Skip to main content
Log in

Inflammatory Bowel Disease: Pathophysiology, Treatment, and Disease Modeling

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Inflammatory Bowel Disease (IBD) affects a substantial global population and is characterized by chronic inflammation primarily in the gastrointestinal tract. The pathophysiology of IBD is intricate and involves a combination of genetic, environmental, and immune-related factors. This article aims to discuss the current understanding of IBD pathophysiology, focusing on the roles of genetics, environmental triggers, and the immune system in disease development and progression. In addition, the review covers the existing treatment options for IBD, including medical and surgical interventions while addressing the challenges associated with managing this chronic condition. Furthermore, the article explores the utility of disease modeling techniques, such as animal models, in vitro organoid models, and microfluidic organ-on-a-chip devices, for studying IBD pathophysiology and evaluating potential therapeutic interventions. It is important to note that conventional two-dimensional (2D) cell cultures are limited in capturing essential physical and biochemical cues, despite displaying lineage-specific differences. The translation of data from animal models to human physiology in major systems undermines the reliability of the generated data. To address these limitations, one noteworthy solution is the utilization of microfluidic-based organ-on-a-chip devices, which can effectively mimic organ functionality. These devices are developed based on principles of microfluidics, materials science, and cell biology. Overall, this comprehensive review provides insights into the pathophysiology of IBD, current treatment options, and disease modeling approaches, including emerging technologies, such as organoids and organ-on-a-chip. These advancements offer promising avenues for enhancing our understanding of IBD and developing more efficient therapies for this debilitating condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Joshi, A., Soni, A., Acharya, S.: In vitro models and ex vivo systems used in inflammatory bowel disease. In Vitro Models 1(3), 213–227 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guan, Q.: A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res 2019, 7247238 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Head, K.A., Jurenka, J.S.: Inflammatory bowel disease Part 1: ulcerative colitis–pathophysiology and conventional and alternative treatment options. Altern Med Rev 8(3), 247–283 (2003)

    PubMed  Google Scholar 

  4. Head, K., Jurenka, J.S.: Inflammatory bowel disease. Part II: Crohn’s disease–pathophysiology and conventional and alternative treatment options. Altern Med Rev 9(4), 360–401 (2004)

    PubMed  Google Scholar 

  5. Mak, W.Y., et al.: The epidemiology of inflammatory bowel disease: East meets west. J Gastroenterol Hepatol 35(3), 380–389 (2020)

    Article  PubMed  Google Scholar 

  6. Steinway, S.N., et al.: Human microphysiological models of intestinal tissue and gut microbiome. Front Bioeng Biotechnol 8, 725 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goyal, N., et al.: Animal models of inflammatory bowel disease: a review. Inflammopharmacology 22(4), 219–233 (2014)

    Article  PubMed  Google Scholar 

  8. Nguyen, L.H., et al.: Antibiotic use and the development of inflammatory bowel disease: a national case-control study in Sweden. Lancet Gastroenterol Hepatol 5(11), 986–995 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nicolaides, S., et al.: The impact of tobacco smoking on treatment choice and efficacy in inflammatory bowel disease. Intest Res 19(2), 158–170 (2021)

    Article  PubMed  Google Scholar 

  10. Chiba, M., Nakane, K., Komatsu, M.: Westernized diet is the most ubiquitous environmental factor in inflammatory bowel disease. Perm J 23, 18–107 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Atreya, R., Neurath, M.F.: IBD pathogenesis in 2014: molecular pathways controlling barrier function in IBD. Nat Rev Gastroenterol Hepatol 12(2), 67–68 (2015)

    Article  PubMed  Google Scholar 

  12. Beaurivage, C., et al., Development of a gut-on-a-chip model for high throughput disease modeling and drug discovery. Int J Mol Sci, 2019. 20(22).

  13. Mizoguchi, A.: Animal models of inflammatory bowel disease. Prog Mol Biol Transl Sci 105, 263–320 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. Mokry, M., et al.: Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium. Gastroenterology 146(4), 1040–1047 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. Prinz, F., Schlange, T., Asadullah, K.: Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10(9), 712 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Dawson, A., et al.: A microfluidic chip based model for the study of full thickness human intestinal tissue using dual flow. Biomicrofluidics 10(6), 064101 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Edmondson, R., et al.: Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4), 207–218 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, H.J., et al.: Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci USA 113(1), E7-15 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Halldorsson, S., et al.: Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63, 218–231 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Carter, M.J., et al.: Guidelines for the management of inflammatory bowel disease in adults. Gut 535(Suppl 5), VI–16 (2004)

