Skip to main content

Advertisement

Log in

Sam68 contributes to intestinal inflammation in experimental and human colitis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Sam68 is an RNA-binding protein with an adaptor role in signal transduction. Our previous work identified critical proinflammatory and apoptotic functions for Sam68, downstream of the TNF/TNFR1 and TLR2/3/4 pathways. Recent studies have shown elevated Sam68 in inflamed tissues from rheumatoid arthritis and ulcerative colitis (UC) patients, suggesting that Sam68 contributes to chronic inflammatory diseases. Here, we hypothesized that deletion of Sam68 is protective against experimental colitis in vivo, via reductions in TNF-associated inflammatory signaling. We used Sam68 knockout (KO) mice to study the role of Sam68 in experimental colitis, including its contributions to TNF-induced inflammatory gene expression in three-dimensional intestinal organoid cultures. We also studied the expression of Sam68 and inflammatory genes in colon tissues of UC patients. Sam68 KO mice treated with an acute course of DSS exhibited significantly less weight loss and histopathological inflammation compared to wild-type controls, suggesting that Sam68 contributes to experimental colitis. Bone marrow transplants showed no pathologic role for hematopoietic cell-specific Sam68, suggesting that non-hematopoietic Sam68 drives intestinal inflammation. Gene expression analyses showed that Sam68 deficiency reduced the expression of proinflammatory genes in colon tissues from DSS-treated mice, as well as TNF-treated three-dimensional colonic organoids. We also found that inflammatory genes, such as TNF, CCR2, CSF2, IL33 and CXCL10, as well as Sam68 protein, were upregulated in inflamed colon tissues of UC patients. This report identifies Sam68 as an important inflammatory driver in response to intestinal epithelial damage, suggesting that targeting Sam68 may hold promise to treat UC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All of the data underlying this article are available in the article and in its online supplementary data. Materials such as reagents will be available upon request.

Code availability

Not applicable.

References

  1. de Souza HSP, Fiocchi C, Iliopoulos D (2017) The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat Rev Gastroenterol Hepatol 14(12):739–749

    Article  PubMed  Google Scholar 

  2. Goodman WA, Erkkila IP, Pizarro TT (2020) Sex matters: impact on pathogenesis, presentation and treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 17:740–754

    Article  PubMed  Google Scholar 

  3. Neurath MF (2017) Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol 14(5):269–278

    Article  CAS  PubMed  Google Scholar 

  4. Nunez FP et al (2020) Treat-to-target approach in the management of inflammatory Bowel disease. Gastroenterol Hepatol 44:31–319

    Google Scholar 

  5. D’Haens G (2007) Risks and benefits of biologic therapy for inflammatory bowel diseases. Gut 56(5):725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leppkes M et al (2014) Pleiotropic functions of TNF-alpha in the regulation of the intestinal epithelial response to inflammation. Int Immunol 26(9):509–515

    Article  CAS  PubMed  Google Scholar 

  7. Lu Y et al (2018) Toll-like receptors and inflammatory bowel disease. Front Immunol 9:72

    Article  PubMed  PubMed Central  Google Scholar 

  8. Papadakis KA, Targan SR (2000) Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med 51:289–298

    Article  CAS  PubMed  Google Scholar 

  9. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4):487–501

    Article  CAS  PubMed  Google Scholar 

  10. Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214(2):149–160

    Article  CAS  PubMed  Google Scholar 

  11. Lukong KE, Richard S (2003) Sam68, the KH domain-containing superSTAR. Biochim Biophys Acta 1653(2):73–86

    CAS  PubMed  Google Scholar 

  12. Ramakrishnan P, Baltimore D (2011) Sam68 is required for both NF-kappaB activation and apoptosis signaling by the TNF receptor. Mol Cell 43(2):167–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tomalka JA, de Jesus TJ, Ramakrishnan P (2017) Sam68 is a regulator of Toll-like receptor signaling. Cell Mol Immunol 14(1):107–117

    Article  CAS  PubMed  Google Scholar 

  14. Fusaki N et al (1997) Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling. J Biol Chem 272(10):6214–6219

    Article  CAS  PubMed  Google Scholar 

  15. Frisone P et al (2015) SAM68: signal transduction and RNA metabolism in human cancer. Biomed Res Int 2015:528954

    Article  PubMed  PubMed Central  Google Scholar 

  16. Busa R et al (2007) The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene 26(30):4372–4382

    Article  CAS  PubMed  Google Scholar 

  17. Fu K et al (2016) Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-kappaB activation. Elife 5:e15018

    Article  PubMed  PubMed Central  Google Scholar 

  18. Qian J et al (2016) Sam68 modulates apoptosis of intestinal epithelial cells via mediating NF-kappaB activation in ulcerative colitis. Mol Immunol 75:48–59

    Article  CAS  PubMed  Google Scholar 

  19. Sun W et al (2018) Sam68 promotes invasion, migration, and proliferation of fibroblast-like synoviocytes by enhancing the NF-kappaB/P65 pathway in rheumatoid arthritis. Inflammation 41(5):1661–1670

