Skip to main content

Advertisement

Log in

Coding and long non-coding gene expression changes in the CNS traumatic injuries

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) and spinal cord injury (SCI) are two main central nervous system (CNS) traumas, caused by external physical insults. Both injuries have devastating effects on the quality of life, and there is no effective therapy at present. Notably, gene expression profiling using bulk RNA sequencing (RNA-Seq) and single-cell RNA-Seq (scRNA-Seq) have revealed significant changes in many coding and non-coding genes, as well as important pathways in SCI and TBI. Particularly, recent studies have revealed that long non-coding RNAs (lncRNAs) with lengths greater than 200 nucleotides and without protein-coding potential have tissue- and cell type-specific expression pattern and play critical roles in CNS injury by gain- and loss-of-function approaches. LncRNAs have been shown to regulate protein-coding genes or microRNAs (miRNAs) directly or indirectly, participating in processes including inflammation, glial activation, cell apoptosis, and vasculature events. Therefore, lncRNAs could serve as potential targets for the diagnosis, treatment, and prognosis of SCI and TBI. In this review, we highlight the recent progress in transcriptome studies of SCI and TBI and insights into molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Wei and others (mouse study) [5] with permission and modification

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Injury GBDTB, Spinal Cord Injury C (2019) Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(1):56–87. https://doi.org/10.1016/S1474-4422(18)30415-0

    Article  Google Scholar 

  2. Ng SY, Lee AYW (2019) Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci 13:528. https://doi.org/10.3389/fncel.2019.00528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J (2017) Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron 95(6):1246–1265. https://doi.org/10.1016/j.neuron.2017.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duan H, Ge W, Zhang A, Xi Y, Chen Z, Luo D, Cheng Y, Fan KS, Horvath S, Sofroniew MV, Cheng L, Yang Z, Sun YE, Li X (2015) Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury. Proc Natl Acad Sci USA 112(43):13360–13365. https://doi.org/10.1073/pnas.1510176112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wei H, Wu X, You Y, Duran RC, Zheng Y, Narayanan KL, Hai B, Li X, Tallapragada N, Prajapati TJ, Kim DH, Deneen B, Cao QL, Wu JQ (2021) Systematic analysis of purified astrocytes after SCI unveils Zeb2os function during astrogliosis. Cell Rep 34(5):108721. https://doi.org/10.1016/j.celrep.2021.108721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duran RC, Yan H, Zheng Y, Huang X, Grill R, Kim DH, Cao Q, Wu JQ (2017) The systematic analysis of coding and long non-coding RNAs in the sub-chronic and chronic stages of spinal cord injury. Sci Rep 7:41008. https://doi.org/10.1038/srep41008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen K, Deng S, Lu H, Zheng Y, Yang G, Kim D, Cao Q, Wu JQ (2013) RNA-seq characterization of spinal cord injury transcriptome in acute/subacute phases: a resource for understanding the pathology at the systems level. PLoS ONE 8(8):e72567. https://doi.org/10.1371/journal.pone.0072567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou H, Shi Z, Kang Y, Wang Y, Lu L, Pan B, Liu J, Li X, Liu L, Wei Z, Kong X, Feng S (2018) Investigation of candidate long noncoding RNAs and messenger RNAs in the immediate phase of spinal cord injury based on gene expression profiles. Gene 661:119–125. https://doi.org/10.1016/j.gene.2018.03.074

    Article  CAS  PubMed  Google Scholar 

  9. Shi Z, Ning G, Zhang B, Yuan S, Zhou H, Pan B, Li J, Wei Z, Cao F, Kong X, Feng S (2019) Signatures of altered long noncoding RNAs and messenger RNAs expression in the early acute phase of spinal cord injury. J Cell Physiol 234(6):8918–8927. https://doi.org/10.1002/jcp.27560

    Article  CAS  PubMed  Google Scholar 

  10. Ding Y, Song Z, Liu J (2016) Aberrant LncRNA expression profile in a contusion spinal cord injury mouse model. Biomed Res Int 2016:9249401. https://doi.org/10.1155/2016/9249401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meng Q, Zhuang Y, Ying Z, Agrawal R, Yang X, Gomez-Pinilla F (2017) Traumatic brain injury induces genome-wide transcriptomic, methylomic, and network perturbations in brain and blood predicting neurological disorders. EBioMedicine 16:184–194. https://doi.org/10.1016/j.ebiom.2017.01.046

