Gershon MD (1998) The second brain : the scientific basis of gut instinct and a groundbreaking new understanding of nervous disorders of the stomach and intestine, 1st edn. Harper Collins Publishers, New York
Google Scholar
Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9(5):286–294. https://doi.org/10.1038/nrgastro.2012.32
CAS
Article
PubMed
Google Scholar
Yoo BB, Mazmanian SK (2017) The enteric network: interactions between the immune and nervous systems of the gut. Immunity 46(6):910–926. https://doi.org/10.1016/j.immuni.2017.05.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Margolis KG, Gershon MD, Bogunovic M (2016) Cellular organization of neuroimmune interactions in the gastrointestinal tract. Trends Immunol 37(7):487–501
CAS
PubMed
PubMed Central
Google Scholar
Heanue TA, Pachnis V (2007) Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8(6):466–479. https://doi.org/10.1038/nrn2137
CAS
Article
PubMed
Google Scholar
Avetisyan M, Schill EM, Heuckeroth RO (2015) Building a second brain in the bowel. J Clin Invest 125(3):899–907. https://doi.org/10.1172/JCI76307
Article
PubMed
PubMed Central
Google Scholar
Grubisic V, Gulbransen BD (2017) Enteric glia: the most alimentary of all glia. J Physiol 595(2):557–570. https://doi.org/10.1113/JP271021
CAS
Article
PubMed
Google Scholar
Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V (2015) Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 63(2):229–241. https://doi.org/10.1002/glia.22746
Article
PubMed
Google Scholar
Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J, Haring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S (2018) Molecular architecture of the mouse nervous system. Cell 174(4):999–1014. https://doi.org/10.1016/j.cell.2018.06.021
CAS
Article
PubMed
PubMed Central
Google Scholar
May-Zhang AA, Tycksen E, Southard-Smith AN, Deal KK, Benthal JT, Buehler DP, Adam M, Simmons AJ, Monaghan JR, Matlock BK (2020) Combinatorial transcriptional profiling of mouse and human enteric neurons identifies shared and disparate subtypes in situ. Gastroenterology 160:775–770
Google Scholar
Lasrado R, Boesmans W, Kleinjung J, Pin C, Bell D, Bhaw L, McCallum S, Zong H, Luo L, Clevers H, Vanden Berghe P, Pachnis V (2017) Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 356(6339):722–726. https://doi.org/10.1126/science.aam7511
CAS
Article
PubMed
Google Scholar
Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin GK, Eraslan G, Dionne D, Cuoco MS, Goder-Reiser MN, Sharova T, Kuksenko O, Aguirre AJ, Boland GM, Graham D, Rozenblatt-Rosen O, Xavier RJ, Regev A (2020) The human and mouse enteric nervous system at single-cell resolution. Cell 182(6):1606–1622. https://doi.org/10.1016/j.cell.2020.08.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Morarach K, Mikhailova A, Knoflach V, Memic F, Kumar R, Li W, Ernfors P, Marklund U (2021) Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat Neurosci 24(1):34–46. https://doi.org/10.1038/s41593-020-00736-x
CAS
Article
PubMed
Google Scholar
Fothergill LJ, Furness JB (2018) Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem Cell Biol 150(6):693–702. https://doi.org/10.1007/s00418-018-1746-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Gribble FM, Reimann F (2016) Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 78:277–299. https://doi.org/10.1146/annurev-physiol-021115-105439
CAS
Article
PubMed
Google Scholar
Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10(8):473–486. https://doi.org/10.1038/nrgastro.2013.105
CAS
Article
PubMed
PubMed Central
Google Scholar
Alcaino C, Knutson KR, Treichel AJ, Yildiz G, Strege PR, Linden DR, Li JH, Leiter AB, Szurszewski JH, Farrugia G, Beyder A (2018) A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc Natl Acad Sci 115(32):E7632. https://doi.org/10.1073/pnas.1804938115
CAS
Article
PubMed
PubMed Central
Google Scholar
Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O’Donnell TA, Brierley SM, Ingraham HA, Julius D (2017) Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170(1):185-198.e116. https://doi.org/10.1016/j.cell.2017.05.034
CAS
Article
PubMed
PubMed Central
Google Scholar
Fung C, Vanden Berghe P (2020) Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 77(22):4505–4522. https://doi.org/10.1007/s00018-020-03543-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Spencer NJ, Hu H (2020) Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 17(6):338–351. https://doi.org/10.1038/s41575-020-0271-2
Article
PubMed
PubMed Central
Google Scholar
Bon-Frauches AC, Boesmans W (2020) The enteric nervous system: the hub in a star network. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/s41575-020-00377-2
Article
PubMed
Google Scholar
Rao M, Gershon MD (2016) The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 13(9):517–528. https://doi.org/10.1038/nrgastro.2016.107
CAS
Article
PubMed
PubMed Central
Google Scholar
Wood JD (2016) Enteric nervous system: neuropathic gastrointestinal motility. Dig Dis Sci 61(7):1803–1816. https://doi.org/10.1007/s10620-016-4183-5
Article
PubMed
Google Scholar
Rao M, Gershon MD (2018) Enteric nervous system development: what could possibly go wrong? Nat Rev Neurosci 19(9):552–565. https://doi.org/10.1038/s41583-018-0041-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Gershon MD (2010) Developmental determinants of the independence and complexity of the enteric nervous system. Trends Neurosci 33(10):446–456. https://doi.org/10.1016/j.tins.2010.06.002
CAS
Article
PubMed
Google Scholar
Pesce M, Borrelli O, Saliakellis E, Thapar N (2018) Gastrointestinal neuropathies: new insights and emerging therapies. Gastroenterol Clin N Am 47(4):877–894. https://doi.org/10.1016/j.gtc.2018.07.011
Article
Google Scholar
Di Nardo G, Blandizzi C, Volta U, Colucci R, Stanghellini V, Barbara G, Del Tacca M, Tonini M, Corinaldesi R, De Giorgio R (2008) Review article: molecular, pathological and therapeutic features of human enteric neuropathies. Aliment Pharmacol Ther 28(1):25–42. https://doi.org/10.1111/j.1365-2036.2008.03707.x
CAS
Article
PubMed
Google Scholar
Brosens E, Burns AJ, Brooks AS, Matera I, Borrego S, Ceccherini I, Tam PK, García-Barceló M-M, Thapar N, Benninga MA, Hofstra RMW, Alves MM (2016) Genetics of enteric neuropathies. Dev Biol 417(2):198–208. https://doi.org/10.1016/j.ydbio.2016.07.008
CAS
Article
PubMed
Google Scholar
Knowles CH, Lindberg G, Panza E, De Giorgio R (2013) New perspectives in the diagnosis and management of enteric neuropathies. Nat Rev Gastro Hepat 10(4):206–218. https://doi.org/10.1038/nrgastro.2013.18
CAS
Article
Google Scholar
Tam PK (2016) Hirschsprung’s disease: a bridge for science and surgery. J Pediatr Surg 51(1):18–22
PubMed
Google Scholar
McKeown SJ, Stamp L, Hao MM, Young HM (2013) Hirschsprung disease: a developmental disorder of the enteric nervous system. Wiley Interdiscip Rev Dev Biol 2(1):113–129. https://doi.org/10.1002/wdev.57
CAS
Article
PubMed
Google Scholar
Alves MM, Sribudiani Y, Brouwer RW, Amiel J, Antiñolo G, Borrego S, Ceccherini I, Chakravarti A, Fernández RM, Garcia-Barcelo MM, Griseri P, Lyonnet S, Tam PK, van Ijcken WF, Eggen BJ, te Meerman GJ, Hofstra RM (2013) Contribution of rare and common variants determine complex diseases-Hirschsprung disease as a model. Dev Biol 382(1):320–329. https://doi.org/10.1016/j.ydbio.2013.05.019
CAS
Article
PubMed
Google Scholar
Parisi MA, Kapur RP (2000) Genetics of Hirschsprung disease. Curr Opin Pediatr 12(6):610–617. https://doi.org/10.1097/00008480-200012000-00017
CAS
Article
PubMed
Google Scholar
Panza E, Knowles CH, Graziano C, Thapar N, Burns AJ, Seri M, Stanghellini V, De Giorgio R (2012) Genetics of human enteric neuropathies. Prog Neurobiol 96(2):176–189. https://doi.org/10.1016/j.pneurobio.2012.01.001
CAS
Article
PubMed
Google Scholar
Bondurand N, Southard-Smith EM (2016) Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: old and new players. Dev Biol 417(2):139–157. https://doi.org/10.1016/j.ydbio.2016.06.042
CAS
Article
PubMed
PubMed Central
Google Scholar
Burzynski G, Shepherd IT, Enomoto H (2009) Genetic model system studies of the development of the enteric nervous system, gut motility and Hirschsprung’s disease. Neurogastroenterol Motil 21(2):113–127. https://doi.org/10.1111/j.1365-2982.2008.01256.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Heanue TA, Pachnis V (2006) Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschsprung disease genes. Proc Natl Acad Sci USA 103(18):6919–6924. https://doi.org/10.1073/pnas.0602152103
CAS
Article
PubMed
PubMed Central
Google Scholar
Edery P, Pelet A, Mulligan LM, Abel L, Attié T, Dow E, Bonneau D, David A, Flintoff W, Jan D et al (1994) Long segment and short segment familial Hirschsprung’s disease: variable clinical expression at the RET locus. J Med Genet 31(8):602–606. https://doi.org/10.1136/jmg.31.8.602
CAS
Article
PubMed
PubMed Central
Google Scholar
Angrist M, Bolk S, Thiel B, Puffenberger EG, Hofstra RM, Buys CH, Cass DT, Chakravarti A (1995) Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung disease. Hum Mol Genet 4(5):821–830. https://doi.org/10.1093/hmg/4.5.821
CAS
Article
PubMed
Google Scholar
Puffenberger EG, Hosoda K, Washington SS, Nakao K, deWit D, Yanagisawa M, Chakravarti A (1994) A missense mutation of the endothelin-B receptor gene in multigenic hirschsprung’s disease. Cell 79(7):1257–1266. https://doi.org/10.1016/0092-8674(94)90016-7
CAS
Article
PubMed
Google Scholar
Sham MH, Lui VC, Fu M, Chen B, Tam PK (2001) SOX10 is abnormally expressed in aganglionic bowel of Hirschsprung’s disease infants. Gut 49(2):220–226. https://doi.org/10.1136/gut.49.2.220
CAS
Article
PubMed
PubMed Central
Google Scholar
Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, Lemort N, Goossens M, Wegner M (1998) Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA 95(9):5161–5165. https://doi.org/10.1073/pnas.95.9.5161
CAS
Article
PubMed
PubMed Central
Google Scholar
Garcia-Barceló M, Sham MH, Lui VCH, Chen BLS, Ott J, Tam PKH (2003) Association study of PHOX2B as a candidate gene for Hirschsprung’s disease. Gut 52(4):563–567. https://doi.org/10.1136/gut.52.4.563
