Skip to main content
Log in

The protein complex crystallography beamline (BL19U1) at the Shanghai Synchrotron Radiation Facility

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science (Shanghai, China). The beamline, which features a small-gap in-vacuum undulator, has been officially open to users since March 2015. This beamline delivers X-ray in the energy range 7–15 keV. With its high flux, low divergence beam and a large active area detector, BL19U1 is designed for proteins with large molecular weight and large crystallographic unit cell dimensions. Good performance and stable operation of the beamline have allowed the number of Protein Data Bank (PDB) depositions and the number of articles published based on data collected at this beamline to increase steadily. To date, over 300 research groups have collected data at the beamline. More than 600 PDB entries have been deposited at the PDB (www.pdb.org). More than 300 papers have been published that include data collected at the beamline, including 21 research articles published in the top-level journals Cell, Nature, and Science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.E. Thomas, V. Mendes, S.Y. Kim et al., Structural biology and the design of new therapeutics: from HIV and cancer to mycobacterial infections—a paper dedicated to John Kendrew. J. Mol. Biol. 429(17), 2677–2693 (2017). https://doi.org/10.1016/j.jmb.2017.06.014

    Article  Google Scholar 

  2. D.C. Wang, Structural biology in China. Prog. Biochem. Biophys. 41(10), 944–971 (2014). https://doi.org/10.3724/Sp.J.1206.2014.00240

    Article  Google Scholar 

  3. M. Jiang, X. Yang, H. Xu et al., Shanghai Synchrotron Radiation Facility. Chin. Sci. Bull. 54(22), 4171 (2009). https://doi.org/10.1007/s11434-009-0689-y

    Article  Google Scholar 

  4. R.L. Owen, J. Juanhuix, M. Fuchs, Current advances in synchrotron radiation instrumentation for MX experiments. Arch. Biochem. Biophys. 602, 21–31 (2016). https://doi.org/10.1016/j.abb.2016.03.021

    Article  Google Scholar 

  5. W.R. Wikoff, W. Schildkamp, J.E. Johnson, Increased resolution data from a large unit cell crystal collected at a third-generation synchrotron X-ray source. Acta Crystallogr. Sect. D 56(7), 890–893 (2000). https://doi.org/10.1107/S0907444900005941

    Article  Google Scholar 

  6. N. Li, X. Li, Y. Wang et al., The new NCPSS BL19U2 beamline at the SSRF for small-angle X-ray scattering from biological macromolecules in solution. J. Appl. Crystallogr. 49(Pt 5), 1428–1432 (2016). https://doi.org/10.1107/S160057671601195X

    Article  Google Scholar 

  7. H. Qin, Y. Zhao, N. Wang et al., Layout and operation of the undulator canted beamlines on BL19U at SSRF. Nucl. Tech. 39(11), 110101 (2016). https://doi.org/10.11889/j.0253-3219.2016.hjs.39.110101. (in Chinese)

    Article  Google Scholar 

  8. A. Perrakis, F. Cipriani, J.C. Castagna et al., Protein microcrystals and the design of a microdiffractometer: current experience and plans at EMBL and ESRF/ID13. Acta Crystallogr. D Biol. Crystallogr. 55(Pt 10), 1765–1770 (1999). https://doi.org/10.1107/s0907444999009348

    Article  Google Scholar 

  9. T. Loeliger, C. Bronnimann, T. Donath, et al., The new PILATUS3 ASIC with instant retrigger capability, in: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (Nss/Mic) (2012), pp. 610–615. https://doi.org/10.1109/nssmic.2012.6551180

  10. T.M. McPhillips, S.E. McPhillips, H.-J. Chiu et al., Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 9(6), 401–406 (2002). https://doi.org/10.1107/S0909049502015170

    Article  Google Scholar 

  11. Q. Wang, S. Huang, B. Sun et al., Control and data acquisition system for the macromolecular crystallography beamline of SSRF. Nucl. Tech. 35, 5–11 (2012). (in Chinese)