    Article  PubMed  PubMed Central  Google Scholar 

  12. Arneson D, Zhang G, Ying Z, Zhuang Y, Byun HR, Ahn IS, Gomez-Pinilla F, Yang X (2018) Single cell molecular alterations reveal target cells and pathways of concussive brain injury. Nat Commun 9(1):3894. https://doi.org/10.1038/s41467-018-06222-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563. https://doi.org/10.1126/science.1112014

    Article  CAS  PubMed  Google Scholar 

  14. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927. https://doi.org/10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Consortium EP, Birney E, Stamatoyannopoulos JA et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816. https://doi.org/10.1038/nature05874

    Article  CAS  Google Scholar 

  16. Cuevas-Diaz Duran R, Wei H, Wu JQ (2017) Single-cell RNA-sequencing of the brain. Clin Transl Med 6(1):20. https://doi.org/10.1186/s40169-017-0150-9

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dong X, You Y, Wu JQ (2016) Building an RNA sequencing transcriptome of the central nervous system. Neuroscientist 22(6):579–592. https://doi.org/10.1177/1073858415610541

    Article  CAS  PubMed  Google Scholar 

  18. Narayanan KL, Wu X, Wei H, Wu JQ (2020) Evolving roles of long noncoding RNAs. The Chemical biology of long noncoding RNAs. Springer, pp 59–84

    Chapter  Google Scholar 

  19. Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38(17):5797–5806. https://doi.org/10.1093/nar/gkq296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Sa B, Goodnough LH, Ja H, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323. https://doi.org/10.1016/j.cell.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cuevas-Diaz Duran R, Wei H, Kim DH, Wu JQ (2019) Invited Review: Long non-coding RNAs: important regulators in the development, function and disorders of the central nervous system. Neuropathol Appl Neurobiol 45(6):538–556. https://doi.org/10.1111/nan.12541

    Article  CAS  PubMed  Google Scholar 

  23. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187. https://doi.org/10.1038/nature09033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang L, Wang H (2019) Long non-coding RNA in CNS injuries: a new target for therapeutic intervention. Mol Ther Nucleic Acids 17:754–766. https://doi.org/10.1016/j.omtn.2019.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome 19(7–8):454–492. https://doi.org/10.1007/s00335-008-9136-7

    Article  CAS  PubMed  Google Scholar 

  26. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D’Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749. https://doi.org/10.7554/eLife.01749

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cuevas-Diaz Duran R, Wang CY, Zheng H, Deneen B, Wu JQ (2019) Brain region-specific gene signatures revealed by distinct astrocyte subpopulations unveil links to glioma and neurodegenerative diseases. eNeuro. https://doi.org/10.1523/ENEURO.0288-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dong X, Chen K, Cuevas-Diaz Duran R, You Y, Sloan SA, Zhang Y, Zong S, Cao Q, Barres BA, Wu JQ (2015) Comprehensive identification of long non-coding RNAs in purified cell types from the brain reveals functional LncRNA in OPC fate determination. PLoS Genet 11(12):e1005669. https://doi.org/10.1371/journal.pgen.1005669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salta E, De Strooper B (2017) Noncoding RNAs in neurodegeneration. Nat Rev Neurosci 18(10):627–640. https://doi.org/10.1038/nrn.2017.90

    Article  CAS  PubMed  Google Scholar 

  30. Pastori C, Wahlestedt C (2012) Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biol 9(6):860–870. https://doi.org/10.4161/rna.20482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He D, Wang J, Lu Y, Deng Y, Zhao C, Xu L, Chen Y, Hu YC, Zhou W, Lu QR (2017) lncRNA functional networks in oligodendrocytes reveal stage-specific myelination control by an lncOL1/Suz12 complex in the CNS. Neuron 93(2):362–378. https://doi.org/10.1016/j.neuron.2016.11.044