Article
PubMed
PubMed Central
Google Scholar
Luzón-Toro B, Fernández RM, Torroglosa A, de Agustín JC, Méndez-Vidal C, Segura DI, Antiñolo G, Borrego S (2013) Mutational spectrum of semaphorin 3A and semaphorin 3D genes in Spanish Hirschsprung patients. PLoS ONE 8(1):e54800–e54800. https://doi.org/10.1371/journal.pone.0054800
CAS
Article
PubMed
PubMed Central
Google Scholar
Jiang Q, Arnold S, Heanue T, Kilambi KP, Doan B, Kapoor A, Ling AY, Sosa MX, Guy M, Jiang Q, Burzynski G, West K, Bessling S, Griseri P, Amiel J, Fernandez RM, Verheij JBGM, Hofstra RMW, Borrego S, Lyonnet S, Ceccherini I, Gray JJ, Pachnis V, McCallion AS, Chakravarti A (2015) Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet 96(4):581–596. https://doi.org/10.1016/j.ajhg.2015.02.014
CAS
Article
PubMed
PubMed Central
Google Scholar
Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, Pelet A, Arnold S, Miao X, Griseri P, Brooks AS, Antinolo G, de Pontual L, Clement-Ziza M, Munnich A, Kashuk C, West K, Wong KK, Lyonnet S, Chakravarti A, Tam PK, Ceccherini I, Hofstra RM, Fernandez R (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45(1):1–14. https://doi.org/10.1136/jmg.2007.053959
CAS
Article
PubMed
Google Scholar
Mederer T, Schmitteckert S, Volz J, Martínez C, Röth R, Thumberger T, Eckstein V, Scheuerer J, Thöni C, Lasitschka F, Carstensen L, Günther P, Holland-Cunz S, Hofstra R, Brosens E, Rosenfeld JA, Schaaf CP, Schriemer D, Ceccherini I, Rusmini M, Tilghman J, Luzón-Toro B, Torroglosa A, Borrego S, Sze-Man Tang C, Garcia-Barceló M, Tam P, Paramasivam N, Bewerunge-Hudler M, De La Torre C, Gretz N, Rappold GA, Romero P, Niesler B (2020) A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease. PLoS Genet 16(11):e1009106. https://doi.org/10.1371/journal.pgen.1009106
CAS
Article
PubMed
PubMed Central
Google Scholar
Tilghman JM, Ling AY, Turner TN, Sosa MX, Krumm N, Chatterjee S, Kapoor A, Coe BP, Nguyen K-DH, Gupta N, Gabriel S, Eichler EE, Berrios C, Chakravarti A (2019) Molecular genetic anatomy and risk profile of Hirschsprung’s disease. N Engl J Med 380(15):1421–1432. https://doi.org/10.1056/NEJMoa1706594
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuil L, MacKenzie KC, Tang CS, Windster JD, Le TL, Karim A, de Graaf BM, van der Helm R, van Bever Y, Sloots CEJ, Meeussen C, Tibboel D, de Klein A, Wijnen RMH, Amiel J, Lyonnet S, Garcia-Barcelo M-M, Tam PKH, Alves MM, Brooks A, Hofstra RMW, Brosens E (2020) Size matters: large copy number losses reveal novel Hirschsprung disease genes. medRxiv. https://doi.org/10.1101/2020.11.02.20221481
Article
Google Scholar
Heuckeroth RO (2018) Hirschsprung disease—integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol 15(3):152–167. https://doi.org/10.1038/nrgastro.2017.149
Article
PubMed
Google Scholar
Chatterjee S, Nandakumar P, Auer DR, Gabriel SB, Chakravarti A (2019) Gene- and tissue-level interactions in normal gastrointestinal development and Hirschsprung disease. Proc Natl Acad Sci 116(52):26697. https://doi.org/10.1073/pnas.1908756116
CAS
Article
PubMed Central
Google Scholar
Hao MM, Foong JP, Bornstein JC, Li ZL, Vanden Berghe P, Boesmans W (2016) Enteric nervous system assembly: functional integration within the developing gut. Dev Biol 417(2):168–181. https://doi.org/10.1016/j.ydbio.2016.05.030
CAS
Article
PubMed
Google Scholar
Dai Y, Deng Y, Lin Y, Ouyang R, Li L (2020) Long-term outcomes and quality of life of patients with Hirschsprung disease: a systematic review and meta-analysis. BMC Gastroenterol 20(1):67. https://doi.org/10.1186/s12876-020-01208-z
Article
PubMed
PubMed Central
Google Scholar
Kapur RP, Smith C, Ambartsumyan L (2020) Postoperative Pullthrough obstruction in Hirschsprung disease: etiologies and diagnosis. Pediatr Dev Pathol 23(1):40–59. https://doi.org/10.1177/1093526619890735
Article
PubMed
Google Scholar
Tani G, Tomuschat C, O’Donnell AM, Coyle D, Puri P (2017) Increased population of immature enteric glial cells in the resected proximal ganglionic bowel of Hirschsprung’s disease patients. J Surg Res 218:150–155
PubMed
Google Scholar
Jaroy EG, Acosta-Jimenez L, Hotta R, Goldstein AM, Emblem R, Klungland A, Ougland R (2019) “Too much guts and not enough brains”: (epi)genetic mechanisms and future therapies of Hirschsprung disease—a review. Clin Epigenetics 11(1):135. https://doi.org/10.1186/s13148-019-0718-x
Article
PubMed
PubMed Central
Google Scholar
Obata Y, Pachnis V (2016) The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151(5):836–844. https://doi.org/10.1053/j.gastro.2016.07.044
CAS
Article
PubMed
Google Scholar
Torroglosa A, Alves MM, Fernández RM, Antiñolo G, Hofstra RM, Borrego S (2016) Epigenetics in ENS development and Hirschsprung disease. Dev Biol 417(2):209–216. https://doi.org/10.1016/j.ydbio.2016.06.017
CAS
Article
PubMed
Google Scholar
Gosain A (2016) Established and emerging concepts in Hirschsprung’s-associated enterocolitis. Pediatr Surg Int 32(4):313–320
PubMed
PubMed Central
Google Scholar
Ibiza S, García-Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, Misic AM, Bartow-McKenney C, Larson DM, Pavan WJ, Eberl G, Grice EA, Veiga-Fernandes H (2016) Glial cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535(7612):440–443. https://doi.org/10.1038/nature18644
CAS
Article
PubMed
PubMed Central
Google Scholar
Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D, Barlow A, Pachnis V, Kioussis D (2007) Tyrosine kinase receptor RET is a key regulator of Peyer’s patch organogenesis. Nature 446(7135):547–551. https://doi.org/10.1038/nature05597
CAS
Article
PubMed
Google Scholar
Neuvonen MI, Korpela K, Kyrklund K, Salonen A, de Vos W, Rintala RJ, Pakarinen MP (2018) Intestinal microbiota in Hirschsprung disease. J Pediatr Gastroenterol Nutr 67(5):594–600. https://doi.org/10.1097/MPG.0000000000001999
Article
PubMed
Google Scholar
Tang W, Su Y, Yuan C, Zhang Y, Zhou L, Peng L, Wang P, Chen G, Li Y, Li H, Zhi Z, Chang H, Hang B, Mao J-H, Snijders AM, Xia Y (2020) Prospective study reveals a microbiome signature that predicts the occurrence of post-operative enterocolitis in Hirschsprung disease (HSCR) patients. Gut Microbes 11(4):842–854. https://doi.org/10.1080/19490976.2020.1711685
Article
PubMed
PubMed Central
Google Scholar
Foong JPP, Hung LY, Poon S, Savidge TC, Bornstein JC (2020) Early life interaction between the microbiota and the enteric nervous system. Am J Physiol-Gastr L 319(5):G541–G548. https://doi.org/10.1152/ajpgi.00288.2020
CAS
Article
Google Scholar
Obata Y, Castano A, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, de Aguero MG, Yilmaz B, Lopes R, Huseynova A, Horswell S, Maradana MR, Boesmans W, Vanden Berghe P, Murray AJ, Stockinger B, Macpherson AJ, Pachnis V (2020) Neuronal programming by microbiota regulates intestinal physiology. Nature 578(7794):284–289. https://doi.org/10.1038/s41586-020-1975-8
CAS
Article
PubMed
Google Scholar
Muller PA, Matheis F, Schneeberger M, Kerner Z, Jove V, Mucida D (2020) Microbiota-modulated CART(+) enteric neurons autonomously regulate blood glucose. Science 370(6514):314–321. https://doi.org/10.1126/science.abd6176
CAS
Article
PubMed
PubMed Central
Google Scholar
Anitha M, Reichardt F, Tabatabavakili S, Nezami BG, Chassaing B, Mwangi S, Vijay-Kumar M, Gewirtz A, Srinivasan S (2016) Intestinal dysbiosis contributes to the delayed gastrointestinal transit in high-fat diet fed mice. Cell Mol Gastroenterol Hepatol 2(3):328–339. https://doi.org/10.1016/j.jcmgh.2015.12.008
Article
PubMed
PubMed Central
Google Scholar
Cossais F, Durand T, Chevalier J, Boudaud M, Kermarrec L, Aubert P, Neveu I, Naveilhan P, Neunlist M (2016) Postnatal development of the myenteric glial network and its modulation by butyrate. Am J Physiol Gastrointest Liver Physiol 310(11):G941-951. https://doi.org/10.1152/ajpgi.00232.2015
Article
PubMed
Google Scholar
Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, Pettersson S, Pachnis V (2015) Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85(2):289–295. https://doi.org/10.1016/j.neuron.2014.12.037
CAS
Article
PubMed
PubMed Central
Google Scholar
Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM (2014) Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 26(1):98–107. https://doi.org/10.1111/nmo.12236
CAS
Article
PubMed
Google Scholar
Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S (2012) Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143(4):1006–1016. https://doi.org/10.1053/j.gastro.2012.06.034
CAS
Article
PubMed
Google Scholar
De Vadder F, Grasset E, Manneras Holm L, Karsenty G, Macpherson AJ, Olofsson LE, Backhed F (2018) Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci USA 115(25):6458–6463. https://doi.org/10.1073/pnas.1720017115
CAS
Article
PubMed
PubMed Central
Google Scholar
Rolig AS, Mittge EK, Ganz J, Troll JV, Melancon E, Wiles TJ, Alligood K, Stephens WZ, Eisen JS, Guillemin K (2017) The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biol 15(2):e2000689. https://doi.org/10.1371/journal.pbio.2000689
CAS
Article
PubMed
PubMed Central
Google Scholar
Rieder E, Fernandez-Becker NQ, Sarosiek J, Guillaume A, Azagury DE, Clarke JO (2020) Achalasia: physiology and diagnosis. Ann N Y Acad Sci. https://doi.org/10.1111/nyas.14510
Article
PubMed
Google Scholar
Boeckxstaens GE (2016) Achalasia: from bench to peroral endoscopic myotomy. Dig Dis 34(5):476–482. https://doi.org/10.1159/000445222
Article
PubMed
Google Scholar
Moses PL, Ellis LM, Anees MR, Ho W, Rothstein RI, Meddings JB, Sharkey KA, Mawe GM (2003) Antineuronal antibodies in idiopathic achalasia and gastro-oesophageal reflux disease. Gut 52(5):629–636. https://doi.org/10.1136/gut.52.5.629
CAS
Article
PubMed
PubMed Central
Google Scholar
Kraichely RE, Farrugia G, Pittock SJ, Castell DO, Lennon VA (2010) Neural autoantibody profile of primary achalasia. Dig Dis Sci 55(2):307–311. https://doi.org/10.1007/s10620-009-0838-9
Article
PubMed
Google Scholar
Ganem D, Kistler A, DeRisi J (2010) Achalasia and viral infection: new insights from veterinary medicine. Sci Transl Med 2(33):24–33. https://doi.org/10.1126/scitranslmed.3000986