    Google Scholar 

  21. Mirkov, M.U., Verstockt, B., Cleynen, I.: Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol Hepatol 2(3), 224–234 (2017)

    Article  PubMed  Google Scholar 

  22. Peters, L.A., et al.: A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nat Genet 49(10), 1437–1449 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ogura, Y., et al.: A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837), 603–606 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto, S., Ma, X.: Role of Nod2 in the development of Crohn’s disease. Microbes Infect 11(12), 912–918 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inohara, N., et al.: Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278(8), 5509–5512 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. Strober, W., et al.: The molecular basis of NOD2 susceptibility mutations in Crohn’s disease. Mucosal Immunol 11(01), S5-9 (2008)

    Article  Google Scholar 

  27. Magalhaes, J.G., et al.: What is new with Nods? Curr Opin Immunol 23(1), 29–34 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. Cohen, L.J., et al.: Genetic Factors and the Intestinal Microbiome Guide Development of Microbe-Based Therapies for Inflammatory Bowel Diseases. Gastroenterology 156(8), 2174–2189 (2019)

    Article  PubMed  Google Scholar 

  29. Kabat, A.M., et al.: The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife 5, e12444 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ahern, P.P., et al.: Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33(2), 279–288 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, R., Hedl, M., Abraham, C.: IL23 induces IL23R recycling and amplifies innate receptor-induced signalling and cytokines in human macrophages, and the IBD-protective IL23R R381Q variant modulates these outcomes. Gut 69(2), 264–273 (2020)

    Article  CAS  PubMed  Google Scholar 

  32. Hibi, T., Ogata, H.: Novel pathophysiological concepts of inflammatory bowel disease. J Gastroenterol 41(1), 10–16 (2006)

    Article  PubMed  Google Scholar 

  33. Dolan, K.T. and E.B. Chang, Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Mol Nutr Food Res, 2017. 61(1)

  34. Mawdsley, J.E., Rampton, D.S.: The role of psychological stress in inflammatory bowel disease. NeuroImmunoModulation 13(5–6), 327–336 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. Cosnes, J.: Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol 18(3), 481–496 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Cosnes, J.: What is the link between the use of tobacco and IBD? Inflamm Bowel Dis 14(Suppl 2), S14–S15 (2008)

    Article  PubMed  Google Scholar 

  37. Birrenbach, T., Bocker, U.: Inflammatory bowel disease and smoking: a review of epidemiology, pathophysiology, and therapeutic implications. Inflamm Bowel Dis 10(6), 848–859 (2004)

    Article  PubMed  Google Scholar 

  38. Mawdsley, J.E., Rampton, D.S.: Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut 54(10), 1481–1491 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thia, K.T., et al.: An update on the epidemiology of inflammatory bowel disease in Asia. Am J Gastroenterol 103(12), 3167–3182 (2008)

    Article  PubMed  Google Scholar 

  40. Garg, M., et al.: Review article: vitamin D and inflammatory bowel disease–established concepts and future directions. Aliment Pharmacol Ther 36(4), 324–344 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. Maunder, R.G.: Evidence that stress contributes to inflammatory bowel disease: evaluation, synthesis, and future directions. Inflamm Bowel Dis 11(6), 600–608 (2005)

    Article  PubMed  Google Scholar 

  42. Camara, R.J., et al.: Mood and nonmood components of perceived stress and exacerbation of Crohn’s disease. Inflamm Bowel Dis 17(11), 2358–2365 (2011)

    Article  PubMed  Google Scholar 

  43. Goodhand, J.R., et al.: Do antidepressants influence the disease course in inflammatory bowel disease? A retrospective case-matched observational study. Inflamm Bowel Dis 18(7), 1232–1239 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. van Eeden, S.F., et al.: Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM(10)). Am J Respir Crit Care Med 164(5), 826–830 (2001)

    Article  PubMed  Google Scholar 

  45. Ananthakrishnan, A.N., et al.: Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. Inflamm Bowel Dis 17(5), 1138–1145 (2011)

    Article  PubMed  Google Scholar 

  46. Zhang, Y.Z., Li, Y.Y.: Inflammatory bowel disease: pathogenesis. World J Gastroenterol 20(1), 91–99 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  47. Geremia, A., Jewell, D.P.: The IL-23/IL-17 pathway in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 6(2), 223–237 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. Medzhitov, R., Janeway, C., Jr.: Innate immunity. N Engl J Med 343(5), 338–344 (2000)

    Article  CAS  PubMed  Google Scholar 

  49. Noguchi, E., et al.: A Crohn’s disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat Immunol 10(5), 471–479 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takatori, H., et al.: Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206(1), 35–41 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Van der Sluis, M., et al.: Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131(1), 117–129 (2006)

