Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. https://doi.org/10.1016/j.cell.2011.08.039
CAS
Article
PubMed
Google Scholar
Modlich U, Kaup FJ, Augustin HG (1996) Cyclic angiogenesis and blood vessel regression in the ovary: blood vessel regression during luteolysis involves endothelial cell detachment and vessel occlusion. Lab Invest 74(4):771–780
CAS
PubMed
Google Scholar
Ding YH, Li J, Zhou Y, Rafols JA, Clark JC, Ding Y (2006) Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res 3(1):15–23. https://doi.org/10.2174/156720206775541787
CAS
Article
PubMed
Google Scholar
Morland C, Andersson KA, Haugen OP, Hadzic A, Kleppa L, Gille A, Rinholm JE, Palibrk V, Diget EH, Kennedy LH, Stolen T, Hennestad E, Moldestad O, Cai Y, Puchades M, Offermanns S, Vervaeke K, Bjoras M, Wisloff U, Storm-Mathisen J, Bergersen LH (2017) Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun 8:15557. https://doi.org/10.1038/ncomms15557
CAS
Article
PubMed
PubMed Central
Google Scholar
Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5(1):40–46. https://doi.org/10.1046/j.1087-0024.2000.00014.x
CAS
Article
PubMed
Google Scholar
Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370. https://doi.org/10.1038/nm.2537
CAS
Article
PubMed
Google Scholar
Taniguchi H, Kitaoka T, Gong H, Amemiya T (1999) Apoptosis of the hyaloid artery in the rat eye. Ann Anat 181(6):555–560. https://doi.org/10.1016/S0940-9602(99)80061-2
CAS
Article
PubMed
Google Scholar
Yoshikawa Y, Yamada T, Tai-Nagara I, Okabe K, Kitagawa Y, Ema M, Kubota Y (2016) Developmental regression of hyaloid vasculature is triggered by neurons. J Exp Med 213(7):1175–1183. https://doi.org/10.1084/jem.20151966
CAS
Article
PubMed
PubMed Central
Google Scholar
Ito M, Yoshioka M (1999) Regression of the hyaloid vessels and pupillary membrane of the mouse. Anat Embryol (Berl) 200(4):403–411. https://doi.org/10.1007/s004290050289
CAS
Article
Google Scholar
Hiruma T, Hirakow R (1995) Formation of the pharyngeal arch arteries in the chick-embryo—observations of corrosion casts by scanning electron-microscopy. Anat Embryol 191(5):415–423. https://doi.org/10.1007/Bf00304427
CAS
Article
Google Scholar
Rana MS, Sizarov A, Christoffels VM, Moorman AFM (2014) Development of the human aortic arch system captured in an interactive three-dimensional reference model. Am J Med Genet A 164(6):1372–1383. https://doi.org/10.1002/ajmg.a.35881
CAS
Article
Google Scholar
Watson EC, Koenig MN, Grant ZL, Whitehead L, Trounson E, Dewson G, Coultas L (2016) Apoptosis regulates endothelial cell number and capillary vessel diameter but not vessel regression during retinal angiogenesis. Development 143(16):2973–2982. https://doi.org/10.1242/dev.137513
CAS
Article
PubMed
Google Scholar
Tisch N, Freire-Valls A, Yerbes R, Paredes I, La Porta S, Wang X, Martin-Perez R, Castro L, Wong WW, Coultas L, Strilic B, Grone HJ, Hielscher T, Mogler C, Adams RH, Heiduschka P, Claesson-Welsh L, Mazzone M, Lopez-Rivas A, Schmidt T, Augustin HG, Ruiz de Almodovar C (2019) Caspase-8 modulates physiological and pathological angiogenesis during retina development. J Clin Invest 129(12):5092–5107. https://doi.org/10.1172/JCI122767
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen S, Tisch N, Kegel M, Yerbes R, Hermann R, Hudalla H, Zuliani C, Gulculer GS, Zwadlo K, von Engelhardt J, Ruiz de Almodovar C, Martin-Villalba A (2017) CNS Macrophages control neurovascular development via CD95L. Cell reports 19(7):1378–1393. https://doi.org/10.1016/j.celrep.2017.04.056
CAS
Article
PubMed
Google Scholar
Zhang F, Li Y, Tang Z, Kumar A, Lee C, Zhang L, Zhu C, Klotzsche-von Ameln A, Wang B, Gao Z, Zhang S, Langer HF, Hou X, Jensen L, Ma W, Wong W, Chavakis T, Liu Y, Cao Y, Li X (2012) Proliferative and survival effects of PUMA promote angiogenesis. Cell reports 2(5):1272–1285. https://doi.org/10.1016/j.celrep.2012.09.023