Article
Google Scholar
Pressman A, Behar J (2017) Etiology and pathogenesis of idiopathic achalasia. J Clin Gastroenterol 51(3):195–202. https://doi.org/10.1097/mcg.0000000000000780
Article
PubMed
Google Scholar
Camilleri M, Chedid V, Ford AC, Haruma K, Horowitz M, Jones KL, Low PA, Park SY, Parkman HP, Stanghellini V (2018) Gastroparesis. Nat Rev Dis Primers 4(1):41. https://doi.org/10.1038/s41572-018-0038-z
Article
PubMed
Google Scholar
Grover M, Farrugia G, Stanghellini V (2019) Gastroparesis: a turning point in understanding and treatment. Gut 68(12):2238–2250. https://doi.org/10.1136/gutjnl-2019-318712
CAS
Article
PubMed
Google Scholar
Grover M, Farrugia G, Lurken MS, Bernard CE, Faussone-Pellegrini MS, Smyrk TC, Parkman HP, Abell TL, Snape WJ, Hasler WL, Ünalp-Arida A, Nguyen L, Koch KL, Calles J, Lee L, Tonascia J, Hamilton FA, Pasricha PJ (2011) Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology 140(5):1575-1585.e1578. https://doi.org/10.1053/j.gastro.2011.01.046
CAS
Article
PubMed
Google Scholar
Pasricha PJ, Grover M, Yates KP, Abell TL, Bernard CE, Koch KL, McCallum RW, Sarosiek I, Kuo B, Bulat R, Chen J, Shulman R, Lee L, Tonascia J, Miriel LA, Hamilton F, Farrugia G, Parkman HP (2021) Functional dyspepsia and gastroparesis in tertiary care are interchangeable syndromes with common clinical and pathological features. Gastroenterology S0016–5085(21):00337–00341. https://doi.org/10.1053/j.gastro.2021.01.230
Article
Google Scholar
De Giorgio R, Cogliandro RF, Barbara G, Corinaldesi R, Stanghellini V (2011) Chronic intestinal pseudo-obstruction: clinical features, diagnosis, and therapy. Gastroenterol Clin North Am 40(4):787–807. https://doi.org/10.1016/j.gtc.2011.09.005
Article
PubMed
Google Scholar
Downes TJ, Cheruvu MS, Karunaratne TB, De Giorgio R, Farmer AD (2018) Pathophysiology, diagnosis, and management of chronic intestinal pseudo-obstruction. J Clin Gastroenterol 52(6):477–489. https://doi.org/10.1097/mcg.0000000000001047
Article
PubMed
Google Scholar
Van Goethem G, Schwartz M, Löfgren A, Dermaut B, Van Broeckhoven C, Vissing J (2003) Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur J Hum Genet 11(7):547–549. https://doi.org/10.1038/sj.ejhg.5201002
CAS
Article
PubMed
Google Scholar
Hunter MF, Peters H, Salemi R, Thorburn D, Mackay MT (2011) Alpers syndrome with mutations in POLG: clinical and investigative features. Pediatr Neurol 45(5):311–318. https://doi.org/10.1016/j.pediatrneurol.2011.07.008
Article
PubMed
Google Scholar
Chetaille P, Preuss C, Burkhard S, Côté JM, Houde C, Castilloux J, Piché J, Gosset N, Leclerc S, Wünnemann F, Thibeault M, Gagnon C, Galli A, Tuck E, Hickson GR, El Amine N, Boufaied I, Lemyre E, de Santa BP, Faure S, Jonzon A, Cameron M, Dietz HC, Gallo-McFarlane E, Benson DW, Moreau C, Labuda D, Zhan SH, Shen Y, Jomphe M, Jones SJ, Bakkers J, Andelfinger G (2014) Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat Genet 46(11):1245–1249. https://doi.org/10.1038/ng.3113
CAS
Article
PubMed
Google Scholar
Thorson W, Diaz-Horta O, Foster J 2nd, Spiliopoulos M, Quintero R, Farooq A, Blanton S, Tekin M (2014) De novo ACTG2 mutations cause congenital distended bladder, microcolon, and intestinal hypoperistalsis. Hum Genet 133(6):737–742. https://doi.org/10.1007/s00439-013-1406-0
CAS
Article
PubMed
Google Scholar
Pingault V, Girard M, Bondurand N, Dorkins H, Van Maldergem L, Mowat D, Shimotake T, Verma I, Baumann C, Goossens M (2002) SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet 111(2):198–206. https://doi.org/10.1007/s00439-002-0765-8
CAS
Article
PubMed
Google Scholar
Gargiulo A, Auricchio R, Barone MV, Cotugno G, Reardon W, Milla PJ, Ballabio A, Ciccodicola A, Auricchio A (2007) Filamin A is mutated in X-linked chronic idiopathic intestinal pseudo-obstruction with central nervous system involvement. Am J Hum Genet 80(4):751–758. https://doi.org/10.1086/513321
CAS
Article
PubMed
PubMed Central
Google Scholar
Deglincerti A, De Giorgio R, Cefle K, Devoto M, Pippucci T, Castegnaro G, Panza E, Barbara G, Cogliandro RF, Mungan Z, Palanduz S, Corinaldesi R, Romeo G, Seri M, Stanghellini V (2007) A novel locus for syndromic chronic idiopathic intestinal pseudo-obstruction maps to chromosome 8q23-q24. Eur J Hum Genet 15(8):889–897. https://doi.org/10.1038/sj.ejhg.5201844
CAS
Article
PubMed
Google Scholar
Boschetti E, Malagelada C, Accarino A, Malagelada JR, Cogliandro RF, Gori A, Bonora E, Giancola F, Bianco F, Tugnoli V, Clavenzani P, Azpiroz F, Stanghellini V, Sternini C, De Giorgio R (2019) Enteric neuron density correlates with clinical features of severe gut dysmotility. Am J Physiol Gastrointest Liver Physiol 317(6):G793-g801. https://doi.org/10.1152/ajpgi.00199.2019
CAS
Article
PubMed
PubMed Central
Google Scholar
Bharucha AE, Lacy BE (2020) Mechanisms, Evaluation, and Management of Chronic Constipation. Gastroenterology 158(5):1232-1249.e1233. https://doi.org/10.1053/j.gastro.2019.12.034
CAS
Article
PubMed
Google Scholar
Bassotti G, Villanacci V, Creţoiu D, Creţoiu SM, Becheanu G (2013) Cellular and molecular basis of chronic constipation: taking the functional/idiopathic label out. World J Gastroenterol 19(26):4099–4105. https://doi.org/10.3748/wjg.v19.i26.4099
CAS
Article
PubMed
PubMed Central
Google Scholar
Khoury-Hanold W, Yordy B, Kong P, Kong Y, Ge W, Szigeti-Buck K, Ralevski A, Horvath Tamas L, Iwasaki A (2016) Viral spread to enteric neurons links genital HSV-1 infection to toxic megacolon and lethality. Cell Host Microbe 19(6):788–799. https://doi.org/10.1016/j.chom.2016.05.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Black CJ, Drossman DA, Talley NJ, Ruddy J, Ford AC (2020) Functional gastrointestinal disorders: advances in understanding and management. The Lancet 396(10263):1664–1674. https://doi.org/10.1016/S0140-6736(20)32115-2
CAS
Article
Google Scholar
Drossman DA (2016) Functional gastrointestinal disorders: history, pathophysiology, clinical features, and Rome IV. Gastroenterology 150(6):1262–1279
Google Scholar
Enck P, Aziz Q, Barbara G, Farmer AD, Fukudo S, Mayer EA, Niesler B, Quigley EM, Rajilic-Stojanovic M, Schemann M, Schwille-Kiuntke J, Simren M, Zipfel S, Spiller RC (2016) Irritable bowel syndrome. Nat Rev Dis Primers 2:16014. https://doi.org/10.1038/nrdp.2016.14
Article
PubMed
PubMed Central
Google Scholar
Ford AC, Mahadeva S, Carbone MF, Lacy BE, Talley NJ (2020) Functional dyspepsia. The Lancet 396(10263):1689–1702. https://doi.org/10.1016/S0140-6736(20)30469-4
CAS
Article
Google Scholar
Ford AC, Sperber AD, Corsetti M, Camilleri M (2020) Irritable bowel syndrome. The Lancet 396(10263):1675–1688. https://doi.org/10.1016/S0140-6736(20)31548-8
CAS
Article
Google Scholar
Wauters L, Talley NJ, Walker MM, Tack J, Vanuytsel T (2020) Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut 69(3):591–600. https://doi.org/10.1136/gutjnl-2019-318536
CAS
Article
PubMed
Google Scholar
Mearin F, Malfertheiner P (2017) Functional gastrointestinal disorders: complex treatments for complex pathophysiological mechanisms. Dig Dis 35(1):1–4. https://doi.org/10.1159/000485407
Article
PubMed
Google Scholar
Van Oudenhove L, Demyttenaere K, Tack J, Aziz Q (2004) Central nervous system involvement in functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol 18(4):663–680. https://doi.org/10.1016/j.bpg.2004.04.010
CAS
Article
PubMed
Google Scholar
Sperber AD, Bangdiwala SI, Drossman DA, Ghoshal UC, Simren M, Tack J, Whitehead WE, Dumitrascu DL, Fang X, Fukudo S (2020) Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study. Gastroenterology 160(1):99-114.e3. https://doi.org/10.1053/j.gastro.2020.04.014
Article
PubMed
Google Scholar
Tack J, Stanghellini V, Mearin F, Yiannakou Y, Layer P, Coffin B, Simren M, Mackinnon J, Wiseman G, Marciniak A (2019) Economic burden of moderate to severe irritable bowel syndrome with constipation in six European countries. BMC Gastroenterol 19(1):69
PubMed
PubMed Central
Google Scholar
Dothel G, Barbaro MR, Boudin H, Vasina V, Cremon C, Gargano L, Bellacosa L, De Giorgio R, Le Berre-Scoul C, Aubert P, Neunlist M, De Ponti F, Stanghellini V, Barbara G (2015) Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 148(5):1002-1011.e1004. https://doi.org/10.1053/j.gastro.2015.01.042
CAS
Article
PubMed
Google Scholar
Wood JD, Liu S, Drossman DA, Ringel Y, Whitehead WE (2012) Anti-enteric neuronal antibodies and the irritable bowel syndrome. J Neurogastroenterol Motil 18(1):78–85. https://doi.org/10.5056/jnm.2012.18.1.78
Article
PubMed
PubMed Central
Google Scholar
Törnblom H, Lindberg G, Nyberg B, Veress B (2002) Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology 123(6):1972–1979. https://doi.org/10.1053/gast.2002.37059
Article
PubMed
Google Scholar
Tornblom H, Lang B, Clover L, Knowles CH, Vincent A, Lindberg G (2007) Autoantibodies in patients with gut motility disorders and enteric neuropathy. Scand J Gastroenterol 42(11):1289–1293. https://doi.org/10.1080/00365520701396216
CAS
Article
PubMed
Google Scholar
Cirillo C, Bessissow T, Desmet AS, Vanheel H, Tack J, Vanden Berghe P (2015) Evidence for neuronal and structural changes in submucous ganglia of patients with functional dyspepsia. Am J Gastroenterol 110(8):1205–1215. https://doi.org/10.1038/ajg.2015.158
CAS
Article
PubMed
Google Scholar
Sasselli V, Boesmans W, Vanden Berghe P, Tissir F, Goffinet AM, Pachnis V (2013) Planar cell polarity genes control the connectivity of enteric neurons. J Clin Invest 123(4):1763–1772. https://doi.org/10.1172/JCI66759
CAS
Article
PubMed
PubMed Central
Google Scholar
Gazouli M, Wouters MM, Kapur-Pojskić L, Bengtson MB, Friedman E, Nikčević G, Demetriou CA, Mulak A, Santos J, Niesler B (2016) Lessons learned–resolving the enigma of genetic factors in IBS. Nat Rev Gastroenterol Hepatol 13(2):77–87. https://doi.org/10.1038/nrgastro.2015.206
CAS
Article
PubMed
Google Scholar
Wouters MM, Lambrechts D, Knapp M, Cleynen I, Whorwell P, Agréus L, Dlugosz A, Schmidt PT, Halfvarson J, Simrén M, Ohlsson B, Karling P, Van Wanrooy S, Mondelaers S, Vermeire S, Lindberg G, Spiller R, Dukes G, D’Amato M, Boeckxstaens G (2014) Genetic variants in CDC42 and NXPH1 as susceptibility factors for constipation and diarrhoea predominant irritable bowel syndrome. Gut 63(7):1103–1111. https://doi.org/10.1136/gutjnl-2013-304570
