Skip to main content
Log in

Biophysical and biochemical properties of PHGDH revealed by studies on PHGDH inhibitors

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The rate-limiting serine biogenesis enzyme PHGDH is overexpressed in cancers. Both serine withdrawal and genetic/pharmacological inhibition of PHGDH have demonstrated promising tumor-suppressing activities. However, the enzyme properties of PHGDH are not well understood and the discovery of PHGDH inhibitors is still in its infancy. Here, oridonin was identified from a natural product library as a new PHGDH inhibitor. The crystal structure of PHGDH in complex with oridonin revealed a new allosteric site. The binding of oridonin to this site reduced the activity of the enzyme by relocating R54, a residue involved in substrate binding. Mutagenesis studies showed that PHGDH activity was very sensitive to cysteine mutations, especially those in the substrate binding domain. Conjugation of oridonin and other reported covalent PHGDH inhibitors to these sites will therefore inhibit PHGDH. In addition to being inhibited enzymatically, PHGDH can also be inhibited by protein aggregation and proteasome-mediated degradation. Several tested PHGDH cancer mutants showed altered enzymatic activity, which can be explained by protein structure and stability. Overall, the above studies present new biophysical and biochemical insights into PHGDH and may facilitate the future design of PHGDH inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The resulting model has been deposited in Protein Data Bank with the accession code 7DKM. The MS raw data has been deposited into the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with a dataset identifier of PXD029445 [49].

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  2. Mattaini KR, Sullivan MR, Vander Heiden MG (2016) The importance of serine metabolism in cancer. J Cell Biol 214:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, Manalis SR, Vander Heiden MG (2016) Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell 36:540–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao X, Fu J, Du J, Xu W (2020) The role of D-3-phosphoglycerate dehydrogenase in cancer. Int J Biol Sci 16:1495–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK et al (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song Z, Feng C, Lu Y, Lin Y, Dong C (2018) PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer. Gene 642:43–50

    Article  CAS  PubMed  Google Scholar 

  7. Zhu J, Ma J, Wang X, Ma T, Zhang S, Wang W, Zhou X, Shi J (2016) High expression of PHGDH predicts poor prognosis in non-small cell lung cancer. Transl Oncol 9:592–599

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jing Z, Heng W, Xia L, Ning W, Yafei Q, Yao Z, Shulan Z (2015) Downregulation of phosphoglycerate dehydrogenase inhibits proliferation and enhances cisplatin sensitivity in cervical adenocarcinoma cells by regulating Bcl-2 and caspase-3. Cancer Biol Ther 16:541–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mullarky E, Lucki NC, Beheshti Zavareh R, Anglin JL, Gomes AP, Nicolay BN, Wong JC, Christen S, Takahashi H, Singh PK et al (2016) Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc Natl Acad Sci USA 113:1778–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pacold ME, Brimacombe KR, Chan SH, Rohde JM, Lewis CA, Swier LJ, Possemato R, Chen WW, Sullivan LB, Fiske BP et al (2016) A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat Chem Biol 12:452–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Q, Liberti MV, Liu P, Deng X, Liu Y, Locasale JW, Lai L (2017) Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem Biol 24:55–65

    Article  CAS  PubMed  Google Scholar 

  12. Zheng M, Guo J, Xu J, Yang K, Tang R, Gu X, Li H, Chen L (2019) Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. Food Funct 10:3386–3395

    Article  CAS  PubMed  Google Scholar 

  13. Weinstabl H, Treu M, Rinnenthal J, Zahn SK, Ettmayer P, Bader G, Dahmann G, Kessler D, Rumpel K, Mischerikow N et al (2019) Intracellular trapping of the selective phosphoglycerate dehydrogenase (PHGDH) inhibitor BI-4924 disrupts serine biosynthesis. J Med Chem 62:7976–7997

    Article  CAS  PubMed  Google Scholar 

  14. Mullarky E, Xu J, Robin AD, Huggins DJ, Jennings A, Noguchi N, Olland A, Lakshminarasimhan D, Miller M, Tomita D et al (2019) Inhibition of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides abrogates de novo serine synthesis in cancer cells. Bioorg Med Chem Lett 29:2503–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo J, Gu X, Zheng M, Zhang Y, Chen L, Li H (2019) Azacoccone E inhibits cancer cell growth by targeting 3-phosphoglycerate dehydrogenase. Bioorg Chem 87:16–22