CAS
Article
PubMed
Google Scholar
Zhang C, Asnaghi L, Gongora C, Patek B, Hose S, Ma B, Fard MA, Brako L, Singh K, Goldberg MF, Handa JT, Lo WK, Eberhart CG, Zigler JS Jr, Sinha D (2011) A developmental defect in astrocytes inhibits programmed regression of the hyaloid vasculature in the mammalian eye. Eur J Cell Biol 90(5):440–448. https://doi.org/10.1016/j.ejcb.2011.01.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Hahn P, Lindsten T, Tolentino M, Thompson CB, Bennett J, Dunaief JL (2005) Persistent fetal ocular vasculature in mice deficient in bax and bak. Arch Ophthalmol 123(6):797–802. https://doi.org/10.1001/archopht.123.6.797
Article
PubMed
Google Scholar
Naito H, Iba T, Wakabayashi T, Tai-Nagara I, Suehiro JI, Jia W, Eino D, Sakimoto S, Muramatsu F, Kidoya H, Sakurai H, Satoh T, Akira S, Kubota Y, Takakura N (2019) TAK1 Prevents endothelial apoptosis and maintains vascular integrity. Dev Cell 48(2):151–166. https://doi.org/10.1016/j.devcel.2018.12.002 ((e157))
CAS
Article
PubMed
Google Scholar
Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a006080
Article
PubMed
PubMed Central
Google Scholar
Warren CFA, Wong-Brown MW, Bowden NA (2019) BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis 10(3):177. https://doi.org/10.1038/s41419-019-1407-6
Article
PubMed
PubMed Central
Google Scholar
Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335(6189):440–442. https://doi.org/10.1038/335440a0
CAS
Article
PubMed
Google Scholar
Huang DC, Strasser A (2000) BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103(6):839–842. https://doi.org/10.1016/s0092-8674(00)00187-2
CAS
Article
PubMed
Google Scholar
Pena-Blanco A, Garcia-Saez AJ (2018) Bax, Bak and beyond—mitochondrial performance in apoptosis. FEBS J 285(3):416–431. https://doi.org/10.1111/febs.14186
CAS
Article
PubMed
Google Scholar
Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95(9):4997–5002. https://doi.org/10.1073/pnas.95.9.4997
CAS
Article
PubMed
Google Scholar
Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136
CAS
Article
Google Scholar
Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3):183–192. https://doi.org/10.1016/s1535-6108(02)00127-7
CAS
Article
PubMed
Google Scholar
Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR (2011) A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 44(4):517–531. https://doi.org/10.1016/j.molcel.2011.10.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Llambi F, Wang YM, Victor B, Yang M, Schneider DM, Gingras S, Parsons MJ, Zheng JH, Brown SA, Pelletier S, Moldoveanu T, Chen T, Green DR (2016) BOK Is a non-canonical BCL-2 family effector of apoptosis regulated by ER-associated degradation. Cell 165(2):421–433. https://doi.org/10.1016/j.cell.2016.02.026
CAS
Article
PubMed
PubMed Central
Google Scholar
Ke FFS, Vanyai HK, Cowan AD, Delbridge ARD, Whitehead L, Grabow S, Czabotar PE, Voss AK, Strasser A (2018) Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. Cell 173(5):1217–1230. https://doi.org/10.1016/j.cell.2018.04.036 ((e1217))
CAS
Article
PubMed
Google Scholar
Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489
CAS
Article
Google Scholar
Neamati N, Fernandez A, Wright S, Kiefer J, McConkey DJ (1995) Degradation of lamin B1 precedes oligonucleosomal DNA fragmentation in apoptotic thymocytes and isolated thymocyte nuclei. J Immunology 154(8):3788–3795
CAS
Google Scholar
Kayalar C, Ord T, Testa MP, Zhong LT, Bredesen DE (1996) Cleavage of actin by interleukin 1 beta-converting enzyme to reverse DNase I inhibition. Proc Natl Acad Sci USA 93(5):2234–2238
CAS
Article
Google Scholar
Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Can Res 53(17):3976–3985