    Google Scholar 

  12. Q.S. Wang, K.H. Zhang, Y. Cui et al., Upgrade of macromolecular crystallography beamline BL17U1at SSRF. Nucl. Sci. Tech. 29, 68 (2018). https://doi.org/10.1007/s41365-018-0398-9

    Article  Google Scholar 

  13. P. Liu, Y.N. Zhou, Q.R. Mi et al., EPICS-based data acquisition system on beamlines at SSRF. Nucl. Tech. 33, 415–419 (2010). (in Chinese)

    Google Scholar 

  14. W. Minor, M. Cymborowski, Z. Otwinowski et al., HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D 62(8), 859–866 (2006). https://doi.org/10.1107/S0907444906019949

    Article  Google Scholar 

  15. W. Kabsch, Automatic indexing of rotation diffraction patterns. J. Appl. Crystallogr. 21(1), 67–72 (1988). https://doi.org/10.1107/S0021889887009737

    Article  Google Scholar 

  16. M.D. Winn, C.C. Ballard, K.D. Cowtan et al., Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67(Pt 4), 235–242 (2011). https://doi.org/10.1107/S0907444910045749

    Article  Google Scholar 

  17. P.D. Adams, P.V. Afonine, G. Bunkoczi et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66(Pt 2), 213–221 (2010). https://doi.org/10.1107/S0907444909052925

    Article  Google Scholar 

  18. G.M. Sheldrick, A short history of SHELX. Acta Crystallogr. A 64(1), 112–122 (2008)

    Article  Google Scholar 

  19. X. Wang, J. Feng, Y. Xue et al., Structural basis of N(6)-adenosine methylation by the METTL3–METTL14 complex. Nature 534(7608), 575–578 (2016). https://doi.org/10.1038/nature18298

    Article  Google Scholar 

  20. J. Wang, J. Li, H. Zhao et al., Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR–Cas systems. Cell 163(4), 840–853 (2015). https://doi.org/10.1016/j.cell.2015.10.008

    Article  Google Scholar 

  21. L. Hu, J. Lu, J. Cheng et al., Structural insight into substrate preference for TET-mediated oxidation. Nature 527, 118 (2015). https://doi.org/10.1038/nature15713

    Article  Google Scholar 

  22. H. Wang, Y. Shi, J. Song et al., ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1. Cell 164(1–2), 258–268 (2016). https://doi.org/10.1016/j.cell.2015.12.044

    Article  Google Scholar 

  23. Y. Li, J. Han, Y. Zhang et al., Structural basis for activity regulation of MLL family methyltransferases. Nature 530(7591), 447–452 (2016). https://doi.org/10.1038/nature16952

    Article  Google Scholar 

  24. J. Ding, K. Wang, W. Liu et al., Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535(7610), 111–116 (2016). https://doi.org/10.1038/nature18590

    Article  Google Scholar 

  25. M. Zeng, Y. Shang, Y. Araki et al., Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166(5), 1163–1175e12 (2016). https://doi.org/10.1016/j.cell.2016.07.008

    Article  Google Scholar 

  26. L. Liu, X. Li, J. Wang et al., Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168(1–2), 121–134e12 (2017). https://doi.org/10.1016/j.cell.2016.12.031

    Article  Google Scholar 

  27. D. Dong, M. Guo, S. Wang et al., Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein. Nature 546(7658), 436–439 (2017). https://doi.org/10.1038/nature22377

    Article  Google Scholar 

  28. L. Liu, X. Li, J. Ma et al., The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170(4), 714–726e10 (2017). https://doi.org/10.1016/j.cell.2017.06.050

    Article  Google Scholar 

  29. H. Li, R. Liefke, J. Jiang et al., Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549(7671), 287–291 (2017). https://doi.org/10.1038/nature23881

    Article  Google Scholar 

  30. H. Chen, J. Xue, D. Churikov et al., Structural insights into yeast telomerase recruitment to telomeres. Cell 172(1–2), 331–343e13 (2018). https://doi.org/10.1016/j.cell.2017.12.008

    Article  Google Scholar 

  31. Y. Wang, M. Shi, H. Feng et al., Structural insights into non-canonical ubiquitination catalyzed by SidE. Cell 173(5), 1231–1243e16 (2018). https://doi.org/10.1016/j.cell.2018.04.023