    Article  CAS  PubMed  Google Scholar 

  16. Spillier Q, Vertommen D, Ravez S, Marteau R, Themans Q, Corbet C, Feron O, Wouters J, Frederick R (2019) Anti-alcohol abuse drug disulfiram inhibits human PHGDH via disruption of its active tetrameric form through a specific cysteine oxidation. Sci Rep 9:4737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ravez S, Corbet C, Spillier Q, Dutu A, Robin AD, Mullarky E, Cantley LC, Feron O, Frederick R (2017) alpha-ketothioamide derivatives: a promising tool to interrogate phosphoglycerate dehydrogenase (PHGDH). J Med Chem 60:1591–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spillier Q, Ravez S, Unterlass J, Corbet C, Degavre C, Feron O, Frederick R (2020) Structure-activity relationships (SARs) of alpha-ketothioamides as inhibitors of phosphoglycerate dehydrogenase (PHGDH). Pharmaceuticals (Basel) 13:20

    Article  CAS  Google Scholar 

  19. Ravez S, Spillier Q, Marteau R, Feron O, Frederick R (2017) Challenges and opportunities in the development of serine synthetic pathway inhibitors for cancer therapy. J Med Chem 60:1227–1237

    Article  CAS  PubMed  Google Scholar 

  20. Lu Y, Sun Y, Zhu J, Yu L, Jiang X, Zhang J, Dong X, Ma B, Zhang Q (2018) Oridonin exerts anticancer effect on osteosarcoma by activating PPAR-gamma and inhibiting Nrf2 pathway. Cell Death Dis 9:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Huang W, Huang M, Ouyang H, Peng J, Liang J (2018) Oridonin inhibits vascular inflammation by blocking NF-kappaB and MAPK activation. Eur J Pharmacol 826:133–139

    Article  CAS  PubMed  Google Scholar 

  22. Lei Y, An Q, Zhang Y, Luo P, Luo Y, Shen X, Jia D, Sun Q (2020) Engineering chromosome region maintenance 1 fragments that bind to nuclear export signals. Protein Sci 29:1366–1372

    Article  CAS  PubMed  Google Scholar 

  23. Unterlass JE, Basle A, Blackburn TJ, Tucker J, Cano C, Noble MEM, Curtin NJ (2018) Validating and enabling phosphoglycerate dehydrogenase (PHGDH) as a target for fragment-based drug discovery in PHGDH-amplified breast cancer. Oncotarget 9:13139–13153

    Article  PubMed  Google Scholar 

  24. Xu H, Qing X, Wang Q, Li C, Lai L (2021) Dimerization of PHGDH via the catalytic unit is essential for its enzymatic function. J Biol Chem 296:100572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor IR, Assimon VA, Kuo SY, Rinaldi S, Li X, Young ZT, Morra G, Green K, Nguyen D, Shao H et al (2020) Tryptophan scanning mutagenesis as a way to mimic the compound-bound state and probe the selectivity of allosteric inhibitors in cells. Chem Sci 11:1892–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tabatabaie L, de Koning TJ, Geboers AJ, van den Berg IE, Berger R, Klomp LW (2009) Novel mutations in 3-phosphoglycerate dehydrogenase (PHGDH) are distributed throughout the protein and result in altered enzyme kinetics. Hum Mutat 30:749–756

    Article  CAS  PubMed  Google Scholar 

  27. Vaupel P, Schmidberger H, Mayer A (2019) The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 95:912–919

    Article  CAS  PubMed  Google Scholar 

  28. Poff A, Koutnik AP, Egan KM, Sahebjam S, D’Agostino D, Kumar NB (2019) Targeting the Warburg effect for cancer treatment: ketogenic diets for management of glioma. Semin Cancer Biol 56:135–148

    Article  CAS  PubMed  Google Scholar 

  29. Ngo B, Kim E, Osorio-Vasquez V, Doll S, Bustraan S, Liang RJ, Luengo A, Davidson SM, Ali A, Ferraro GB et al (2020) Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov 10:1352–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJF, Mackay GM, Labuschagne CF, Gay D, Kruiswijk F et al (2017) Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544:372–376

    Article  CAS  PubMed  Google Scholar 

  31. He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, Liu Q, Liang G, Deng X, Jiang W et al (2018) Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun 9:2550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Vasaturo M, Cotugno R, Fiengo L, Vinegoni C, Dal Piaz F, De Tommasi N (2018) The anti-tumor diterpene oridonin is a direct inhibitor of Nucleolin in cancer cells. Sci Rep 8:16735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Shen X, Zhao L, Chen P, Gong Y, Liu D, Zhang X, Dai L, Sun Q, Lou J, Jin Z et al (2019) A thiazole-derived oridonin analogue exhibits antitumor activity by directly and allosterically inhibiting STAT3. J Biol Chem 294:17471–17486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yao H, Xie S, Ma X, Liu J, Wu H, Lin A, Yao H, Li D, Xu S, Yang DH et al (2020) Identification of a potent oridonin analogue for treatment of triple-negative breast cancer. J Med Chem 63:8157–8178