    Article  PubMed  Google Scholar 

  52. Korn, T., et al.: IL-17 and Th17 Cells. Annu Rev Immunol 27, 485–517 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. Heller, F., et al.: Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129(2), 550–564 (2005)

    Article  CAS  PubMed  Google Scholar 

  54. Wilson, M.S., et al.: Colitis and intestinal inflammation in IL10-/- mice results from IL-13Ralpha2-mediated attenuation of IL-13 activity. Gastroenterology 140(1), 254–264 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. Sugihara, T., et al.: The increased mucosal mRNA expressions of complement C3 and interleukin-17 in inflammatory bowel disease. Clin Exp Immunol 160(3), 386–393 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sarra, M., et al.: Interferon-gamma-expressing cells are a major source of interleukin-21 in inflammatory bowel diseases. Inflamm Bowel Dis 16(8), 1332–1339 (2010)

    Article  PubMed  Google Scholar 

  57. Nishida, A., et al.: Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 11(1), 1–10 (2018)

    Article  PubMed  Google Scholar 

  58. Nell, S., Suerbaum, S., Josenhans, C.: The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 8(8), 564–577 (2010)

    Article  CAS  PubMed  Google Scholar 

  59. Yue, B., et al., Inflammatory Bowel Disease: A Potential Result from the Collusion between Gut Microbiota and Mucosal Immune System. Microorganisms, 2019. 7(10).

  60. Tezuka, H., Ohteki, T.: Regulation of intestinal homeostasis by dendritic cells. Immunol Rev 234(1), 247–258 (2010)

    Article  CAS  PubMed  Google Scholar 

  61. Saleh, M., Elson, C.O.: Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity 34(3), 293–302 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bruewer, M., et al.: Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171(11), 6164–6172 (2003)

    Article  CAS  PubMed  Google Scholar 

  63. Nusrat, A., Turner, J.R., Madara, J.L.: Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 279(5), 851–857 (2000)

    Article  Google Scholar 

  64. Ng, S.C., et al.: Intestinal dendritic cells: their role in bacterial recognition, lymphocyte homing, and intestinal inflammation. Inflamm Bowel Dis 16(10), 1787–1807 (2010)

    Article  CAS  PubMed  Google Scholar 

  65. Ni, J., et al.: Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 14(10), 573–584 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  66. Melgar, S., Shanahan, F.: Inflammatory bowel disease-from mechanisms to treatment strategies. Autoimmunity 43(7), 463–477 (2010)

    Article  PubMed  Google Scholar 

  67. Rousseaux, C., et al.: Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med 201(8), 1205–1215 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oh-Oka, K., et al.: Induction of colonic regulatory t cells by mesalamine by activating the aryl hydrocarbon receptor. Cell Mol Gastroenterol Hepatol 4(1), 135–151 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang, Y., et al.: Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis. Cochrane Database Syst Rev 4(4), CD000543 (2016)

    PubMed  Google Scholar 

  70. Bonovas, S., et al.: Systematic review with meta-analysis: use of 5-aminosalicylates and risk of colorectal neoplasia in patients with inflammatory bowel disease. Aliment Pharmacol Ther 45(9), 1179–1192 (2017)

    Article  CAS  PubMed  Google Scholar 

  71. Hart, A., et al.: The use of 5-aminosalicylates in Crohn’s disease: a retrospective study using the UK Clinical Practice Research Datalink. Ann Gastroenterol 33(5), 500–507 (2020)

    PubMed  PubMed Central  Google Scholar 

  72. Gjuladin-Hellon, T., et al.: Oral 5-aminosalicylic acid for maintenance of surgically-induced remission in Crohn’s disease. Cochrane Database Syst Rev 6(6), CD008414 (2019)

    PubMed  Google Scholar 

  73. Coward, S., et al.: Comparative effectiveness of mesalamine, sulfasalazine, corticosteroids, and budesonide for the induction of remission in Crohn’s disease: a Bayesian network meta-analysis. Inflamm Bowel Dis 23(3), 461–472 (2017)

    Article  PubMed  Google Scholar 

  74. Gisbert, J.P., Gonzalez-Lama, Y., Mate, J.: 5-Aminosalicylates and renal function in inflammatory bowel disease: a systematic review. Inflamm Bowel Dis 13(5), 629–638 (2007)

    Article  PubMed  Google Scholar 

  75. Waljee, A.K., et al.: Corticosteroid use and complications in a US inflammatory bowel disease cohort. PLoS ONE 11(6), e0158017 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  76. Choi, C.H., et al.: Second Korean guidelines for the management of ulcerative colitis. Intest Res 15(1), 7–37 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ferrante, M., et al.: Physician perspectives on unresolved issues in the use of conventional therapy in Crohn’s disease: results from an international survey and discussion programme. J Crohns Colitis 6(1), 116–131 (2012)