    Article  CAS  PubMed  Google Scholar 

  32. Jiang ZS, Zhang JR (2018) LncRNA SNHG5 enhances astrocytes and microglia viability via upregulating KLF4 in spinal cord injury. Int J Biol Macromol 120(Pt A):66–72. https://doi.org/10.1016/j.ijbiomac.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  33. Shi Z, Pan B, Feng S (2018) The emerging role of long non-coding RNA in spinal cord injury. J Cell Mol Med 22(4):2055–2061. https://doi.org/10.1111/jcmm.13515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang S, Smith GM, Selzer ME, Li S (2019) Emerging molecular therapeutic targets for spinal cord injury. Expert Opin Ther Targets 23(9):787–803. https://doi.org/10.1080/14728222.2019.1661381

    Article  PubMed  PubMed Central  Google Scholar 

  35. Khorkova O, Wahlestedt C (2017) Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol 35(3):249–263. https://doi.org/10.1038/nbt.3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herman PE, Bloom O (2018) Altered leukocyte gene expression after traumatic spinal cord injury: clinical implications. Neural Regen Res 13(9):1524–1529. https://doi.org/10.4103/1673-5374.237112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71(2):281–299

    Google Scholar 

  38. Dong X, Muppani NR, Wu J (2016) Long noncoding RNAs: critical regulators for cell lineage commitment in the central nervous system. Transcriptomics and gene regulation. Springer, pp 73–97

    Chapter  Google Scholar 

  39. Wang F, Liu J, Wang X, Chen J, Kong Q, Ye B, Li Z (2019) The emerging role of lncRNAs in spinal cord injury. Biomed Res Int 2019:3467121. https://doi.org/10.1155/2019/3467121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Z, Ho IHT, Li X, Xu D, Wu WKK, Chan MTV, Li S, Liu X (2019) Long non-coding RNAs in the spinal cord injury: novel spotlight. J Cell Mol Med 23(8):4883–4890. https://doi.org/10.1111/jcmm.14422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, Korsak RA, Takeda K, Akira S, Sofroniew MV (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28(28):7231–7243. https://doi.org/10.1523/JNEUROSCI.1709-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gong L, Lv Y, Li S, Feng T, Zhou Y, Sun Y, Mi D (2020) Changes in transcriptome profiling during the acute/subacute phases of contusional spinal cord injury in rats. Ann Transl Med 8(24):1682. https://doi.org/10.21037/atm-20-6519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Milich LM, Choi JS, Ryan C, Cerqueira SR, Benavides S, Yahn SL, Tsoulfas P, Lee JK (2021) Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J Exp Med. https://doi.org/10.1084/jem.20210040

    Article  PubMed  PubMed Central  Google Scholar 

  44. Llorens-Bobadilla E, Chell JM, Le Merre P, Wu Y, Zamboni M, Bergenstrahle J, Stenudd M, Sopova E, Lundeberg J, Shupliakov O, Carlen M, Frisen J (2020) A latent lineage potential in resident neural stem cells enables spinal cord repair. Science. https://doi.org/10.1126/science.abb8795

    Article  PubMed  Google Scholar 

  45. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282. https://doi.org/10.3389/fneur.2019.00282

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tran AP, Warren PM, Silver J (2021) New insights into glial scar formation after spinal cord injury. Cell Tissue Res. https://doi.org/10.1007/s00441-021-03477-w

    Article  PubMed  PubMed Central  Google Scholar 

  47. da Espirito Santo CC, da Silva FF, Ilha J, Duarte M, Duarte T, Santos ARS (2019) Spinal cord injury by clip-compression induces anxiety and depression-like behaviours in female rats: the role of the inflammatory response. Brain Behav Immun 78:91–104. https://doi.org/10.1016/j.bbi.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  48. Zhang T, Li K, Zhang ZL, Gao K, Lv CL (2021) LncRNA Airsci increases the inflammatory response after spinal cord injury in rats through the nuclear factor kappa B signaling pathway. Neural Regen Res 16(4):772–777. https://doi.org/10.4103/1673-5374.295335

    Article  PubMed  Google Scholar 

  49. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM (2009) Toll-like receptors in ischemia-reperfusion injury. Shock 32(1):4–16. https://doi.org/10.1097/SHK.0b013e318193e333