CAS
Article
PubMed
Google Scholar
Wohlfarth C, Schmitteckert S, Härtle JD, Houghton LA, Dweep H, Fortea M, Assadi G, Braun A, Mederer T, Pöhner S, Becker PP, Fischer C, Granzow M, Mönnikes H, Mayer EA, Sayuk G, Boeckxstaens G, Wouters MM, Simrén M, Lindberg G, Ohlsson B, Schmidt PT, Dlugosz A, Agreus L, Andreasson A, D’Amato M, Burwinkel B, Bermejo JL, Röth R, Lasitschka F, Vicario M, Metzger M, Santos J, Rappold GA, Martinez C, Niesler B (2017) miR-16 and miR-103 impact 5-HT(4) receptor signalling and correlate with symptom profile in irritable bowel syndrome. Sci Rep 7(1):14680. https://doi.org/10.1038/s41598-017-13982-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Niesler B, Hattensperger N, Martinez C, Schmitteckert S, Houghton LA, Goebel-Stengel M, Knab D, Hammer C, D'Amato M, Zheng T, Moennikes H, Berens S, Kraus F, Andresen V, Frieling T, Keller J, Pehl C, Thoeringer C, Hoffmann P, Noethen MM, Heilmann-Heimbach S, Franke A, Lieb W, Clarke G, Cryan JF, Dinan TG, Quigley EM, Spiller R, Beltran C, Herzog W, Vicario M, Santos J, Mayer EA, Sayuk G, Gazouli M, Bustamante M, Rabionet K, Estivill X, Boeckxstaens G, Wouters MM, Simren M, Kabisch M, Raithel M, Rappold GA, Schaefert R, Lorenzo-Bermejo J (2018) The Serotonin receptor 3E subunit variant HTR3E c.*76G> A is confirmed as a risk factor for IBS-D in females. Neurogastroenterol Motil 30(S1):e13422
Kapeller J, Houghton LA, Mönnikes H, Walstab J, Möller D, Bönisch H, Burwinkel B, Autschbach F, Funke B, Lasitschka F, Gassler N, Fischer C, Whorwell PJ, Atkinson W, Fell C, Büchner KJ, Schmidtmann M, van der Voort I, Wisser AS, Berg T, Rappold G, Niesler B (2008) First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome. Hum Mol Genet 17(19):2967–2977. https://doi.org/10.1093/hmg/ddn195
CAS
Article
PubMed
Google Scholar
Kumar S, Ranjan P, Mittal B, Ghoshal UC (2012) Serotonin transporter gene (SLC6A4) polymorphism in patients with irritable bowel syndrome and healthy controls. J Gastrointestin Liver Dis 21(1):31–38
PubMed
Google Scholar
Niesler B, Kapeller J, Fell C, Atkinson W, Möller D, Fischer C, Whorwell P, Houghton LA (2010) 5-HTTLPR and STin2 polymorphisms in the serotonin transporter gene and irritable bowel syndrome: effect of bowel habit and sex. Eur J Gastroenterol Hepatol 22(7):856–861. https://doi.org/10.1097/MEG.0b013e32832e9d6b
CAS
Article
PubMed
Google Scholar
Ek WE, Reznichenko A, Ripke S, Niesler B, Zucchelli M, Rivera NV, Schmidt PT, Pedersen NL, Magnusson P, Talley NJ, Holliday EG, Houghton L, Gazouli M, Karamanolis G, Rappold G, Burwinkel B, Surowy H, Rafter J, Assadi G, Li L, Papadaki E, Gambaccini D, Marchi S, Colucci R, Blandizzi C, Barbaro R, Karling P, Walter S, Ohlsson B, Tornblom H, Bresso F, Andreasson A, Dlugosz A, Simren M, Agreus L, Lindberg G, Boeckxstaens G, Bellini M, Stanghellini V, Barbara G, Daly MJ, Camilleri M, Wouters MM, Amato M (2015) Exploring the genetics of irritable bowel syndrome: a GWA study in the general population and replication in multinational case-control cohorts. Gut 64(11):1774. https://doi.org/10.1136/gutjnl-2014-307997
CAS
Article
PubMed
Google Scholar
Holliday EG, Attia J, Hancock S, Koloski N, McEvoy M, Peel R, D’Amato M, Agréus L, Nyhlin H, Andreasson A, Almazar AE, Saito YA, Scott RJ, Talley NJ (2014) Genome-wide association study identifies two novel genomic regions in irritable bowel syndrome. Am J Gastroenterol 109(5):770–772. https://doi.org/10.1038/ajg.2014.56
CAS
Article
PubMed
Google Scholar
Bonfiglio F, Henström M, Nag A, Hadizadeh F, Zheng T, Cenit MC, Tigchelaar E, Williams F, Reznichenko A, Ek WE, Rivera NV, Homuth G, Aghdassi AA, Kacprowski T, Männikkö M, Karhunen V, Bujanda L, Rafter J, Wijmenga C, Ronkainen J, Hysi P, Zhernakova A, D’Amato M (2018) A GWAS meta-analysis from 5 population-based cohorts implicates ion channel genes in the pathogenesis of irritable bowel syndrome. Neurogastroenterol Motil 30(9):e13358. https://doi.org/10.1111/nmo.13358
CAS
Article
PubMed
Google Scholar
Hyland NP, Cryan JF (2016) Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system. Dev Biol 417(2):182–187
CAS
PubMed
Google Scholar
Vincent AD, Wang X-Y, Parsons SP, Khan WI, Huizinga JD (2018) Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am J Physiol-Gastrointestinal Liver Physiol 315(5):G896–G907
CAS
Google Scholar
Ge X, Ding C, Zhao W, Xu L, Tian H, Gong J, Zhu M, Li J, Li N (2017) Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med 15(1):1–9
Google Scholar
McVey Neufeld K, Mao Y, Bienenstock J, Foster J, Kunze W (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 25(2):183-e188
CAS
PubMed
Google Scholar
Furness J, Stebbing M (2018) The first brain: species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterol Motil 30(2):e13234
Google Scholar
Obata Y, Pachnis V (2020) Linking neurons to immunity: Lessons from Hydra. Proc Natl Acad Sci USA 117(33):19624–19626. https://doi.org/10.1073/pnas.2011637117
CAS
Article
PubMed
PubMed Central
Google Scholar
Murillo-Rincon AP, Klimovich A, Pemöller E, Taubenheim J, Mortzfeld B, Augustin R, Bosch TC (2017) Spontaneous body contractions are modulated by the microbiome of Hydra. Sci Rep 7(1):1–9
CAS
Google Scholar
Campbell R, Josephson R, Schwab W, Rushforth N (1976) Excitability of nerve-free hydra. Nature 262(5567):388–390
CAS
PubMed
Google Scholar
Klimovich A, Giacomello S, Björklund Å, Faure L, Kaucka M, Giez C, Murillo-Rincon AP, Matt A-S, Willoweit-Ohl D, Crupi G (2020) Prototypical pacemaker neurons interact with the resident microbiota. Proc Natl Acad Sci 117(30):17854–17863
CAS
PubMed
PubMed Central
Google Scholar
Pimentel M, Lembo A (2020) Microbiome and its role in irritable bowel syndrome. Dig Dis Sci 65(3):829–839. https://doi.org/10.1007/s10620-020-06109-5
CAS
Article
PubMed
Google Scholar
Tziatzios G, Gkolfakis P, Papanikolaou IS, Mathur R, Pimentel M, Giamarellos-Bourboulis EJ, Triantafyllou K (2020) Gut microbiota dysbiosis in functional dyspepsia. Microorganisms 8:5. https://doi.org/10.3390/microorganisms8050691
CAS
Article
Google Scholar
Jankipersadsing SA, Hadizadeh F, Bonder MJ, Tigchelaar EF, Deelen P, Fu J, Andreasson A, Agreus L, Walter S, Wijmenga C, Hysi P, D’Amato M, Zhernakova A (2017) A GWAS meta-analysis suggests roles for xenobiotic metabolism and ion channel activity in the biology of stool frequency. Gut 66(4):756–758. https://doi.org/10.1136/gutjnl-2016-312398
CAS
Article
PubMed
Google Scholar
Clarke G, McKernan D, Gaszner G, Quigley E, Cryan J, Dinan T (2012) A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of toll-like receptor activation in irritable bowel syndrome. Front Pharmacol 3:90. https://doi.org/10.3389/fphar.2012.00090
CAS
Article
PubMed
PubMed Central
Google Scholar
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39(2):372–385
CAS
PubMed
Google Scholar
Dunlop SP, Jenkins D, Neal KR, Spiller RC (2003) Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology 125(6):1651–1659. https://doi.org/10.1053/j.gastro.2003.09.028
Article
PubMed
Google Scholar
Spiller RC, Jenkins D, Thornley JP, Hebden JM, Wright T, Skinner M, Neal KR (2000) Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47(6):804–811. https://doi.org/10.1136/gut.47.6.804
CAS
Article
PubMed
PubMed Central
Google Scholar
Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2):264–276. https://doi.org/10.1016/j.cell.2015.02.047
CAS
Article
PubMed
PubMed Central
Google Scholar
Talley NJ, Cook DR (2019) Functional dyspepsia. In: Essential medical disorders of the stomach and small intestine. Springer, Berlin, pp 155–172
Barbara G, Grover M, Bercik P, Corsetti M, Ghoshal UC, Ohman L, Rajilić-Stojanović M (2019) Rome Foundation working team report on post-infection irritable bowel syndrome. Gastroenterology 156(1):46–58
PubMed
Google Scholar
Balemans D, Mondelaers S, Cibert-Goton V, Stakenborg N, Aguilera-Lizarraga J, Dooley J, Liston A, Bulmer D, Berghe PV, Boeckxstaens G (2017) Evidence for long-term sensitization of the bowel in patients with post-infectious-IBS. Sci Rep 7(1):1–11
CAS
Google Scholar
Matheis F, Muller PA, Graves CL, Gabanyi I, Kerner ZJ, Costa-Borges D, Ahrends T, Rosenstiel P, Mucida D (2020) Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180(1):64–78
CAS
PubMed
PubMed Central
Google Scholar
Matteoli G, Gomez-Pinilla PJ, Nemethova A, Di Giovangiulio M, Cailotto C, van Bree SH, Michel K, Tracey KJ, Schemann M, Boesmans W, Vanden Berghe P, Boeckxstaens GE (2014) A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63(6):938–948. https://doi.org/10.1136/gutjnl-2013-304676
CAS
Article
PubMed
Google Scholar
De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N, Voytyuk I, Schmidt I, Boeckx B, Dierckx de Casterle I, Baekelandt V, Gonzalez Dominguez E, Mack M, Depoortere I, De Strooper B, Sprangers B, Himmelreich U, Soenen S, Guilliams M, Vanden Berghe P, Jones E, Lambrechts D, Boeckxstaens G (2018) Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 175(2):400–415. https://doi.org/10.1016/j.cell.2018.07.048
CAS
Article
PubMed
Google Scholar
Muller PA, Koscso B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D, Mortha A, Leboeuf M, Li XM, Mucida D, Stanley ER, Dahan S, Margolis KG, Gershon MD, Merad M, Bogunovic M (2014) Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158(2):300–313. https://doi.org/10.1016/j.cell.2014.04.050
CAS
Article
PubMed
PubMed Central
Google Scholar
Rodríguez-Fandiño OA, Hernández-Ruiz J, López-Vidal Y, Charúa-Guindic L, Escobedo G, Schmulson MJ (2017) Maturation phenotype of peripheral blood monocyte/macrophage after stimulation with lipopolysaccharides in irritable bowel syndrome. J Neurogastroenterol Motil 23(2):281
PubMed
PubMed Central
Google Scholar
Boyer J, Saint-Paul M-C, Dadone B, Patouraux S, Vivinus M-H, Ouvrier D, Michiels J-F, Piche T, Tulic MK (2018) Inflammatory cell distribution in colon mucosa as a new tool for diagnosis of irritable bowel syndrome: a promising pilot study. Neurogastroenterol Motil 30(1):e13223. https://doi.org/10.1111/nmo.13223