    Article  PubMed  Google Scholar 

  78. Strehl, C., et al.: Glucocorticoids-all-rounders tackling the versatile players of the immune system. Front Immunol 10, 1744 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. An, Y.K.: Common mistakes with steroids. J Gastroenterol Hepatol 36(Suppl 1), 30–31 (2021)

    Article  PubMed  Google Scholar 

  80. Dubois-Camacho, K., et al.: Glucocorticosteroid therapy in inflammatory bowel diseases: from clinical practice to molecular biology. World J Gastroenterol 23(36), 6628–6638 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, K.M., et al.: Use of thiopurines in inflammatory bowel disease: a consensus statement by the Korean Association for the Study of Intestinal Diseases (KASID). Intest Res 13(3), 193–207 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  82. Taylor, K.M., Irving, P.M.: Optimization of conventional therapy in patients with IBD. Nat Rev Gastroenterol Hepatol 8(11), 646–656 (2011)

    Article  CAS  PubMed  Google Scholar 

  83. Winter, J.W., et al.: Assessment of thiopurine methyltransferase enzyme activity is superior to genotype in predicting myelosuppression following azathioprine therapy in patients with inflammatory bowel disease. Aliment Pharmacol Ther 25(9), 1069–1077 (2007)

    Article  CAS  PubMed  Google Scholar 

  84. Yang, S.K., et al.: A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 46(9), 1017–1020 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Matsuoka, K.: NUDT15 gene variants and thiopurine-induced leukopenia in patients with inflammatory bowel disease. Intest Res 18(3), 275–281 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  86. Elhag, D.A., et al., Inflammatory Bowel Disease Treatments and Predictive Biomarkers of Therapeutic Response. Int J Mol Sci, 2022. 23(13)

  87. Kirchgesner, J., et al.: Impact on life expectancy of withdrawing thiopurines in patients with Crohn’s disease in sustained clinical remission: a lifetime risk-benefit analysis. PLoS ONE 11(6), e0157191 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  88. Neurath, M.F.: Cytokines in inflammatory bowel disease. Nat Rev Immunol 14(5), 329–342 (2014)

    Article  CAS  PubMed  Google Scholar 

  89. Sandborn, W.J., et al.: Colectomy rate comparison after treatment of ulcerative colitis with placebo or infliximab. Gastroenterology 137(4), 1250–1260 (2009). (quiz 1520)

    Article  CAS  PubMed  Google Scholar 

  90. Papamichael, K., et al., Infliximab in inflammatory bowel disease. Ther Adv Chronic Dis, 2019. 10: p. 2040622319838443

  91. Sandborn, W.J., et al.: Subcutaneous golimumab maintains clinical response in patients with moderate-to-severe ulcerative colitis. Gastroenterology 146(1), 96-109 e1 (2014)

    Article  CAS  PubMed  Google Scholar 

  92. Adegbola, S.O., et al., Anti-TNF Therapy in Crohn's Disease. Int J Mol Sci, 2018. 19(8)

  93. Rudrapatna, V.A., Velayos, F.: Biosimilars for the treatment of inflammatory bowel disease. Pract Gastroenterol 43(4), 84–91 (2019)

    PubMed  PubMed Central  Google Scholar 

  94. Ben-Horin, S., Kopylov, U., Chowers, Y.: Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun Rev 13(1), 24–30 (2014)

    Article  CAS  PubMed  Google Scholar 

  95. Nakase, H., et al.: Significance of measurement of serum trough level and anti-drug antibody of adalimumab as personalised pharmacokinetics in patients with Crohn’s disease: a subanalysis of the DIAMOND trial. Aliment Pharmacol Ther 46(9), 873–882 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wittig, B.M.: Drug evaluation: CNTO-1275, a mAb against IL-12/IL-23p40 for the potential treatment of inflammatory diseases. Curr Opin Investig Drugs 8(11), 947–954 (2007)

    CAS  PubMed  Google Scholar 

  97. Almradi, A., et al.: Clinical trials of IL-12/IL-23 inhibitors in inflammatory bowel disease. BioDrugs 34(6), 713–721 (2020)

    Article  CAS  PubMed  Google Scholar 

  98. Rutgeerts, P., et al.: Efficacy of ustekinumab for inducing endoscopic healing in patients with Crohn’s disease. Gastroenterology 155(4), 1045–1058 (2018)