    Article  CAS  PubMed  Google Scholar 

  50. Li XQ, Wang J, Fang B, Tan WF, Ma H (2014) Intrathecal antagonism of microglial TLR4 reduces inflammatory damage to blood-spinal cord barrier following ischemia/reperfusion injury in rats. Mol Brain 7:28. https://doi.org/10.1186/1756-6606-7-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jia H, Ma H, Li Z, Chen F, Fang B, Cao X, Chang Y, Qiang Z (2019) Downregulation of LncRNA TUG1 inhibited TLR4 signaling pathway-mediated inflammatory damage after spinal cord ischemia reperfusion in rats via suppressing TRIL expression. J Neuropathol Exp Neurol 78(3):268–282. https://doi.org/10.1093/jnen/nly126

    Article  CAS  PubMed  Google Scholar 

  52. Li JW, Kuang Y, Chen L, Wang JF (2018) LncRNA ZNF667-AS1 inhibits inflammatory response and promotes recovery of spinal cord injury via suppressing JAK-STAT pathway. Eur Rev Med Pharmacol Sci 22(22):7614–7620. https://doi.org/10.26355/eurrev_201811_16375

    Article  PubMed  Google Scholar 

  53. Orr MB, Gensel JC (2018) Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15(3):541–553. https://doi.org/10.1007/s13311-018-0631-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. O’Shea TM, Burda JE, Sofroniew MV (2017) Cell biology of spinal cord injury and repair. J Clin Invest 127(9):3259–3270. https://doi.org/10.1172/JCI90608

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li Y, He X, Kawaguchi R, Zhang Y, Wang Q, Monavarfeshani A, Yang Z, Chen B, Shi Z, Meng H, Zhou S, Zhu J, Jacobi A, Swarup V, Popovich PG, Geschwind DH, He Z (2020) Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587(7835):613–618. https://doi.org/10.1038/s41586-020-2795-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou HJ, Wang LQ, Wang DB, Yu JB, Zhu Y, Xu QS, Zheng XJ, Zhan RY (2018) Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKbeta/NF-kappaB signaling pathway. Am J Physiol Cell Physiol 315(1):C52–C61. https://doi.org/10.1152/ajpcell.00278.2017

    Article  CAS  PubMed  Google Scholar 

  57. Zhu Y, Lyapichev K, Lee DH, Motti D, Ferraro NM, Zhang Y, Yahn S, Soderblom C, Zha J, Bethea JR, Spiller KL, Lemmon VP, Lee JK (2017) Macrophage transcriptional profile identifies lipid catabolic pathways that can be therapeutically targeted after spinal cord injury. J Neurosci 37(9):2362–2376. https://doi.org/10.1523/JNEUROSCI.2751-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou J, Li Z, Wu T, Zhao Q, Zhao Q, Cao Y (2020) LncGBP9/miR-34a axis drives macrophages toward a phenotype conducive for spinal cord injury repair via STAT1/STAT6 and SOCS3. J Neuroinflammation 17(1):134. https://doi.org/10.1186/s12974-020-01805-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wahane S, Sofroniew MV (2021) Review article for CTR special issue edited by C. Schachtrup Title of Special Issue: “modulating scar formation for improving brain repair” Loss-of-function manipulations to identify roles of diverse glia and stromal cells during CNS scar formation. Cell Tissue Res. https://doi.org/10.1007/s00441-021-03487-8

    Article  PubMed  PubMed Central  Google Scholar 

  60. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598):195–200. https://doi.org/10.1038/nature17623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anderson MA, O’Shea TM, Burda JE, Ao Y, Barlatey SL, Bernstein AM, Kim JH, James ND, Rogers A, Kato B, Wollenberg AL, Kawaguchi R, Coppola G, Wang C, Deming TJ, He Z, Courtine G, Sofroniew MV (2018) Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561(7723):396–400. https://doi.org/10.1038/s41586-018-0467-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33(31):12870–12886. https://doi.org/10.1523/JNEUROSCI.2121-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang J, Hu B, Cao F, Sun S, Zhang Y, Zhu Q (2015) Down regulation of lncSCIR1 after spinal cord contusion injury in rat. Brain Res 1624:314–320. https://doi.org/10.1016/j.brainres.2015.07.052

    Article  CAS  PubMed  Google Scholar 

  64. Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS (2012) Inflammation and apoptosis in spinal cord injury. Indian J Med Res 135:287–296