    Article  CAS  PubMed  Google Scholar 

  35. Raghavendra NM, Pingili D, Kadasi S, Mettu A, Prasad S (2018) Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur J Med Chem 143:1277–1300

    Article  CAS  PubMed  Google Scholar 

  36. Ding Y, Ding C, Ye N, Liu Z, Wold EA, Chen H, Wild C, Shen Q, Zhou J (2016) Discovery and development of natural product oridonin-inspired anticancer agents. Eur J Med Chem 122:102–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thompson JR, Bell JK, Bratt J, Grant GA, Banaszak LJ (2005) Vmax regulation through domain and subunit changes. The active form of phosphoglycerate dehydrogenase. Biochemistry 44:5763–5773

    Article  CAS  PubMed  Google Scholar 

  38. Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, Chen Y, Babbar A, Firdaus SJ, Darjania L et al (2018) Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172:578-589 e517

    Article  CAS  PubMed  Google Scholar 

  39. Pan S, Jang SY, Liew SS, Fu J, Wang D, Lee JS, Yao SQ (2018) A vinyl sulfone-based fluorogenic probe capable of selective labeling of PHGDH in live mammalian cells. Angew Chem Int Ed Engl 57:579–583

    Article  CAS  PubMed  Google Scholar 

  40. Ma P, Xue Y, Coquelle N, Haller JD, Yuwen T, Ayala I, Mikhailovskii O, Willbold D, Colletier JP, Skrynnikov NR et al (2015) Observing the overall rocking motion of a protein in a crystal. Nat Commun 6:8361

    Article  CAS  PubMed  Google Scholar 

  41. Yao Z, Xie F, Li M, Liang Z, Xu W, Yang J, Liu C, Li H, Zhou H, Qu LH (2017) Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis 8:e2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwan HY, Yang Z, Fong WF, Hu YM, Yu ZL, Hsiao WL (2013) The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells. J Gastroenterol 48:182–192

    Article  CAS  PubMed  Google Scholar 

  43. Huang H, Weng H, Dong B, Zhao P, Zhou H, Qu L (2017) Oridonin triggers chaperon-mediated proteasomal degradation of BCR-ABL in leukemia. Sci Rep 7:41525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mogk A, Bukau B, Kampinga HH (2018) Cellular handling of protein aggregates by disaggregation machines. Mol Cell 69:214–226

    Article  CAS  PubMed  Google Scholar 

  45. Sullivan MR, Mattaini KR, Dennstedt EA, Nguyen AA, Sivanand S, Reilly MF, Meeth K, Muir A, Darnell AM, Bosenberg MW et al (2019) Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metab 29:1410-1421 e1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reid MA, Allen AE, Liu S, Liberti MV, Liu P, Liu X, Dai Z, Gao X, Wang Q, Liu Y et al (2018) Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat Commun 9:5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma X, Li B, Liu J, Fu Y, Luo Y (2019) Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E. J Exp Clin Cancer Res 38:66

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang W-Z, Tang J-C, Wang S-S, Wang Z-J, Qin W-M, He J-H (2019) The protein complex crystallography beamline (BL19U1) at the Shanghai Synchrotron Radiation Facility. Nucl Sci Tech 30:170

    Article  CAS  Google Scholar 

  49. Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, Li K, Zhang G, Jin Z, He F et al (2019) iProX: an integrated proteome resource. Nucleic Acids Res 47:D1211–D1217

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staffs from BL17B1/BL18U1/BL19U1/BL19U2/BL01B beamline of National Facility for Protein Science in Shanghai (NFPS) at Shanghai Synchrotron Radiation Facility, for assistance during data collection [48]. We appreciate Dr. Xiaofei Shen for providing resources and technical assistances.

Funding

YZ is funded by the National S&T Major Project (2018ZX09201018), and LD is funded by the program of National Clinical Research Center for Geriatrics of West China Hospital (No. Z20191001).

Author information

Authors and Affiliations

Authors

Contributions

QS and YT conceived the project and prepared the manuscript. YT, XZ, YG, and KG performed all the experiments. QS, YZ, LD, YL, and DJ supervised the project, and/or provided relevant resources.

Corresponding authors

Correspondence to Lunzhi Dai, Yinglan Zhao or Qingxiang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have read and approved the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 428 KB)

Supplementary file2 (DOCX 4857 KB)

Supplementary file3 (XLSX 275 KB)

Supplementary file4 (PZFX 254 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Zhou, X., Gong, Y. et al. Biophysical and biochemical properties of PHGDH revealed by studies on PHGDH inhibitors. Cell. Mol. Life Sci. 79, 27 (2022). https://doi.org/10.1007/s00018-021-04022-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04022-2

Keywords

Navigation