    Article  CAS  PubMed  Google Scholar 

  99. Feagan, B.G., et al.: Ustekinumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med 375(20), 1946–1960 (2016)

    Article  CAS  PubMed  Google Scholar 

  100. Papp, K., et al.: Safety surveillance for Ustekinumab and other psoriasis treatments from the psoriasis longitudinal assessment and registry (PSOLAR). J Drugs Dermatol 14(7), 706–714 (2015)

    CAS  PubMed  Google Scholar 

  101. Sandborn, W.J., et al.: Efficacy and safety of Mirikizumab in a randomized phase 2 study of patients with ulcerative colitis. Gastroenterology 158(3), 537-549 e10 (2020)

    Article  CAS  PubMed  Google Scholar 

  102. Feagan, B.G., et al.: Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn’s disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 389(10080), 1699–1709 (2017)

    Article  CAS  PubMed  Google Scholar 

  103. Wong, U., Cross, R.K.: Expert opinion on interleukin-12/23 and interleukin-23 antagonists as potential therapeutic options for the treatment of inflammatory bowel disease. Expert Opin Investig Drugs 28(5), 473–479 (2019)

    Article  CAS  PubMed  Google Scholar 

  104. Jovani, M., Danese, S.: Vedolizumab for the treatment of IBD: a selective therapeutic approach targeting pathogenic a4b7 cells. Curr Drug Targets 14(12), 1433–1443 (2013)

    Article  CAS  PubMed  Google Scholar 

  105. Fiorino, G., Gilardi, D., Danese, S.: The clinical potential of etrolizumab in ulcerative colitis: hypes and hopes. Therap Adv Gastroenterol 9(4), 503–512 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tang, M.T., et al.: Review article: nonclinical and clinical pharmacology, pharmacokinetics and pharmacodynamics of etrolizumab, an anti-beta7 integrin therapy for inflammatory bowel disease. Aliment Pharmacol Ther 47(11), 1440–1452 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Feagan, B.G., et al.: Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med 369(8), 699–710 (2013)

    Article  CAS  PubMed  Google Scholar 

  108. Sands, B.E., et al.: Vedolizumab as induction and maintenance therapy for Crohn’s disease in patients naive to or who have failed tumor necrosis factor antagonist therapy. Inflamm Bowel Dis 23(1), 97–106 (2017)

    Article  PubMed  Google Scholar 

  109. Pellet, G., et al.: Efficacy and safety of induction therapy with calcineurin inhibitors in combination with vedolizumab in patients with refractory ulcerative colitis. Clin Gastroenterol Hepatol 17(3), 494–501 (2019)

    Article  CAS  PubMed  Google Scholar 

  110. Sandborn, W.J., et al.: Etrolizumab for the treatment of ulcerative colitis and Crohn’s disease: an overview of the phase 3 clinical program. Adv Ther 37(7), 3417–3431 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yoshimura, N., et al.: Safety and efficacy of AJM300, an oral antagonist of alpha4 integrin, in induction therapy for patients with active ulcerative colitis. Gastroenterology 149(7), 1775-1783 e2 (2015)

    Article  CAS  PubMed  Google Scholar 

  112. Gubatan, J., et al.: Anti-integrins for the treatment of inflammatory bowel disease: current evidence and perspectives. Clin Exp Gastroenterol 14, 333–342 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  113. Cai, Z., Wang, S., Li, J.: Treatment of inflammatory bowel disease: a comprehensive review. Front Med (Lausanne) 8, 765474 (2021)

    Article  PubMed  Google Scholar 

  114. Cohen, J.L., et al.: Practice parameters for the surgical treatment of ulcerative colitis. Dis Colon Rectum 48(11), 1997–2009 (2005)

    Article  PubMed  Google Scholar 

  115. Lamb, C.A., et al.: British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 68(Suppl 3), s1–s106 (2019)

    Article  PubMed  Google Scholar 

  116. Fazio, V.W., et al.: Effect of resection margins on the recurrence of Crohn’s disease in the small bowel. A randomized controlled trial. Ann Surg 224(4), 563–571 (1996). (discussion 571–3)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rutgeerts, P., et al.: Predictability of the postoperative course of Crohn’s disease. Gastroenterology 99(4), 956–963 (1990)

    Article  CAS  PubMed  Google Scholar 

  118. Kumar, M., Garand, M., Al Khodor, S.: Integrating omics for a better understanding of inflammatory bowel disease: a step towards personalized medicine. J Transl Med 17(1), 419 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  119. Satoh, K., et al.: Severe sepsis caused by bacteria that entered via the intestinal tract: a case of Crohn’s disease in a child. Cureus 12(8), e9822 (2020)