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang H, Li D, Zhang Y, Li J, Ma S, Zhang J, Xiong Y, Wang W, Li N, Xia L (2018) Knockdown of lncRNA BDNF-AS suppresses neuronal cell apoptosis via downregulating miR-130b-5p target gene PRDM5 in acute spinal cord injury. RNA Biol 15(8):1071–1080. https://doi.org/10.1080/15476286.2018.1493333

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gu S, Xie R, Liu X, Shou J, Gu W, Che X (2017) Long coding RNA XIST contributes to neuronal apoptosis through the downregulation of AKT phosphorylation and is negatively regulated by miR-494 in rat spinal cord injury. Int J Mol Sci. https://doi.org/10.3390/ijms18040732

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang H, Wang W, Li N, Li P, Liu M, Pan J, Wang D, Li J, Xiong Y, Xia L (2018) LncRNA DGCR5 suppresses neuronal apoptosis to improve acute spinal cord injury through targeting PRDM5. Cell Cycle 17(16):1992–2000. https://doi.org/10.1080/15384101.2018.1509622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ren XD, Wan CX, Niu YL (2019) Overexpression of lncRNA TCTN2 protects neurons from apoptosis by enhancing cell autophagy in spinal cord injury. FEBS Open Bio 9(7):1223–1231. https://doi.org/10.1002/2211-5463.12651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu Y, Pan L, Jiang A, Yin M (2018) Hydrogen sulfide upregulated lncRNA CasC7 to reduce neuronal cell apoptosis in spinal cord ischemia-reperfusion injury rat. Biomed Pharmacother 98:856–862. https://doi.org/10.1016/j.biopha.2017.12.079

    Article  CAS  PubMed  Google Scholar 

  70. Zhong J, Jiang L, Cheng C, Huang Z, Zhang H, Liu H, He J, Cao F, Peng J, Jiang Y, Sun X (2016) Altered expression of long non-coding RNA and mRNA in mouse cortex after traumatic brain injury. Brain Res 1646:589–600. https://doi.org/10.1016/j.brainres.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  71. Ren D, Chen W, Cao K, Wang Z, Zheng P (2020) Expression profiles of long non-coding RNA and messenger RNA in human traumatic brain injury. Mol Ther Nucleic Acids 22:99–113. https://doi.org/10.1016/j.omtn.2020.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Simon DW, McGeachy MJ, Bayir H, Clark RSB, Loane DJ, Kochanek PM (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13(9):572. https://doi.org/10.1038/nrneurol.2017.116

    Article  PubMed  Google Scholar 

  73. Dash PK, Zhao J, Hergenroeder G, Moore AN (2010) Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics 7(1):100–114. https://doi.org/10.1016/j.nurt.2009.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cheng S, Zhang Y, Chen S, Zhou Y (2021) LncRNA HOTAIR participates in microglia activation and inflammatory factor release by regulating the ubiquitination of MYD88 in traumatic brain injury. J Mol Neurosci 71(1):169–177. https://doi.org/10.1007/s12031-020-01623-7

    Article  CAS  PubMed  Google Scholar 

  75. Liu N, Sun H, Li X, Cao W, Peng A, Dong S, Yu Z (2021) Downregulation of lncRNA KCNQ1OT1 relieves traumatic brain injury induced neurological deficits via promoting “M2” microglia polarization. Brain Res Bull 171:91–102. https://doi.org/10.1016/j.brainresbull.2021.03.004

    Article  CAS  PubMed  Google Scholar 

  76. Patel NA, Moss LD, Lee JY, Tajiri N, Acosta S, Hudson C, Parag S, Cooper DR, Borlongan CV, Bickford PC (2018) Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. J Neuroinflammation 15(1):204. https://doi.org/10.1186/s12974-018-1240-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen C, Zhong X, Smith DK, Tai W, Yang J, Zou Y, Wang LL, Sun J, Qin S, Zhang CL (2019) Astrocyte-specific deletion of Sox2 promotes functional recovery after traumatic brain injury. Cereb Cortex 29(1):54–69. https://doi.org/10.1093/cercor/bhx303

    Article  PubMed  Google Scholar 

  78. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952. https://doi.org/10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J (2020) Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal 18(1):62. https://doi.org/10.1186/s12964-020-00549-2