CAS
Article
Google Scholar
Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14(11):628–638
CAS
PubMed
Google Scholar
Grubišić V, McClain JL, Fried DE, Grants I, Rajasekhar P, Csizmadia E, Ajijola OA, Watson RE, Poole DP, Robson SC (2020) Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. Cell Rep 32(10):108100
PubMed
PubMed Central
Google Scholar
Avetisyan M, Rood JE, Lopez SH, Sengupta R, Wright-Jin E, Dougherty JD, Behrens EM, Heuckeroth RO (2018) Muscularis macrophage development in the absence of an enteric nervous system. Proc Natl Acad Sci 115(18):4696–4701
CAS
PubMed
PubMed Central
Google Scholar
van Wanrooij SJ, Wouters MM, Van Oudenhove L, Vanbrabant W, Mondelaers S, Kollmann P, Kreutz F, Schemann M, Boeckxstaens GE (2014) Sensitivity testing in irritable bowel syndrome with rectal capsaicin stimulations: role of TRPV1 upregulation and sensitization in visceral hypersensitivity? Am J Gastroenterol 109(1):99–109. https://doi.org/10.1038/ajg.2013.371
CAS
Article
PubMed
Google Scholar
Aguilera-Lizarraga J, Florens MV, Viola MF, Jain P, Decraecker L, Appeltans I, Cuende-Estevez M, Fabre N, Van Beek K, Perna E, Balemans D, Stakenborg N, Theofanous S, Bosmans G, Mondelaers SU, Matteoli G, Ibiza Martínez S, Lopez-Lopez C, Jaramillo-Polanco J, Talavera K, Alpizar YA, Feyerabend TB, Rodewald H-R, Farre R, Redegeld FA, Si J, Raes J, Breynaert C, Schrijvers R, Bosteels C, Lambrecht BN, Boyd SD, Hoh RA, Cabooter D, Nelis M, Augustijns P, Hendrix S, Strid J, Bisschops R, Reed DE, Vanner SJ, Denadai-Souza A, Wouters MM, Boeckxstaens GE (2021) Local immune response to food antigens drives meal-induced abdominal pain. Nature 590(7844):151–156. https://doi.org/10.1038/s41586-020-03118-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Jimenez-Vargas NN, Pattison LA, Zhao P, Lieu T, Latorre R, Jensen DD, Castro J, Aurelio L, Le GT, Flynn B, Herenbrink CK, Yeatman HR, Edgington-Mitchell L, Porter CJH, Halls ML, Canals M, Veldhuis NA, Poole DP, McLean P, Hicks GA, Scheff N, Chen E, Bhattacharya A, Schmidt BL, Brierley SM, Vanner SJ, Bunnett NW (2018) Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proc Natl Acad Sci USA 115(31):E7438-e7447. https://doi.org/10.1073/pnas.1721891115
CAS
Article
PubMed
PubMed Central
Google Scholar
Grundy L, Erickson A, Brierley SM (2019) Visceral pain. Annu Rev Physiol 81:261–284. https://doi.org/10.1146/annurev-physiol-020518-114525
CAS
Article
PubMed
Google Scholar
Castro J, Harrington AM, Lieu T, Garcia-Caraballo S, Maddern J, Schober G, O’Donnell T, Grundy L, Lumsden AL, Miller P, Ghetti A, Steinhoff MS, Poole DP, Dong X, Chang L, Bunnett NW, Brierley SM (2019) Activation of pruritogenic TGR5, MrgprA3, and MrgprC11 on colon-innervating afferents induces visceral hypersensitivity. JCI Insight 4:20. https://doi.org/10.1172/jci.insight.131712
Article
Google Scholar
Sessenwein JL, Baker CC, Pradhananga S, Maitland ME, Petrof EO, Allen-Vercoe E, Noordhof C, Reed DE, Vanner SJ, Lomax AE (2017) Protease-mediated suppression of DRG neuron excitability by commensal bacteria. J Neurosci 37(48):11758–11768. https://doi.org/10.1523/jneurosci.1672-17.2017
CAS
Article
PubMed
PubMed Central
Google Scholar
Hughes PA, Brierley SM, Martin CM, Brookes SJ, Linden DR, Blackshaw LA (2009) Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Gut 58(10):1333–1341. https://doi.org/10.1136/gut.2008.170811
CAS
Article
PubMed
Google Scholar
Desormeaux C, Bautzova T, Garcia-Caraballo S, Rolland C, Barbaro MR, Brierley SM, Barbara G, Vergnolle N, Cenac N (2018) Protease-activated receptor 1 is implicated in irritable bowel syndrome mediators-induced signaling to thoracic human sensory neurons. Pain 159(7):1257–1267. https://doi.org/10.1097/j.pain.0000000000001208
CAS
Article
PubMed
Google Scholar
Corsetti M, Akyuz F, Tack J (2015) Targeting tachykinin receptors for the treatment of functional gastrointestinal disorders with a focus on irritable bowel syndrome. Neurogastroenterol Motil 27(10):1354–1370
CAS
PubMed
Google Scholar
Cenac N, Bautzova T, Le Faouder P, Veldhuis NA, Poole DP, Rolland C, Bertrand J, Liedtke W, Dubourdeau M, Bertrand-Michel J (2015) Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology 149(2):433–444
CAS
PubMed
Google Scholar
O’sullivan M, Clayton N, Breslin N, Harman I, Bountra C, McLaren A, O’Morain C (2000) Increased mast cells in the irritable bowel syndrome. Neurogastroenterol Motil 12(5):449–458
PubMed
Google Scholar
Vanheel H, Farré R (2013) Changes in gastrointestinal tract function and structure in functional dyspepsia. Nat Rev Gastroenterol Hepatol 10(3):142–149
PubMed
Google Scholar
Vanheel H, Vicario M, Boesmans W, Vanuytsel T, Salvo-Romero E, Tack J, Farre R (2018) Activation of eosinophils and mast cells in functional dyspepsia: an ultrastructural evaluation. Sci Rep 8(1):5383. https://doi.org/10.1038/s41598-018-23620-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Philpott H, Gibson P, Thien F (2011) Irritable bowel syndrome-An inflammatory disease involving mast cells. Asia Pac Allergy 1(1):36
PubMed
PubMed Central
Google Scholar
Liang W-J, Zhang G, Luo H-S, Liang L-X, Huang D, Zhang F-C (2016) Tryptase and protease-activated receptor 2 expression levels in irritable bowel syndrome. Gut Liver 10(3):382
CAS
PubMed
Google Scholar
Martínez C, Lasitschka F, Thöni C, Wohlfarth C, Braun A, Granzow M, Röth R, Dizdar V, Rappold GA, Hausken T (2020) Comparative expression profiling in the intestine of patients with Giardia-induced postinfectious functional gastrointestinal disorders. Neurogastroenterol Motil 32(9):e13868
PubMed
Google Scholar
Xu XJ, Zhang YL, Liu L, Pan L, Yao SK (2017) Increased expression of nerve growth factor correlates with visceral hypersensitivity and impaired gut barrier function in diarrhoea-predominant irritable bowel syndrome: a preliminary explorative study. Aliment Pharmacol Ther 45(1):100–114. https://doi.org/10.1111/apt.13848
CAS
Article
PubMed
Google Scholar
He SH, He YS, Xie H (2004) Activation of human colon mast cells through proteinase activated receptor-2. World J Gastroenterol 10(3):327–331. https://doi.org/10.3748/wjg.v10.i3.327
CAS
Article
PubMed
PubMed Central
Google Scholar
Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW (2004) Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126(3):693–702
PubMed
Google Scholar
Palsson OS, Morteau O, Bozymski EM, Woosley JT, Sartor RB, Davies MJ, Johnson DA, Turner MJ, Whitehead WE (2004) Elevated vasoactive intestinal peptide concentrations in patients with irritable bowel syndrome. Dig Dis Sci 49(7–8):1236–1243. https://doi.org/10.1023/b:ddas.0000037818.64577.ef
CAS
Article
PubMed
Google Scholar
Rosa AC, Fantozzi R (2013) The role of histamine in neurogenic inflammation. Br J Pharmacol 170(1):38–45
CAS
PubMed
PubMed Central
Google Scholar
Buhner S, Barki N, Greiter W, Giesbertz P, Demir IE, Ceyhan GO, Zeller F, Daniel H, Schemann M (2017) Calcium imaging of nerve-mast cell signaling in the human intestine. Front Physiol 8:971. https://doi.org/10.3389/fphys.2017.00971
Article
PubMed
PubMed Central
Google Scholar
Buhner S, Li Q, Vignali S, Barbara G, De Giorgio R, Stanghellini V, Cremon C, Zeller F, Langer R, Daniel H (2009) Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137(4):1425–1434
CAS
PubMed
Google Scholar
Buhner S, Li Q, Berger T, Vignali S, Barbara G, De Giorgio R, Stanghellini V, Schemann M (2012) Submucous rather than myenteric neurons are activated by mucosal biopsy supernatants from irritable bowel syndrome patients. Neurogastroenterol Motil 24(12):1134-e1572
CAS
PubMed
Google Scholar
Buhner S, Braak B, Li Q, Kugler EM, Klooker T, Wouters M, Donovan J, Vignali S, Mazzuoli-Weber G, Grundy D (2014) Neuronal activation by mucosal biopsy supernatants from irritable bowel syndrome patients is linked to visceral sensitivity. Exp Physiol 99(10):1299–1311
PubMed
Google Scholar
Barbara G, Wang B, Stanghellini V, De Giorgio R, Cremon C, Di Nardo G, Trevisani M, Campi B, Geppetti P, Tonini M (2007) Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132(1):26–37
CAS
PubMed
Google Scholar
Cenac N, Andrews CN, Holzhausen M, Chapman K, Cottrell G, Andrade-Gordon P, Steinhoff M, Barbara G, Beck P, Bunnett NW (2007) Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Investig 117(3):636–647
CAS
PubMed
PubMed Central
Google Scholar
Valdez-Morales EE, Overington J, Guerrero-Alba R, Ochoa-Cortes F, Ibeakanma CO, Spreadbury I, Bunnett NW, Beyak M, Vanner SJ (2013) Sensitization of peripheral sensory nerves by mediators from colonic biopsies of diarrhea-predominant irritable bowel syndrome patients: a role for PAR2. Am J Gastroenterol 108(10):1634–1643
CAS
PubMed
Google Scholar
Wouters MM, Vicario M, Santos J (2016) The role of mast cells in functional GI disorders. Gut 65(1):155–168. https://doi.org/10.1136/gutjnl-2015-309151
CAS
Article
PubMed
Google Scholar
Scanzi J, Accarie A, Muller E, Pereira B, Aissouni Y, Goutte M, Joubert-Zakeyh J, Picard E, Mallet C, Gelot A (2016) Colonic overexpression of the T-type calcium channel Cav32 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients. Neurogastroenterol Motil 28(11):1632–1640
CAS
PubMed
Google Scholar
Akbar A, Yiangou Y, Facer P, Walters JR, Anand P, Ghosh S (2008) Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57(7):923–929
CAS
PubMed
Google Scholar
Akbar A, Yiangou Y, Facer P, Brydon W, Walters JR, Anand P, Ghosh S (2010) Expression of the TRPV1 receptor differs in quiescent inflammatory bowel disease with or without abdominal pain. Gut 59(6):767–774
PubMed
Google Scholar
Holzer P (2008) TRPV1: a new target for treatment of visceral pain in IBS? Gut 57(7):882–884. https://doi.org/10.1136/gut.2008.149724
CAS
Article
PubMed
Google Scholar
Boesmans W, Owsianik G, Tack J, Voets T, Vanden Berghe P (2011) TRP channels in neurogastroenterology: opportunities for therapeutic intervention. Br J Pharmacol 162(1):18–37. https://doi.org/10.1111/j.1476-5381.2010.01009.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Buckinx R, Van Nassauw L, Avula LR, Alpaerts K, Adriaensen D, Timmermans JP (2013) Transient receptor potential vanilloid type 1 channel (TRPV1) immunolocalization in the murine enteric nervous system is affected by the targeted C-terminal epitope of the applied antibody. J Histochem Cytochem 61(6):421–432. https://doi.org/10.1369/0022155413484764