    PubMed  PubMed Central  Google Scholar 

  120. Dignass, A., et al.: Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 2: current management. J Crohns Colitis 6(10), 991–1030 (2012)

    Article  PubMed  Google Scholar 

  121. Rabbenou, W., Chang, S.: Medical treatment of pouchitis: a guide for the clinician. Therap Adv Gastroenterol 14, 17562848211023376 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bamias, G., Arseneau, K.O., Cominelli, F.: Mouse models of inflammatory bowel disease for investigating mucosal immunity in the intestine. Curr Opin Gastroenterol 33(6), 411–416 (2017)

    Article  CAS  PubMed  Google Scholar 

  123. MacPherson, B.R., Pfeiffer, C.J.: Experimental production of diffuse colitis in rats. Digestion 17(2), 135–150 (1978)

    Article  CAS  PubMed  Google Scholar 

  124. Yamada, Y., et al.: A comparative analysis of two models of colitis in rats. Gastroenterology 102(5), 1524–1534 (1992)

    Article  CAS  PubMed  Google Scholar 

  125. Fiorucci, S., et al.: Importance of innate immunity and collagen binding integrin alpha1beta1 in TNBS-induced colitis. Immunity 17(6), 769–780 (2002)

    Article  CAS  PubMed  Google Scholar 

  126. Morris, G.P., et al.: Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96(3), 795–803 (1989)

    Article  CAS  PubMed  Google Scholar 

  127. Neurath, M.F., et al.: Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med 183(6), 2605–2616 (1996)

    Article  CAS  PubMed  Google Scholar 

  128. Cooper, H.S., et al.: Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69(2), 238–249 (1993)

    CAS  PubMed  Google Scholar 

  129. Chassaing, B., et al.: Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104, 15 25 1-15 25 14 (2014)

    Article  PubMed  Google Scholar 

  130. Yamada, M., Ohkusa, T., Okayasu, I.: Occurrence of dysplasia and adenocarcinoma after experimental chronic ulcerative colitis in hamsters induced by dextran sulphate sodium. Gut 33(11), 1521–1527 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Elinav, E., et al.: NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5), 745–757 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pizarro, T.T., et al.: SAMP1/YitFc mouse strain: a spontaneous model of Crohn’s disease-like ileitis. Inflamm Bowel Dis 17(12), 2566–2584 (2011)

    Article  PubMed  Google Scholar 

  133. Schulte, L., et al.: Intestinal organoids as a novel complementary model to dissect inflammatory bowel disease. Stem Cells Int 2019, 8010645 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bouma, G., Kaushiva, A., Strober, W.: Experimental murine colitis is regulated by two genetic loci, including one on chromosome 11 that regulates IL-12 responses. Gastroenterology 123(2), 554–565 (2002)

    Article  CAS  PubMed  Google Scholar 

  135. Kiesler, P., Fuss, I.J., Strober, W.: Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol 1(2), 154–170 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  136. Garrett, W.S., et al.: Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131(1), 33–45 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kuhn, R., et al.: Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2), 263–274 (1993)

    Article  CAS  PubMed  Google Scholar 

  138. Matsumoto, S., et al.: Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut 43(1), 71–78 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Takeda, K., et al.: Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10(1), 39–49 (1999)

    Article  CAS  PubMed  Google Scholar 

  140. Zaph, C., et al.: Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature 446(7135), 552–556 (2007)

    Article  CAS  PubMed  Google Scholar 

  141. Li, X.G., et al.: Intestinal models for personalized medicine: from conventional models to microfluidic primary intestine-on-a-chip. Stem Cell Rev Rep 18(6), 2137–2151 (2022)

    Article  PubMed  Google Scholar 

  142. Pimenta, J., et al.: Organ-on-chip approaches for intestinal 3D in vitro modeling. Cell Mol Gastroenterol Hepatol 13(2), 351–367 (2022)

    Article  CAS  PubMed  Google Scholar 

  143. Dahlgren, D. and H. Lennernas, Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches. Pharmaceutics, 2019. 11(8).