CAS
Google Scholar
Lips J, Kaina B (2001) DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts. Carcinogenesis 22(4):579–585
CAS
Article
Google Scholar
Sansome C, Zaika A, Marchenko ND, Moll UM (2001) Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett 488(3):110–115
CAS
Article
Google Scholar
Wensveen FM, Alves NL, Derks IA, Reedquist KA, Eldering E (2011) Apoptosis induced by overall metabolic stress converges on the Bcl-2 family proteins Noxa and Mcl-1. Apoptosis: Int J Program Cell Death 16(7):708–721. https://doi.org/10.1007/s10495-011-0599-8
CAS
Article
Google Scholar
Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118(Pt 2):265–267. https://doi.org/10.1242/jcs.01610
CAS
Article
PubMed
Google Scholar
Siegmund D, Lang I, Wajant H (2017) Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J 284(8):1131–1159. https://doi.org/10.1111/febs.13968
CAS
Article
PubMed
Google Scholar
Slee EA, Keogh SA, Martin SJ (2000) Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ 7(6):556–565. https://doi.org/10.1038/sj.cdd.4400689
CAS
Article
PubMed
Google Scholar
Kataoka T, Schroter M, Hahne M, Schneider P, Irmler M, Thome M, Froelich CJ, Tschopp J (1998) FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunology 161(8):3936–3942
CAS
Google Scholar
Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471(7338):363–367. https://doi.org/10.1038/nature09852
CAS
Article
PubMed
PubMed Central
Google Scholar
Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495. https://doi.org/10.1038/82732
CAS
Article
PubMed
Google Scholar
Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. https://doi.org/10.1016/j.cell.2009.05.037
CAS
Article
PubMed
PubMed Central
Google Scholar
Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M, Wu M (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19(10):2056–2067. https://doi.org/10.1016/j.cellsig.2007.05.016
CAS
Article
PubMed
Google Scholar
Lin Y, Devin A, Rodriguez Y, Liu ZG (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13(19):2514–2526
CAS
Article
Google Scholar
O’Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, Green DR, Ting AT (2011) Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 13(12):1437–1442. https://doi.org/10.1038/ncb2362
CAS
Article
PubMed
PubMed Central
Google Scholar
Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227. https://doi.org/10.1016/j.cell.2011.11.031
CAS
Article
PubMed
Google Scholar
Zhao J, Jitkaew S, Cai ZY, Choksi S, Li QN, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109(14):5322–5327. https://doi.org/10.1073/pnas.1200012109
Article
PubMed
Google Scholar
Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW, Bertin J, Gough PJ, Savvides S, Martinou JC, Bertrand MJ, Vandenabeele P (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7(4):971–981. https://doi.org/10.1016/j.celrep.2014.04.026
CAS
Article
PubMed
Google Scholar
Ros U, Pena-Blanco A, Hanggi K, Kunzendorf U, Krautwald S, Wong WW, Garcia-Saez AJ (2017) Necroptosis execution is mediated by plasma membrane nanopores independent of calcium. Cell reports 19(1):175–187. https://doi.org/10.1016/j.celrep.2017.03.024
CAS
Article
PubMed
PubMed Central
Google Scholar
Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835. https://doi.org/10.1038/nrg1710
CAS
Article
PubMed
Google Scholar
Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101(2):125–136. https://doi.org/10.1161/CIRCRESAHA.107.148932
CAS
Article
PubMed
Google Scholar
Fisher SA, Langille BL, Srivastava D (2000) Apoptosis during cardiovascular development. Circ Res 87(10):856–864. https://doi.org/10.1161/01.res.87.10.856
CAS
Article
PubMed
Google Scholar
Blonska M, Shambharkar PB, Kobayashi M, Zhang D, Sakurai H, Su B, Lin X (2005) TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J Biol Chem 280(52):43056–43063. https://doi.org/10.1074/jbc.M507807200