CAS
Article
PubMed
PubMed Central
Google Scholar
Ward SM, Bayguinov J, Won KJ, Grundy D, Berthoud HR (2003) Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract. J Comp Neurol 465(1):121–135. https://doi.org/10.1002/cne.10801
Article
PubMed
Google Scholar
Sharrad DF, Hibberd TJ, Kyloh MA, Brookes SJ, Spencer NJ (2015) Quantitative immunohistochemical co-localization of TRPV1 and CGRP in varicose axons of the murine oesophagus, stomach and colorectum. Neurosci Lett 599:164–171. https://doi.org/10.1016/j.neulet.2015.05.020
CAS
Article
PubMed
Google Scholar
Spencer NJ, Magnúsdóttir EI, Jakobsson JET, Kestell G, Chen BN, Morris D, Brookes SJ, Lagerström MC (2017) CGRPα within the Trpv1-Cre population contributes to visceral nociception. Am J Physiol-Gastr L 314(2):G188–G200. https://doi.org/10.1152/ajpgi.00188.2017
CAS
Article
Google Scholar
Delvalle NM, Dharshika C, Morales-Soto W, Fried DE, Gaudette L, Gulbransen BD (2018) Communication between enteric neurons, glia, and nociceptors underlies the effects of tachykinins on neuroinflammation. Cell Mol Gastroenterol Hepatol 6(3):321–344
PubMed
PubMed Central
Google Scholar
Wouters MM, Balemans D, Van Wanrooy S, Dooley J, Cibert-Goton V, Alpizar YA, Valdez-Morales EE, Nasser Y, Van Veldhoven PP, Vanbrabant W (2016) Histamine receptor H1–mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology 150(4):875–887
CAS
PubMed
Google Scholar
Lilli NL, Quénéhervé L, Haddara S, Brochard C, Aubert P, Rolli-Derkinderen M, Durand T, Naveilhan P, Hardouin JB, De Giorgio R, Barbara G, des Varannes SB, Coron E, Neunlist M (2018) Glioplasticity in irritable bowel syndrome. Neurogastroenterol Motil 30(4):e13232. https://doi.org/10.1111/nmo.13232
CAS
Article
PubMed
Google Scholar
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94(1):265–301
CAS
PubMed
PubMed Central
Google Scholar
O’Connor TM, O’Connell J, O’Brien DI, Goode T, Bredin CP, Shanahan F (2004) The role of substance P in inflammatory disease. J Cell Physiol 201(2):167–180
CAS
PubMed
Google Scholar
Carini F, Lecci A, Tramontana M, Giuliani S, Maggi C (2001) Tachykinin NK2 receptors and enhancement of cholinergic transmission in the inflamed rat colon: an in vivo motility study. Br J Pharmacol 133(7):1107–1113
CAS
PubMed
PubMed Central
Google Scholar
Patel BA, Patel N, Fidalgo S, Wang C, Ranson RN, Saffrey MJ, Yeoman MS (2014) Impaired colonic motility and reduction in tachykinin signalling in the aged mouse. Exp Gerontol 53:24–30
CAS
PubMed
Google Scholar
Szymaszkiewicz A, Malkiewicz A, Storr M, Fichna J, Zielinska M (2019) The place of tachykinin NK2 receptor antagonists in the treatment diarrhea-predominant irritable bowel syndrome. J Physiol Pharmacol 70:15–24
CAS
Google Scholar
Mars RAT, Yang Y, Ward T, Houtti M, Priya S, Lekatz HR, Tang X, Sun Z, Kalari KR, Korem T, Bhattarai Y, Zheng T, Bar N, Frost G, Johnson AJ, van Treuren W, Han S, Ordog T, Grover M, Sonnenburg J, D’Amato M, Camilleri M, Elinav E, Segal E, Blekhman R, Farrugia G, Swann JR, Knights D, Kashyap PC (2020) Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 182(6):1460–1473. https://doi.org/10.1016/j.cell.2020.08.007
CAS
Article
PubMed
PubMed Central
Google Scholar
Simren M, Tornblom H, Palsson OS, Van Oudenhove L, Whitehead WE, Tack J (2019) Cumulative effects of psychologic distress, visceral hypersensitivity, and abnormal transit on patient-reported outcomes in irritable bowel syndrome. Gastroenterology 157(2):391–402. https://doi.org/10.1053/j.gastro.2019.04.019
Article
PubMed
Google Scholar
Bonfiglio F, Zheng T, Garcia-Etxebarria K, Hadizadeh F, Bujanda L, Bresso F, Agreus L, Andreasson A, Dlugosz A, Lindberg G, Schmidt PT, Karling P, Ohlsson B, Simren M, Walter S, Nardone G, Cuomo R, Usai-Satta P, Galeazzi F, Neri M, Portincasa P, Bellini M, Barbara G, Latiano A, Hübenthal M, Thijs V, Netea MG, Jonkers D, Chang L, Mayer EA, Wouters MM, Boeckxstaens G, Camilleri M, Franke A, Zhernakova A, D’Amato M (2018) Female-specific association between variants on chromosome 9 and self-reported diagnosis of irritable bowel syndrome. Gastroenterology 155(1):168–179. https://doi.org/10.1053/j.gastro.2018.03.064
CAS
Article
PubMed
Google Scholar
Zhao L, Yang W, Chen Y, Huang F, Lu L, Lin C, Huang T, Ning Z, Zhai L, Zhong LL, Lam W, Yang Z, Zhang X, Cheng C, Han L, Qiu Q, Shang X, Huang R, Xiao H, Ren Z, Chen D, Sun S, El-Nezami H, Cai Z, Lu A, Fang X, Jia W, Bian Z (2020) A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. J Clin Investig 130(1):438–450. https://doi.org/10.1172/JCI130976
CAS
Article
PubMed
Google Scholar
Jairath V, Feagan BG (2020) Global burden of inflammatory bowel disease. Lancet Gastroenterol Hepatol 5(1):2–3
PubMed
Google Scholar
Neurath MF (2019) Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol 20(8):970–979
CAS
PubMed
Google Scholar
Neurath MF (2020) Host-microbiota interactions in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 17(2):76–77. https://doi.org/10.1038/s41575-019-0248-1
Article
PubMed
Google Scholar
Ferrante M, De Hertogh G, Hlavaty T, D’Haens G, Penninckx F, D’Hoore A, Vermeire S, Rutgeerts P, Geboes K, Van Assche G (2006) The value of myenteric plexitis to predict early postoperative Crohn’s disease recurrence. Gastroenterology 130(6):1595–1606
PubMed
Google Scholar
Villanacci V, Bassotti G, Nascimbeni R, Antonelli E, Cadei M, Fisogni S, Salerni B, Geboes K (2008) Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol Motil 20(9):1009–1016
CAS
PubMed
Google Scholar
Sokol H, Polin V, Lavergne-Slove A, Panis Y, Treton X, Dray X, Bouhnik Y, Valleur P, Marteau P (2009) Plexitis as a predictive factor of early postoperative clinical recurrence in Crohn’s disease. Gut 58(9):1218–1225
CAS
PubMed
Google Scholar
Lakhan SE, Kirchgessner A (2010) Neuroinflammation in inflammatory bowel disease. J Neuroinflammation 7(1):37
PubMed
PubMed Central
Google Scholar
Geboes K, Collins S (1998) Structural abnormalities of the nervous system in Crohn’s disease and ulcerative colitis. Neurogastroenterol Motil 10(3):189–202
CAS
PubMed
Google Scholar
Brierley SM, Linden DR (2014) Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol 11(10):611
PubMed
Google Scholar
Linden DR, Sharkey KA, Mawe GM (2003) Enhanced excitability of myenteric AH neurones in the inflamed guinea-pig distal colon. J Physiol 547(2):589–601
CAS
PubMed
PubMed Central
Google Scholar
Lomax AE, Mawe GM, Sharkey KA (2005) Synaptic facilitation and enhanced neuronal excitability in the submucosal plexus during experimental colitis in guinea-pig. J Physiol 564(3):863–875
CAS
PubMed
PubMed Central
Google Scholar
Krauter EM, Linden DR, Sharkey KA, Mawe GM (2007) Synaptic plasticity in myenteric neurons of the guinea-pig distal colon: presynaptic mechanisms of inflammation-induced synaptic facilitation. J Physiol 581(2):787–800
PubMed
PubMed Central
Google Scholar
Mizuta Y, Isomoto H, Takahashi T (2000) Impaired nitrergic innervation in rat colitis induced by dextran sulfate sodium. Gastroenterology 118(4):714–723
CAS
PubMed
Google Scholar
Depoortere I, Thijs T, Peeters TL (2002) Generalized loss of inhibitory innervation reverses serotonergic inhibition into excitation in a rabbit model of TNBS-colitis. Br J Pharmacol 135(8):2011–2019
CAS
PubMed
PubMed Central
Google Scholar
Strong DS, Cornbrooks CF, Roberts JA, Hoffman JM, Sharkey KA, Mawe GM (2010) Purinergic neuromuscular transmission is selectively attenuated in ulcerated regions of inflamed guinea pig distal colon. J Physiol 588(5):847–859
CAS
PubMed
PubMed Central
Google Scholar
Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM (2012) Activation of neuronal P2X7 receptor–pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18(4):600–604
CAS
PubMed
PubMed Central
Google Scholar
Mawe GM (2015) Colitis-induced neuroplasticity disrupts motility in the inflamed and post-inflamed colon. J Clin Invest 125(3):949–955. https://doi.org/10.1172/JCI76306
Article
PubMed
PubMed Central
Google Scholar
Margolis KG, Stevanovic K, Karamooz N, Li ZS, Ahuja A, D’Autréaux F, Saurman V, Chalazonitis A, Gershon MD (2011) Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology 141(2):588-598.e5982. https://doi.org/10.1053/j.gastro.2011.04.047
Article
PubMed
Google Scholar
Pacheco R, Contreras F, Prado C (2012) Cells, molecules and mechanisms involved in the neuro-immune interaction. Cell Interact 2012:139–166
Google Scholar
Kioussis D, Pachnis V (2009) Immune and nervous systems: more than just a superficial similarity? Immunity 31(5):705–710
CAS
PubMed
Google Scholar
Godinho-Silva C, Cardoso F, Veiga-Fernandes H (2019) Neuro–immune cell units: a new paradigm in physiology. Annu Rev Immunol 37:19–46
CAS
PubMed
Google Scholar
Huh JR, Veiga-Fernandes H (2019) Neuroimmune circuits in inter-organ communication. Nature Rev Immunol 2019:1–12
Google Scholar
Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW, Bailis W, Low JS, Harman CC, Graham M, Elinav E, Flavell RA (2015) Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163(6):1444–1456. https://doi.org/10.1016/j.cell.2015.10.072
CAS
Article
PubMed
PubMed Central
Google Scholar
Jarret A, Jackson R, Duizer C, Healy ME, Zhao J, Rone JM, Bielecki P, Sefik E, Roulis M, Rice T, Sivanathan KN, Zhou T, Solis AG, Honcharova-Biletska H, Vélez K, Hartner S, Low JS, Qu R, de Zoete MR, Palm NW, Ring AM, Weber A, Moor AE, Kluger Y, Nowarski R, Flavell RA (2020) Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity. Cell 180(1):50-63.e12. https://doi.org/10.1016/j.cell.2019.12.016
CAS
Article
PubMed
PubMed Central
Google Scholar
Williams MA, O’Callaghan A, Corr SC (2019) IL-33 and IL-18 in inflammatory bowel disease etiology and microbial interactions. Front Immunol 10:1091–1091. https://doi.org/10.3389/fimmu.2019.01091
CAS
Article
PubMed
PubMed Central
Google Scholar