  144. Jackson, E.L., Lu, H.: Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integr Biol (Camb) 8(6), 672–683 (2016)

    Article  CAS  PubMed  Google Scholar 

  145. Perreault, N., Beaulieu, J.F.: Primary cultures of fully differentiated and pure human intestinal epithelial cells. Exp Cell Res 245(1), 34–42 (1998)

    Article  CAS  PubMed  Google Scholar 

  146. Harper, K.D., Iozzo, R.V., Haddad, J.G.: Receptors for and bioresponses to 1,25-dihydroxyvitamin D in a human colon carcinoma cell line (HT-29). Metabolism 38(11), 1062–1069 (1989)

    Article  CAS  PubMed  Google Scholar 

  147. Yoo, J.H., Donowitz, M.: Intestinal enteroids/organoids: a novel platform for drug discovery in inflammatory bowel diseases. World J Gastroenterol 25(30), 4125–4147 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Finkbeiner, S.R., et al.: Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol Open 4(11), 1462–1472 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Spence, J.R., et al.: Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332), 105–109 (2011)

    Article  PubMed  Google Scholar 

  150. Sato, T., et al.: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244), 262–265 (2009)

    Article  CAS  PubMed  Google Scholar 

  151. Sato, T., et al.: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5), 1762–1772 (2011)

    Article  CAS  PubMed  Google Scholar 

  152. Kraiczy, J., et al.: DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development. Gut 68(1), 49–61 (2019)

    Article  CAS  PubMed  Google Scholar 

  153. de Lau, W., et al.: Peyer’s patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured “miniguts.” Mol Cell Biol 32(18), 3639–3647 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  154. Suzuki, K., et al.: Single cell analysis of Crohn’s disease patient-derived small intestinal organoids reveals disease activity-dependent modification of stem cell properties. J Gastroenterol 53(9), 1035–1047 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dotti, I., et al.: Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis. Gut 66(12), 2069–2079 (2017)

    Article  CAS  PubMed  Google Scholar 

  156. Howell, K.J., et al.: DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 154(3), 585–598 (2018)

    Article  CAS  PubMed  Google Scholar 

  157. Barnicle, A., et al.: Inflammation-associated DNA methylation patterns in epithelium of ulcerative colitis. Epigenetics 12(8), 591–606 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  158. Okamoto, R., Watanabe, M.: Investigating cell therapy for inflammatory bowel disease. Expert Opin Biol Ther 16(8), 1015–1023 (2016)

    Article  CAS  PubMed  Google Scholar 

  159. Borten, M.A., et al.: Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Sci Rep 8(1), 5319 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  160. Yu, F., W. Hunziker, and D. Choudhury, Engineering Microfluidic Organoid-on-a-Chip Platforms. Micromachines (Basel), 2019. 10(3).

  161. Noben, M., et al.: Human intestinal epithelium in a dish: current models for research into gastrointestinal pathophysiology. United Eur Gastroenterol J 5(8), 1073–1081 (2017)

    Article  Google Scholar 

  162. Tong, Z., et al.: Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells. Biomaterials 154, 60–73 (2018)

    Article  CAS  PubMed  Google Scholar 

  163. Wu, L., et al.: Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. Lab Chip 23(5), 1192–1212 (2023)

    Article  CAS  PubMed  Google Scholar 

  164. Shin, W., Kim, H.J.: 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert. Nat Protoc 17(3), 910–939 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. in The Impact of Food Bioactives on Health: in vitro and ex vivo models, K. Verhoeckx, et al., Editors. 2015: Cham (CH).

  166. Jalili-Firoozinezhad, S., et al.: Modeling radiation injury-induced cell death and countermeasure drug responses in a human Gut-on-a-Chip. Cell Death Dis 9(2), 223 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  167. Cao, Y., et al.: The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol 37(12), 1359–1369 (2017)

    Article  CAS  PubMed  Google Scholar 

  168. Han, J., et al.: Imaging technologies for microfluidic biochips. BioChip J. 16(3), 255–269 (2022)

    Article  CAS  Google Scholar 

  169. Gjorevski, N., et al.: Neutrophilic infiltration in organ-on-a-chip model of tissue inflammation. Lab Chip 20(18), 3365–3374 (2020)

    Article  CAS  PubMed  Google Scholar 

  170. Jang, M., Kim, H.N.: From single- to multi-organ-on-a-chip system for studying metabolic diseases. BioChip J. 17(2), 133–146 (2023)

    Article  CAS  Google Scholar 

  171. Gijzen, L., et al.: An intestine-on-a-chip model of plug-and-play modularity to study inflammatory processes. SLAS Technol 25(6), 585–597 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Winkler, T.E., et al.: Low-cost microphysiological systems: feasibility study of a tape-based barrier-on-chip for small intestine modeling. Lab Chip 20(7), 1212–1226 (2020)

    Article  CAS  PubMed  Google Scholar 

  173. Elinav, E., et al.: The cancer microbiome. Nat Rev Cancer 19(7), 371–376 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Grassart, A., et al.: Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting Shigella infection. Cell Host Microbe 26(3), 435–4444 (2019)

    Article  CAS  PubMed  Google Scholar 

  175. Yuan, L., et al.: Visualization of bacterial colonization and cellular layers in a gut-on-a-chip system using optical coherence tomography. Microsc Microanal 26(6), 1211–1219 (2020)

