAM, Miyata T, Miura K, Tanaka T (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39:38–46

    Article  CAS  PubMed  Google Scholar 

  65. Sammons RD, Ivashuta S, Liu H, Wang D, Feng PC, Kouranov AY, Andersen SE (2011) Method for controlling herbicide-resistant plants. US Patent Application No. US2011/0296556 A1

  66. Yu DQ, Chen CH, Chen ZX (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mahmood K, Mathiassen SK, Kristensen M, Kudsk P (2016) Multiple herbicide resistance in Lolium multiflorum and identification of conserved regulatory elements of herbicide resistance genes. Front Plant Sci 7:1160

    PubMed  PubMed Central  Google Scholar 

  68. Li CB, Qiao ZY, Qi WW, Wang Q, Yuan Y, Yang X, Tang YP, Mei B, Lv YD, Zhao H, Xiao H, Song RT (2015) Genome-wide characterization of cis-Acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize. Plant Cell 27:532–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang X, Deng S, Wei XG, Yang J, Zhao QN, Yin C, Du TH, Guo ZJ, Xia JX, Yang ZZ, Xie W, Wang SL, Wu QJ, Yang FS, Zhou XG, Nauen R, Bass C, Zhang YJ (2020) MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance. Proc Natl Acad Sci USA 117:10246–10253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  72. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  75. Weigel D, Glazebrook J (2006) Transformation of agrobacterium using the freeze-thaw method. Cold Spring Harb Protoc 2006:1031–1036

    Google Scholar 

  76. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  77. Seefeldt SS, Jensen JE, Fuerst EP (1995) Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218–227

    Article  Google Scholar 

  78. Zhao N, Yan YY, Wang HZ, Bai S, Wang Q, Liu WT, Wang JX (2018) Acetolactate synthase overexpression in mesosulfuron-methyl-resistant shortawn foxtail (Alopecurus aequalis Sobol.): reference gene selection and herbicide target gene expression analysis. J Agric Food Chem 66:9624–9634

    Article  CAS  PubMed  Google Scholar 

  79. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  80. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang HX, Morgan JA (2004) Optimization of an in vivo plant P450 monooxygenase system in Saccharomyces cerevisiae. Biotechnol Bioeng 85:130–137

    Article  CAS  PubMed  Google Scholar 

  82. Renault H, Alber A, Horst NA, Lopes AB, Fich EA, Kriegshauser L, Wiedemann G, Ullmann P, Herrgott L, Erhardt M, Pineau E, Ehlting J, Schmitt M, Rose JKC, Reski R (2017) A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nat Commun 8:14713

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. David Nelson (Department of Microbiology, Immunology and Biochemistry, University of Tennessee) for naming the P450 genes, Dr. Hailong An (State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University) for providing the expression vector pPZP211, and Dr. Xingqi Guo (State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University) for providing Arabidopsis seeds (ecotype Columbia-0).

Funding

This work was funded by grants from the National Natural Science Foundation of China (No. 32102237 and 31772181), the Anhui Provincial Natural Science Foundation (No. 2108085QC115), and the Talent Research Project of Anhui Agricultural University (No. rc342004).

Author information

Authors and Affiliations

Authors

Contributions

NZ, WL, and JW designed the study. NZ and YY performed the experimental works and statistical analyses. NZ, YY, WL, and JW drafted and critically revised the manuscript.

Corresponding authors

Correspondence to Weitang Liu or Jinxin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 990 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Yan, Y., Liu, W. et al. Cytochrome P450 CYP709C56 metabolizing mesosulfuron-methyl confers herbicide resistance in Alopecurus aequalis. Cell. Mol. Life Sci. 79, 205 (2022). https://doi.org/10.1007/s00018-022-04171-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04171-y

Keywords

Navigation