    Article  CAS  PubMed  Google Scholar 

  20. Sato T et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418

    Article  CAS  PubMed  Google Scholar 

  21. de Jesus TJ, Ramakrishnan P (2020) NF-kappaB c-Rel dictates the inflammatory threshold by acting as a transcriptional repressor. iScience 23(3):100876

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fu K et al (2013) Sam68 modulates the promoter specificity of NF-kappaB and mediates expression of CD25 in activated T cells. Nat Commun 4:1909

    Article  PubMed  Google Scholar 

  23. Perez-Perez A et al (2016) Sam68 mediates the activation of insulin and leptin signalling in breast cancer cells. PLoS ONE 11(7):e0158218

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sanchez-Margalet V, Najib S (2001) Sam68 is a docking protein linking GAP and PI3K in insulin receptor signaling. Mol Cell Endocrinol 183(1–2):113–121

    Article  CAS  PubMed  Google Scholar 

  25. Goodman WA et al (2018) Estrogen receptor alpha loss-of-function protects female mice from DSS-induced experimental colitis. Cell Mol Gastroenterol Hepatol 5(4):630-633 e1

    Article  PubMed  Google Scholar 

  26. Chassaing B et al (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104:15–25

    Article  PubMed  Google Scholar 

  27. Qiao A et al (2021) Ablation of Sam68 in adult mice increases thermogenesis and energy expenditure. FASEB J 35(8):e21772

    Article  CAS  PubMed  Google Scholar 

  28. Scaldaferri F et al (2007) Crucial role of the protein C pathway in governing microvascular inflammation in inflammatory bowel disease. J Clin Invest 117(7):1951–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scaldaferri F et al (2009) VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 136(2):585–95 e5

    Article  CAS  PubMed  Google Scholar 

  30. Okayasu I et al (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98(3):694–702

    Article  CAS  PubMed  Google Scholar 

  31. Jabado N et al (1998) Sam68 association with p120GAP in CD4+ T cells is dependent on CD4 molecule expression. J Immunol 161(6):2798–2803

    Article  CAS  PubMed  Google Scholar 

  32. Gilbert C et al (2001) Evidence for a role for SAM68 in the responses of human neutrophils to ligation of CD32 and to monosodium urate crystals. J Immunol 166(7):4664–4671

    Article  CAS  PubMed  Google Scholar 

  33. Grossmann J et al (1998) New isolation technique to study apoptosis in human intestinal epithelial cells. Am J Pathol 153(1):53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ungaro R et al (2017) Ulcerative colitis. Lancet 389(10080):1756–1770

    Article  PubMed  Google Scholar 

  35. Jarnerot G et al (2005) Infliximab as rescue therapy in severe to moderately severe ulcerative colitis: a randomized, placebo-controlled study. Gastroenterology 128(7):1805–1811

    Article  PubMed  Google Scholar 

  36. Reinisch W et al (2011) Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial. Gut 60(6):780–787

    Article  CAS  PubMed  Google Scholar 

  37. Rutgeerts P et al (2005) Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 353(23):2462–2476

    Article  CAS  PubMed  Google Scholar 

  38. Sandborn WJ et al (2014) Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology 146(1):85–95 (quiz e14-5)

    Article  CAS  PubMed  Google Scholar 

  39. Tomalka JA, de Jesus TJ, Ramakrishnan P (2016) Sam68 is a regulator of Toll-like receptor signaling. Cell Mol Immunol

  40. Kaser A, Zeissig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fuss IJ et al (1996) Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 157(3):1261–1270

    Article  CAS  PubMed  Google Scholar 

  42. Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3(7):390–407

    Article  CAS  PubMed  Google Scholar 

  43. Shivaji UN et al (2019) Review article: managing the adverse events caused by anti-TNF therapy in inflammatory bowel disease. Aliment Pharmacol Ther 49(6):664–680

    Article  PubMed  Google Scholar 

  44. Vulliemoz M et al (2020) TNF-Alpha blockers in inflammatory bowel diseases: practical recommendations and a user’s guide: an update. Digestion 101(Suppl 1):16–26

    Article  CAS  PubMed  Google Scholar 

  45. Lukong KE et al (2005) Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J Biol Chem 280(46):38639–38647

    Article  CAS  PubMed  Google Scholar 

  46. Paronetto MP et al (2007) The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol 176(7):929–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Resnick RJ et al (1997) Phosphorylation of the Src substrate Sam68 by Cdc2 during mitosis. Oncogene 15(11):1247–1253

    Article  CAS  PubMed  Google Scholar 

  48. Monteleone G et al (2005) Post-transcriptional regulation of Smad7 in the gut of patients with inflammatory bowel disease. Gastroenterology 129(5):1420–1429