    Article  Google Scholar 

  32. M. Mompean, W. Li, J. Li et al., The structure of the necrosome RIPK1–RIPK3 core, a human hetero-amyloid signaling complex. Cell 173(5), 1244–1253e10 (2018). https://doi.org/10.1016/j.cell.2018.03.032

    Article  Google Scholar 

  33. Y. Dong, Y. Mu, Y. Xie et al., Structural basis of ubiquitin modification by the Legionella effector SdeA. Nature 557(7707), 674–678 (2018). https://doi.org/10.1038/s41586-018-0146-7

    Article  Google Scholar 

  34. Y. Yan, Q. Liu, X. Zang et al., Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature 559(7714), 415–418 (2018). https://doi.org/10.1038/s41586-018-0319-4

    Article  Google Scholar 

  35. L. Zhang, A. Serra-Cardona, H. Zhou et al., Multisite substrate recognition in Asf1-dependent acetylation of histone H3 K56 by Rtt109. Cell 174(4), 818–830e11 (2018). https://doi.org/10.1016/j.cell.2018.07.005

    Article  Google Scholar 

  36. P. Zhou, Y. She, N. Dong et al., Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature 561(7721), 122–126 (2018). https://doi.org/10.1038/s41586-018-0433-3

    Article  Google Scholar 

  37. L. You, J. Ma, J. Wang et al., Structure studies of the CRISPR–Csm complex reveal mechanism of co-transcriptional interference. Cell 176(1–2), 239–253e16 (2019). https://doi.org/10.1016/j.cell.2018.10.052

    Article  Google Scholar 

  38. B. Zhang, J. Li, X. Yang et al., Crystal structures of membrane transporter MmpL3, an anti-TB drug target. Cell 176(3), 636–648e13 (2019). https://doi.org/10.1016/j.cell.2019.01.003

    Article  Google Scholar 

  39. H. Song, Z. Zhao, Y. Chai et al., Molecular basis of arthritogenic alphavirus receptor MXRA8 binding to Chikungunya virus envelope protein. Cell 177(7), 1714–1724e13 (2019). https://doi.org/10.1016/j.cell.2019.04.008

    Article  Google Scholar 

  40. H. Song, J. Qi, H. Xiao et al., Avian-to-human receptor-binding adaptation by Influenza A Virus Hemagglutinin H4. Cell Rep. 20(5), 1201–1214 (2017). https://doi.org/10.1016/j.celrep.2017.07.028

    Article  Google Scholar 

  41. W. Tian, P. Yan, N. Xu et al., The HRP3 PWWP domain recognizes the minor groove of double-stranded DNA and recruits HRP3 to chromatin. Nucleic Acids Res. 47(10), 5436–5448 (2019). https://doi.org/10.1093/nar/gkz294

    Article  Google Scholar 

  42. H. Liu, F. Shen, P. Haruehanroengra et al., A DNA structure containing Ag(I)-mediated G:G and C:C base pairs. Angew. Chem. Int. Ed. Engl. 56(32), 9430–9434 (2017). https://doi.org/10.1002/anie.201704891

    Article  Google Scholar 

  43. T. Xu, C.-Z. Zhou, J. Xiao et al., Unique conformation in a natural interruption sequence of type XIX collagen revealed by its high-resolution crystal structure. Biochemistry 57(7), 1087–1095 (2018). https://doi.org/10.1021/acs.biochem.7b01010

    Article  Google Scholar 

  44. J.X. Yao, ACORN in CCP4 and its applications. Acta Crystallogr. A 58(11), 1941–1947 (2002). https://doi.org/10.1107/S0907444902016621

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff of the SSRF MX team for design, installation, and continuing collaboration, along with the assistance of the SSRF research support groups.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Ming Qin or Jian-Hua He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WZ., Tang, JC., Wang, SS. et al. The protein complex crystallography beamline (BL19U1) at the Shanghai Synchrotron Radiation Facility. NUCL SCI TECH 30, 170 (2019). https://doi.org/10.1007/s41365-019-0683-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0683-2

Keywords

Navigation