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yu Y, Cao F, Ran Q, Wang F (2017) Long non-coding RNA Gm4419 promotes trauma-induced astrocyte apoptosis by targeting tumor necrosis factor alpha. Biochem Biophys Res Commun 491(2):478–485. https://doi.org/10.1016/j.bbrc.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  81. He B, Chen W, Zeng J, Tong W, Zheng P (2021) Long noncoding RNA NKILA transferred by astrocyte-derived extracellular vesicles protects against neuronal injury by upregulating NLRX1 through binding to mir-195 in traumatic brain injury. Aging (Albany NY) 13(6):8127–8145. https://doi.org/10.18632/aging.202618

    Article  CAS  Google Scholar 

  82. Zhang Y, Wang J, Zhang Y, Wei J, Wu R, Cai H (2019) Overexpression of long noncoding RNA Malat1 ameliorates traumatic brain injury induced brain edema by inhibiting AQP4 and the NF-kappaB/IL-6 pathway. J Cell Biochem 120(10):17584–17592. https://doi.org/10.1002/jcb.29025

    Article  CAS  PubMed  Google Scholar 

  83. Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14(2):215–222. https://doi.org/10.1111/j.1750-3639.2004.tb00056.x

    Article  PubMed  Google Scholar 

  84. Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS (2005) Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care 9(1):66–75. https://doi.org/10.1186/cc2950

    Article  CAS  PubMed  Google Scholar 

  85. Wang CF, Zhao CC, Weng WJ, Lei J, Lin Y, Mao Q, Gao GY, Feng JF, Jiang JY (2017) Alteration in long non-coding RNA expression after traumatic brain injury in rats. J Neurotrauma 34(13):2100–2108. https://doi.org/10.1089/neu.2016.4642

    Article  PubMed  Google Scholar 

  86. Dai X, Yi M, Wang D, Chen Y, Xu X (2019) Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model. Biol Chem 400(6):753–763. https://doi.org/10.1515/hsz-2018-0340

    Article  CAS  PubMed  Google Scholar 

  87. Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, Wang D, Zhao X, Huang A, Xiang Z, Zhao C, Franklin RJ, Cao L, He C (2017) LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 18(10):1801–1816. https://doi.org/10.15252/embr.201643668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yi M, Dai X, Li Q, Xu X, Chen Y, Wang D (2019) Downregulated lncRNA CRNDE contributes to the enhancement of nerve repair after traumatic brain injury in rats. Cell Cycle 18(18):2332–2343. https://doi.org/10.1080/15384101.2019.1647024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhong J, Jiang L, Huang Z, Zhang H, Cheng C, Liu H, He J, Wu J, Darwazeh R, Wu Y, Sun X (2017) The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice. Brain Behav Immun 65:183–194. https://doi.org/10.1016/j.bbi.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  90. Salehi A, Zhang JH, Obenaus A (2017) Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab 37(7):2320–2339. https://doi.org/10.1177/0271678X17701460

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kenney K, Amyot F, Haber M, Pronger A, Bogoslovsky T, Moore C, Diaz-Arrastia R (2016) Cerebral vascular injury in traumatic brain injury. Exp Neurol 275(Pt 3):353–366. https://doi.org/10.1016/j.expneurol.2015.05.019

    Article  PubMed  Google Scholar 

  92. Li Z, Li J, Tang N (2017) Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience 354:1–10. https://doi.org/10.1016/j.neuroscience.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  93. Yang X, Zi XH (2019) LncRNA SNHG1 alleviates OGD induced injury in BMEC via miR-338/HIF-1alpha axis. Brain Res 1714:174–181. https://doi.org/10.1016/j.brainres.2018.11.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Neha Tallapragada and Ms. Pooja Sashital for editing the manuscript.

Funding

This work was supported by Grants from the NIH, United States (R01 NS088353, R21 NS113068-01, and R21 EY028647-01), The Staman Ogilvie Fund-Memorial Hermann Foundation, and Mission Connect, a program of The Institute for Rehabilitation and Research (TIRR) Foundation.

Author information

Authors and Affiliations

Authors

Contributions

XW, HW, and JQW wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Jia Qian Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

No animal or human study was performed.

Consent for publication

All the authors gave their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wei, H. & Wu, J.Q. Coding and long non-coding gene expression changes in the CNS traumatic injuries. Cell. Mol. Life Sci. 79, 123 (2022). https://doi.org/10.1007/s00018-021-04092-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04092-2

Keywords

Navigation