Bank S, Andersen PS, Burisch J, Pedersen N, Roug S, Galsgaard J, Turino SY, Brodersen JB, Rashid S, Rasmussen BK, Avlund S, Olesen TB, Hoffmann HJ, Nexø BA, Sode J, Vogel U, Andersen V (2018) Genetically determined high activity of IL-12 and IL-18 in ulcerative colitis and TLR5 in Crohns disease were associated with non-response to anti-TNF therapy. Pharmacogenomics J 18(1):87–97. https://doi.org/10.1038/tpj.2016.84
CAS
Article
PubMed
Google Scholar
Chu C, Artis D, Chiu IM (2020) Neuro-immune interactions in the tissues. Immunity 52(3):464–474. https://doi.org/10.1016/j.immuni.2020.02.017
CAS
Article
PubMed
Google Scholar
Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R (2016) Neuropeptide substance P and the immune response. Cell Mol Life Sci 73(22):4249–4264
CAS
PubMed
PubMed Central
Google Scholar
Neunlist M, Aubert P, Toquet C, Oreshkova T, Barouk J, Lehur P, Schemann M, Galmiche J (2003) Changes in chemical coding of myenteric neurones in ulcerative colitis. Gut 52(1):84–90
CAS
PubMed
PubMed Central
Google Scholar
O’Connor T, O’Connell J, O’Brien DI, Goode T, Bredin CP, Shanahan F (2004) The role of substance P in inflammatory disease. J Cell Physiol 201:167–180
PubMed
Google Scholar
Schneider J, Jehle E, Starlinger M, Neunlist M, Michel K, Hoppe S, Schemann M (2001) Neurotransmitter coding of enteric neurones in the submucous plexus is changed in non-inflamed rectum of patients with Crohn’s disease. Neurogastroenterol Motil 13(3):255–264
CAS
PubMed
Google Scholar
Boyer L, Sidpra D, Jevon G, Buchan AM, Jacobson K (2007) Differential responses of VIPergic and nitrergic neurons in paediatric patients with Crohn’s disease. Auton Neurosci 134(1–2):106–114
CAS
PubMed
Google Scholar
Stead RH, Dixon MF, Bramwell NH, Riddell RH, Bienenstock J (1989) Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology 97(3):575–585
CAS
PubMed
Google Scholar
Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP (2008) Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 123(3):398–410
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Wood JD (1992) Effects of prolonged exposure to histamine on guinea pig intestinal neurons. Dig Dis Sci 37(7):1084–1088
CAS
PubMed
Google Scholar
Reed DE, Barajas-Lopez C, Cottrell G, Velazquez-Rocha S, Dery O, Grady EF, Bunnett NW, Vanner SJ (2003) Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. J Physiol 547(2):531–542
CAS
PubMed
PubMed Central
Google Scholar
Nguyen C, Coelho A-M, Grady E, Compton SJ, Wallace JL, Hollenberg MD, Cenac N, Garcia-Villar R, Bueno L, Steinhoff M (2003) Colitis induced by proteinase-activated receptor-2 agonists is mediated by a neurogenic mechanism. Can J Physiol Pharmacol 81(9):920–927
CAS
PubMed
Google Scholar
Raithel M, Winterkamp S, Pacurar A, Ulrich P, Hochberger J, Hahn E (2001) Release of mast cell tryptase from human colorectal mucosa in inflammatory bowel disease. Scand J Gastroenterol 36(2):174–179
CAS
PubMed
Google Scholar
Fox CC, Lazenby AJ, Moore WC, Yardley JH, Bayless TM, Lichtenstein LM (1990) Enhancement of human intestinal mast cell mediator release in active ulcerative colitis. Gastroenterology 99(1):119–124
CAS
PubMed
Google Scholar
He S-H (2004) Key role of mast cells and their major secretory products in inflammatory bowel disease. World J Gastroenterol 10(3):309
CAS
PubMed
PubMed Central
Google Scholar
Casado-Bedmar M, Heil SD, Myrelid P, Söderholm JD, Keita ÅV (2019) Upregulation of intestinal mucosal mast cells expressing VPAC1 in close proximity to vasoactive intestinal polypeptide in inflammatory bowel disease and murine colitis. Neurogastroenterol Motil 31(3):e13503
PubMed
Google Scholar
Seillet C, Luong K, Tellier J, Jacquelot N, Shen RD, Hickey P, Wimmer VC, Whitehead L, Rogers K, Smyth GK (2019) The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nature Immunol 2019:1–10
Google Scholar
Britanova L, Diefenbach A (2017) Interplay of innate lymphoid cells and the microbiota. Immunol Rev 279(1):36–51
CAS
PubMed
Google Scholar
Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D (2011) CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34(1):122–134
CAS
PubMed
Google Scholar
Talbot J, Hahn P, Kroehling L, Nguyen H, Li D, Littman DR (2020) Feeding-dependent VIP neuron–ILC3 circuit regulates the intestinal barrier. Nature 579(7800):575–580
CAS
PubMed
PubMed Central
Google Scholar
Forkel M, Mjösberg J (2016) Dysregulation of group 3 innate lymphoid cells in the pathogenesis of inflammatory bowel disease. Curr Allergy Asthma Rep 16(10):73
PubMed
PubMed Central
Google Scholar
Cardoso V, Chesné J, Ribeiro H, García-Cassani B, Carvalho T, Bouchery T, Shah K, Barbosa-Morais NL, Harris N, Veiga-Fernandes H (2017) Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549(7671):277–281
CAS
PubMed
PubMed Central
Google Scholar
Klose CS, Mahlakõiv T, Moeller JB, Rankin LC, Flamar A-L, Kabata H, Monticelli LA, Moriyama S, Putzel GG, Rakhilin N (2017) The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549(7671):282–286
CAS
PubMed
PubMed Central
Google Scholar
Martinez VG, O'Driscoll L (2015) Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem 61(3):471–482
CAS
PubMed
Google Scholar
Ibiza S, García-Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, Misic AM, Bartow-McKenney C, Larson DM, Pavan WJ (2016) Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535(7612):440–443
CAS
PubMed
PubMed Central
Google Scholar
Steinkamp M, Gundel H, Schulte N, Spaniol U, Pflueger C, Zizer E, von Boyen GB (2012) GDNF protects enteric glia from apoptosis: evidence for an autocrine loop. BMC Gastroenterol 12(1):1–8
Google Scholar
Zhang DK, He FQ, Li TK, Pang XH, Cui DJ, Xie Q, Huang XL, Gan HT (2010) Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J Pathol 222(2):213–222
CAS
PubMed
Google Scholar
von Boyen GB, Schulte N, Pflüger C, Spaniol U, Hartmann C, Steinkamp M (2011) Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol 11(1):1–7
Google Scholar
Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647
CAS
PubMed
PubMed Central
Google Scholar
Pochard C, Coquenlorge S, Jaulin J, Cenac N, Vergnolle N, Meurette G, Freyssinet M, Neunlist M, Rolli-Derkinderen M (2016) Defects in 15-HETE production and control of epithelial permeability by human enteric glial cells from patients with Crohn’s disease. Gastroenterology 150(1):168–180. https://doi.org/10.1053/j.gastro.2015.09.038
CAS
Article
PubMed
Google Scholar
Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, Hurst R, Sofroniew MV (2007) Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132(4):1344–1358. https://doi.org/10.1053/j.gastro.2007.01.051
CAS
Article
PubMed
Google Scholar
Brown IA, McClain JL, Watson RE, Patel BA, Gulbransen BD (2016) Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol 2(1):77–91. https://doi.org/10.1016/j.jcmgh.2015.08.007
Article
PubMed
Google Scholar
Menchén L, Colón AL, Madrigal JL, Beltrán L, Botella S, Lizasoain I, Leza JC, Moro MA, Menchén P, Cos E (2004) Activity of inducible and neuronal nitric oxide synthases in colonic mucosa predicts progression of ulcerative colitis. Am J Gastroenterol 99(9):1756–1764
PubMed
Google Scholar
Cirillo C, Sarnelli G, Esposito G, Grosso M, Petruzzelli R, Izzo P, Cali G, Darmiento FP, Rocco A, Nardone G (2009) Increased mucosal nitric oxide production in ulcerative colitis is mediated in part by the enteroglial-derived S100B protein. Neurogastroenterol Motil 21(11):1209-e1112
CAS
PubMed
Google Scholar
Costa DVS, Bon-Frauches AC, Silva A, Lima-Junior RCP, Martins CS, Leitao RFC, Freitas GB, Castelucci P, Bolick DT, Guerrant RL, Warren CA, Moura-Neto V, Brito GAC (2019) 5-Fluorouracil induces enteric neuron death and glial activation during intestinal mucositis via a S100B-RAGE-NFkappaB-dependent pathway. Sci Rep 9(1):665. https://doi.org/10.1038/s41598-018-36878-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Cario E (2010) Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm Bowel Dis 16(9):1583–1597
PubMed
Google Scholar
Lu Y, Li X, Liu S, Zhang Y, Zhang D (2018) Toll-like receptors and inflammatory bowel disease. Front Immunol 9:72
PubMed
PubMed Central
Google Scholar
Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C, Banzato S, Grillo AR, Spagnol L, De Caro R, Pizzuti D, Barbieri V, Rosato A, Sturniolo GC, Martines D, Zaninotto G, Palu G, Castagliuolo I (2013) Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145(6):1323–1333. https://doi.org/10.1053/j.gastro.2013.08.047
CAS
Article
PubMed
Google Scholar
Esposito G, Capoccia E, Turco F, Palumbo I, Lu J, Steardo A, Cuomo R, Sarnelli G, Steardo L (2014) Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-alpha activation. Gut 63(8):1300–1312. https://doi.org/10.1136/gutjnl-2013-305005
CAS
Article
PubMed
Google Scholar
Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S, Hsu D, Xu R, Harpaz N, Dannenberg AJ (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133(6):1869–1869
CAS
PubMed
Google Scholar
Sánchez-Muñoz F, Fonseca-Camarillo G, Villeda-Ramírez MA, Miranda-Pérez E, Mendivil EJ, Barreto-Zúñiga R, Uribe M, Bojalil R, Domínguez-López A, Yamamoto-Furusho JK (2011) Transcript levels of Toll-Like Receptors 5, 8 and 9 correlate with inflammatory activity in Ulcerative Colitis. BMC Gastroenterol 11(1):138
PubMed
PubMed Central
Google Scholar
Bank S, Skytt Andersen P, Burisch J, Pedersen N, Roug S, Galsgaard J, Ydegaard Turino S, Broder Brodersen J, Rashid S, Kaiser Rasmussen B, Avlund S, Bastholm Olesen T, Jürgen Hoffmann H, Kragh Thomsen M, Østergaard Thomsen V, Frydenberg M, Andersen Nexø B, Sode J, Vogel U, Andersen V (2014) Polymorphisms in the Inflammatory Pathway Genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARG are associated with susceptibility of inflammatory bowel disease in a Danish Cohort. PLoS ONE 9(6):e98815. https://doi.org/10.1371/journal.pone.0098815
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheng Y, Zhu Y, Huang X, Zhang W, Han Z, Liu S (2015) Association between TLR2 and TLR4 gene polymorphisms and the susceptibility to inflammatory bowel disease: a meta-analysis. PLoS ONE 10(5):e0126803. https://doi.org/10.1371/journal.pone.0126803