    Article  CAS  PubMed  Google Scholar 

  49. Hu D et al (2015) Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun 6:8419

    Article  CAS  PubMed  Google Scholar 

  50. Lorton BM, Shechter D (2019) Cellular consequences of arginine methylation. Cell Mol Life Sci 76(15):2933–2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Babic I, Jakymiw A, Fujita DJ (2004) The RNA binding protein Sam68 is acetylated in tumor cell lines, and its acetylation correlates with enhanced RNA binding activity. Oncogene 23(21):3781–3789

    Article  CAS  PubMed  Google Scholar 

  52. Cote J et al (2003) Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell 14(1):274–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hayashi S et al (2017) PI3K p85alpha subunit-deficient macrophages protect mice from acute colitis due to the enhancement of IL-10 production. Sci Rep 7(1):6187

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim JK et al (2016) Grim19 attenuates DSS induced colitis in an animal model. PLoS ONE 11(6):e0155853

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sun M et al (2017) Hypoxia inducible factor-1alpha-induced interleukin-33 expression in intestinal epithelia contributes to mucosal homeostasis in inflammatory bowel disease. Clin Exp Immunol 187(3):428–440

    Article  CAS  PubMed  Google Scholar 

  56. Paronetto MP et al (2009) Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. J Cell Biol 185(2):235–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Richard S et al (2005) Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss. PLoS Genet 1(6):e74

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hu B et al (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci USA 107(50):21635–21640

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mantovani A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  60. Eaden JA, Abrams KR, Mayberry JF (2001) The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48(4):526–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jess T, Rungoe C, Peyrin-Biroulet L (2012) Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 10(6):639–645

    Article  PubMed  Google Scholar 

  62. Lutgens MW et al (2013) Declining risk of colorectal cancer in inflammatory bowel disease: an updated meta-analysis of population-based cohort studies. Inflamm Bowel Dis 19(4):789–799

    Article  PubMed  Google Scholar 

  63. Wang Y et al (2017) Expression of Sam68 correlates with cell proliferation and survival in epithelial ovarian cancer. Reprod Sci 24(1):97–108

    Article  CAS  PubMed  Google Scholar 

  64. Raval G, Mehta P (2010) TNF-alpha inhibitors: are they carcinogenic? Drug Healthc Patient Saf 2:241–247

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Stephane Richard, McGill University for providing the Sam68 KO mice. We thank the Cleveland Digestive Disease Research Core Center (DDRCC) for support, particularly Drs. Fabio Cominelli, M.D., Ph.D. (Center Director and Mouse Models Core Director), Dr. Theresa Pizarro, Ph.D. (Associate Center Director and Histology/Imaging Core Director), and Dr. Claudio Fiocchi, M.D. (Associate Center Director and Biorepository Core Director). We also thank Dr. Wei Xin, M.D., Ph.D., board-certified DDRCC Pathologist, for his expert analysis of DSS-treated colon tissues.

Funding

This work was supported by supported by the National Institute of Allergy and Infectious Diseases at National Institute of Health grants R01 AI116730 and R21 AI144264, and National Cancer Institute at National Institute of Health grant R21 CA246194, to P.R. Research reported in this publication was also supported by the National Institute Of Diabetes And Digestive And Kidney Diseases at the National Institutes of Health under Award Number P30DK097948 that supported Cleveland Digestive Disease Research Core Center Pilot/Feasibility Award to P.R. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. W.A.G. was supported by the National Institute Of Diabetes And Digestive And Kidney Diseases at the National Institutes of Health grants R01 DK128143, K01 DK105138, R03 DK123579, and Crohn’s & Colitis Foundation Senior Research Award #635911. A.R.L was supported by the National Institute of Health NIH/NEI T32 pre-doctoral training grant T32EY007157.

Author information

Authors and Affiliations

Authors

Contributions

WAG performed experiments, analyzed data, and wrote the manuscript. SB performed experiments and analyzed data. ARL, FDSR and TM performed experiments. PR conceived of the study, performed experiments, analyzed data and edited the manuscript.

Corresponding author

Correspondence to Parameswaran Ramakrishnan.

Ethics declarations

Conflict of interest

PR has a patent on the use of Sam68 for modulating signaling through the TNF receptor (US8598137B2). Other authors have declared that no conflict of interest exists.

Ethics approval

All mouse studies were approved under CWRU IACUC protocol 2013-0134. All human tissue samples used in this study were slated to be discarded samples that were deidentified and procured through the Cleveland Digestive Disease Research Biorepositoy Core facility with non-human subject research IRB approval from University Hospitals, IRB number NHR-16-103 and STUDY20210825.

Consent to participate

Not applicable. No human subjects were recruited for this study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 48274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodman, W.A., Basavarajappa, S.C., Liu, A.R. et al. Sam68 contributes to intestinal inflammation in experimental and human colitis. Cell. Mol. Life Sci. 78, 7635–7648 (2021). https://doi.org/10.1007/s00018-021-03976-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03976-7

Keywords

Navigation