    Article  CAS  PubMed  Google Scholar 

  176. Kim, J., et al.: Microfabricated stretching devices for studying the effects of tensile stress on cells and tissues. BioChip J. 16(4), 366–375 (2022)

    Article  CAS  Google Scholar 

  177. Maurer, M., et al.: A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 220, 119396 (2019)

    Article  CAS  PubMed  Google Scholar 

  178. Jeon, M.S., et al.: Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. Nano Converg 9(1), 8 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kim, R.: Advanced organotypic in vitro model systems for host-microbial coculture. BioChip J. 17(2), 147–173 (2023)

    Article  Google Scholar 

  180. Chang, J.T.: Pathophysiology of inflammatory bowel diseases. N Engl J Med 383(27), 2652–2664 (2020)

    Article  CAS  PubMed  Google Scholar 

  181. Karantanos, T., Gazouli, M.: Inflammatory bowel disease: recent advances on genetics and innate immunity. Ann Gastroenterol 24(3), 164–172 (2011)

    PubMed  PubMed Central  Google Scholar 

  182. Jostins, L., et al.: Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422), 119–124 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Huang, H., et al.: Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547(7662), 173–178 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Meddens, C.A., et al.: Non-coding DNA in IBD: from sequence variation in DNA regulatory elements to novel therapeutic potential. Gut 68(5), 928–941 (2019)

    Article  CAS  PubMed  Google Scholar 

  185. Antoni, L., et al.: Intestinal barrier in inflammatory bowel disease. World J Gastroenterol 20(5), 1165–1179 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  186. Sunderhauf, A., et al.: Loss of mucosal p32/gC1qR/HABP1 triggers energy deficiency and impairs goblet cell differentiation in ulcerative colitis. Cell Mol Gastroenterol Hepatol 12(1), 229–250 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  187. Lueschow, S.R., McElroy, S.J.: The paneth cell: the curator and defender of the immature small intestine. Front Immunol 11, 587 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wu, G.D., et al.: Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052), 105–108 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hviid, A., Svanstrom, H., Frisch, M.: Antibiotic use and inflammatory bowel diseases in childhood. Gut 60(1), 49–54 (2011)

    Article  PubMed  Google Scholar 

  190. Sekirov, I., et al.: Gut microbiota in health and disease. Physiol Rev 90(3), 859–904 (2010)

    Article  CAS  PubMed  Google Scholar 

  191. Borody, T.J., et al.: Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol 37(1), 42–47 (2003)

    Article  PubMed  Google Scholar 

  192. Abreu, M.T., Fukata, M., Arditi, M.: TLR signaling in the gut in health and disease. J Immunol 174(8), 4453–4460 (2005)

    Article  CAS  PubMed  Google Scholar 

  193. Sanchez-Munoz, F., Dominguez-Lopez, A., Yamamoto-Furusho, J.K.: Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14(27), 4280–4288 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lu, Q., et al.: Immunology of inflammatory bowel disease: molecular mechanisms and therapeutics. J Inflamm Res 15, 1825–1844 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. O’Connell, L., Winter, D.C., Aherne, C.M.: The role of organoids as a novel platform for modeling of inflammatory bowel disease. Front Pediatr 9, 624045 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  196. Giorgio, C.D., et al., Modeling inflammatory bowel disease by intestinal organoids. Recent Adv Inflamm Allergy Drug Discov, 2022.

  197. Iida, T., et al., Impact of Autophagy of Innate Immune Cells on Inflammatory Bowel Disease. Cells, 2018. 8(1).

  198. Zuo, T., Ng, S.C.: The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol 9, 2247 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  199. Yeshi, K., et al., Revisiting inflammatory bowel disease: pathology, treatments, challenges and emerging therapeutics including drug leads from natural products. J Clin Med, 2020. 9(5).

  200. Velasco, V., Shariati, S.A., Esfandyarpour, R.: Microtechnology-based methods for organoid models. Microsyst Nanoeng 6, 76 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Altay, G., et al.: In vitro self-organized mouse small intestinal epithelial monolayer protocol. Bio Protoc 10(3), e3514 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE). (No. NRF-2021R1I1A3061265)

Funding

The National Research Foundation of Korea (Grant No. 2021R1I1A3061265), Sehoon Jeong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sehoon Jeong.

Ethics declarations

Conflict of Interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Jeong, S. Inflammatory Bowel Disease: Pathophysiology, Treatment, and Disease Modeling. BioChip J 17, 403–430 (2023). https://doi.org/10.1007/s13206-023-00118-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00118-y

Keywords

Navigation