CAS
Article
PubMed
PubMed Central
Google Scholar
Sharkey KA, Savidge TC (2014) Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 181:94–106
CAS
PubMed
Google Scholar
Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, Rumio C (2009) Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 57(11):1013–1023
CAS
PubMed
PubMed Central
Google Scholar
Burgueño JF, Barba A, Eyre E, Romero C, Neunlist M, Fernández E (2016) TLR2 and TLR9 modulate enteric nervous system inflammatory responses to lipopolysaccharide. J Neuroinflammation 13(1):187. https://doi.org/10.1186/s12974-016-0653-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Caputi V, Marsilio I, Cerantola S, Roozfarakh M, Lante I, Galuppini F, Rugge M, Napoli E, Giulivi C, Orso G (2017) Toll-like receptor 4 modulates small intestine neuromuscular function through nitrergic and purinergic pathways. Front Pharmacol 8:350
PubMed
PubMed Central
Google Scholar
Cerantola S, Caputi V, Marsilio I, Ridolfi M, Faggin S, Bistoletti M, Giaroni C, Giron MC (2020) Involvement of enteric glia in small intestine neuromuscular dysfunction of toll-like receptor 4-deficient mice. Cells 9:4. https://doi.org/10.3390/cells9040838
CAS
Article
Google Scholar
Smillie CS, Biton M, Ordovas-Montanes J, Sullivan KM, Burgin G, Graham DB, Herbst RH, Rogel N, Slyper M, Waldman J, Sud M, Andrews E, Velonias G, Haber AL, Jagadeesh K, Vickovic S, Yao J, Stevens C, Dionne D, Nguyen LT, Villani A-C, Hofree M, Creasey EA, Huang H, Rozenblatt-Rosen O, Garber JJ, Khalili H, Desch AN, Daly MJ, Ananthakrishnan AN, Shalek AK, Xavier RJ, Regev A (2019) Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178(3):714-730.e722. https://doi.org/10.1016/j.cell.2019.06.029
CAS
Article
PubMed
PubMed Central
Google Scholar
Aballay A (2009) Neural regulation of immunity: role of NPR-1 in pathogen avoidance and regulation of innate immunity. Cell Cycle 8(7):966–969
CAS
PubMed
Google Scholar
Foster KJ, Cheesman HK, Liu P, Peterson ND, Anderson SM, Pukkila-Worley R (2020) Innate Immunity in the C. elegans intestine is programmed by a neuronal regulator of AWC Olfactory Neuron Development. Cell Rep 31(1):107478. https://doi.org/10.1016/j.celrep.2020.03.042
CAS
Article
PubMed
PubMed Central
Google Scholar
Veiga-Fernandes H, Pachnis V (2017) Neuroimmune regulation during intestinal development and homeostasis. Nat Immunol 18(2):116–122. https://doi.org/10.1038/ni.3634
CAS
Article
PubMed
Google Scholar
Safiri S, Sepanlou SG, Ikuta KS, Bisignano C, Salimzadeh H, Delavari A, Ansari R, Roshandel G, Merat S, Fitzmaurice C (2019) The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 4(12):913–933
Google Scholar
Lorusso G, Rüegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130(6):1091–1103
CAS
PubMed
Google Scholar
Van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG (2011) Colorectal cancer epigenetics: complex simplicity. J Clin Oncol 29(10):1382–1391
PubMed
Google Scholar
Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767
CAS
PubMed
Google Scholar
Anderson NM, Simon MC (2020) The tumor microenvironment. Curr Biol 30(16):R921-r925. https://doi.org/10.1016/j.cub.2020.06.081
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13(1):45
PubMed
PubMed Central
Google Scholar
Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(23):5591–5596. https://doi.org/10.1242/jcs.116392
CAS
Article
PubMed
Google Scholar
Zahalka AH, Frenette PS (2020) Nerves in cancer. Nat Rev Cancer 20(3):143–157. https://doi.org/10.1038/s41568-019-0237-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Albo D, Akay CL, Marshall CL, Wilks JA, Verstovsek G, Liu H, Agarwal N, Berger DH, Ayala GE (2011) Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer 117(21):4834–4845
CAS
PubMed
Google Scholar
Liebig C, Ayala G, Wilks J, Verstovsek G, Liu H, Agarwal N, Berger DH, Albo D (2009) Perineural invasion is an independent predictor of outcome in colorectal cancer. J Clin Oncol 27(31):5131–5137. https://doi.org/10.1200/jco.2009.22.4949
Article
PubMed
PubMed Central
Google Scholar
Knijn N, Mogk SC, Teerenstra S, Simmer F, Nagtegaal ID (2016) Perineural invasion is a strong prognostic factor in colorectal cancer: a systematic review. Am J Surg Pathol 40(1):103–112. https://doi.org/10.1097/PAS.0000000000000518
Article
PubMed
Google Scholar
Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM, Shine D, Kadmon D, Thompson T, Miles BJ, Ittmann MM, Rowley D (2008) Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res 14(23):7593–7603. https://doi.org/10.1158/1078-0432.ccr-08-1164
CAS
Article
PubMed
Google Scholar
Kamiya A, Hayama Y, Kato S, Shimomura A, Shimomura T, Irie K, Kaneko R, Yanagawa Y, Kobayashi K, Ochiya T (2019) Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci 22(8):1289–1305. https://doi.org/10.1038/s41593-019-0430-3
CAS
Article
PubMed
Google Scholar
Zhao C-M, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, Flatberg A, Johannessen H, Friedman RA, Renz BW, Sandvik AK, Beisvag V, Tomita H, Hara A, Quante M, Li Z, Gershon MD, Kaneko K, Fox JG, Wang TC, Chen D (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6(250):115–250. https://doi.org/10.1126/scitranslmed.3009569
CAS
Article
Google Scholar
Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, Maurer HC, Chen X, Jiang Z, Westphalen CB, Ilmer M, Valenti G, Mohanta SK, Habenicht AJR, Middelhoff M, Chu T, Nagar K, Tailor Y, Casadei R, Di Marco M, Kleespies A, Friedman RA, Remotti H, Reichert M, Worthley DL, Neumann J, Werner J, Iuga AC, Olive KP, Wang TC (2018) β2 Adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33(1):75-90.e77. https://doi.org/10.1016/j.ccell.2017.11.007
CAS
Article
PubMed
Google Scholar
Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, Jiang Z, Tanaka T, Dubeykovskaya ZA, Kim W, Chen X, Urbanska AM, Nagar K, Westphalen CB, Quante M, Lin CS, Gershon MD, Hara A, Zhao CM, Chen D, Worthley DL, Koike K, Wang TC (2017) Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31(1):21–34. https://doi.org/10.1016/j.ccell.2016.11.005
CAS
Article
PubMed
Google Scholar
Rademakers G, Vaes N, Schonkeren S, Koch A, Sharkey KA, Melotte V (2017) The role of enteric neurons in the development and progression of colorectal cancer. Biochim Biophys Acta 1868 2:420–434. https://doi.org/10.1016/j.bbcan.2017.08.003
CAS
Article
Google Scholar
Schonkeren SL, Thijssen MS, Vaes N, Boesmans W, Melotte V (2021) The emerging role of nerves and glia in colorectal cancer. Cancers (Basel) 13:1. https://doi.org/10.3390/cancers13010152
Article
Google Scholar
Ratcliffe EM, Fan L, Mohammed TJ, Anderson M, Chalazonitis A, Gershon MD (2011) Enteric neurons synthesize netrins and are essential for the development of the vagal sensory innervation of the fetal gut. Dev Neurobiol 71(5):362–373
CAS
PubMed
PubMed Central
Google Scholar
Mazelin L, Bernet A, Bonod-Bidaud C, Pays L, Arnaud S, Gespach C, Bredesen DE, Scoazec J-Y, Mehlen P (2004) Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature 431(7004):80–84
CAS
PubMed
Google Scholar
Mehlen P, Furne C (2005) Netrin-1: when a neuronal guidance cue turns out to be a regulator of tumorigenesis. Cell Mol Life Sci 62(22):2599
CAS
PubMed
Google Scholar
Zhou H, Shi B, Jia Y, Qiu G, Yang W, Li J, Zhao Z, Lv J, Zhang Y, Li Z (2018) Expression and significance of autonomic nerves and α9 nicotinic acetylcholine receptor in colorectal cancer. Mol Med Rep 17(6):8423–8431. https://doi.org/10.3892/mmr.2018.8883
CAS
Article
PubMed
Google Scholar
Garcia SB, Aranha AL, Garcia FRB, Basile FV, Pinto APM, Oliveira ECd, Zucoloto S (2003) A retrospective study of histopathological findings in 894 cases of megacolon: what is the relationship between megacolon and colonic cancer? Rev Inst Med Trop Sao Paulo 45(2):91–93
PubMed
Google Scholar
Vespúcio MVO, Turatti A, Modiano P, de Oliveira E, Chicote SRM, Pinto A, Garcia SB (2008) Intrinsic denervation of the colon is associated with a decrease of some colonic preneoplastic markers in rats treated with a chemical carcinogen. Braz J Med Biol Res 41(4):311–317
PubMed
Google Scholar
Duchalais E, Guilluy C, Nedellec S, Touvron M, Bessard A, Touchefeu Y, Bossard C, Boudin H, Louarn G, Neunlist M (2018) Colorectal cancer cells adhere to and migrate along the neurons of the enteric nervous system. Cell Mol Gastroenterol Hepatol 5(1):31–49
PubMed
Google Scholar
Valès S, Bacola G, Biraud M, Touvron M, Bessard A, Geraldo F, Dougherty KA, Lashani S, Bossard C, Flamant M (2019) Tumor cells hijack enteric glia to activate colon cancer stem cells and stimulate tumorigenesis. EBioMedicine 49:172–188
PubMed
PubMed Central
Google Scholar
Seguella L, Rinaldi F, Marianecci C, Capuano R, Pesce M, Annunziata G, Casano F, Bassotti G, Sidoni A, Milone M, Aprea G, de Palma GD, Carafa M, Pesce M, Esposito G, Sarnelli G (2020) Pentamidine niosomes thwart S100B effects in human colon carcinoma biopsies favouring wtp53 rescue. J Cell Mol Med 24(5):3053–3063. https://doi.org/10.1111/jcmm.14943
CAS
Article
PubMed
PubMed Central
Google Scholar
Russell JP, Mohammadi E, Ligon CO, Johnson AC, Gershon MD, Rao M, Shen Y, Chan CC, Eidam HS, DeMartino MP, Cheung M, Oliff AI, Kumar S, Greenwood-Van Meerveld B (2019) Exploring the potential of RET kinase inhibition for irritable bowel syndrome: a preclinical investigation in rodent models of colonic hypersensitivity. J Pharmacol Exp Ther 368(2):299–307. https://doi.org/10.1124/jpet.118.252973
CAS
Article
PubMed
PubMed Central
Google Scholar
Chng SH, Pachnis V (2020) Enteric Nervous System: lessons from neurogenesis for reverse engineering and disease modelling and treatment. Curr Opin Pharmacol 50:100–106. https://doi.org/10.1016/j.coph.2020.02.001
CAS
Article
PubMed
Google Scholar
Loffet E, Brossard L, Mahe MM (2020) Pluripotent stem cell derived intestinal organoids with an enteric nervous system. Methods Cell Biol 159:175–199. https://doi.org/10.1016/bs.mcb.2020.04.012
Article
PubMed
Google Scholar
Boesmans W, Hao MM, Vanden Berghe P (2018) Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 15(1):21–38. https://doi.org/10.1038/nrgastro.2017.151
Article
PubMed
Google Scholar