CAS
Article
PubMed
Google Scholar
Morioka S, Inagaki M, Komatsu Y, Mishina Y, Matsumoto K, Ninomiya-Tsuji J (2012) TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood 120(18):3846–3857. https://doi.org/10.1182/blood-2012-03-416198
CAS
Article
PubMed
PubMed Central
Google Scholar
Yeh WC, Itie A, Elia AJ, Ng M, Shu HB, Wakeham A, Mirtsos C, Suzuki N, Bonnard M, Goeddel DV, Mak TW (2000) Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12(6):633–642. https://doi.org/10.1016/s1074-7613(00)80214-9
CAS
Article
PubMed
Google Scholar
Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D (1998) Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9(2):267–276. https://doi.org/10.1016/s1074-7613(00)80609-3
CAS
Article
PubMed
Google Scholar
Yeh WC, de la Pompa JL, McCurrach ME, Shu HB, Elia AJ, Shahinian A, Ng M, Wakeham A, Khoo W, Mitchell K, El-Deiry WS, Lowe SW, Goeddel DV, Mak TW (1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279(5358):1954–1958. https://doi.org/10.1126/science.279.5358.1954
CAS
Article
PubMed
Google Scholar
Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB, Ben-Moshe T, Mak TW, Wallach D, Green DR (2012) Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell reports 1(5):401–407. https://doi.org/10.1016/j.celrep.2012.03.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471(7338):368–372. https://doi.org/10.1038/nature09857
CAS
Article
PubMed
PubMed Central
Google Scholar
Alvarez-Diaz S, Dillon CP, Lalaoui N, Tanzer MC, Rodriguez DA, Lin A, Lebois M, Hakem R, Josefsson EC, O’Reilly LA, Silke J, Alexander WS, Green DR, Strasser A (2016) The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity 45(3):513–526. https://doi.org/10.1016/j.immuni.2016.07.016
CAS
Article
PubMed
PubMed Central
Google Scholar
Kang TB, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A, Waisman A, Brenner O, Haffner R, Gustafsson E, Ramakrishnan P, Lapidot T, Wallach D (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. Journal of immunology 173(5):2976–2984. https://doi.org/10.4049/jimmunol.173.5.2976
CAS
Article
Google Scholar
Fan C, Pu W, Wu X, Zhang X, He L, Zhou B, Zhang H (2016) Lack of FADD in Tie-2 expressing cells causes RIPK3-mediated embryonic lethality. Cell Death Dis 7(9):e2351. https://doi.org/10.1038/cddis.2016.251
CAS
Article
PubMed
PubMed Central
Google Scholar
Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M, Pernaute B, Shimizu Y, Sarr A, Draberova H, Montinaro A, Martinez-Barbera JP, Silke J, Rodriguez TA, Walczak H (2014) HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell reports 9(1):153–165. https://doi.org/10.1016/j.celrep.2014.08.066
CAS
Article
PubMed
Google Scholar
Adachi M, Suematsu S, Kondo T, Ogasawara J, Tanaka T, Yoshida N, Nagata S (1995) Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat Genet 11(3):294–300. https://doi.org/10.1038/ng1195-294
CAS
Article
PubMed
Google Scholar
Diehl GE, Yue HH, Hsieh K, Kuang AA, Ho M, Morici LA, Lenz LL, Cado D, Riley LW, Winoto A (2004) TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21(6):877–889. https://doi.org/10.1016/j.immuni.2004.11.008
CAS
Article
PubMed
Google Scholar
Rothe J, Mackay F, Bluethmann H, Zinkernagel R, Lesslauer W (1994) Phenotypic analysis of TNFR1-deficient mice and characterization of TNFR1-deficient fibroblasts in vitro. Circ Shock 44(2):51–56
CAS
PubMed
Google Scholar
Watson EC, Whitehead L, Adams RH, Dewson G, Coultas L (2016) Endothelial cell survival during angiogenesis requires the pro-survival protein MCL1. Cell Death Differ 23(8):1371–1379. https://doi.org/10.1038/cdd.2016.20
CAS
Article
PubMed
PubMed Central
Google Scholar
Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, Kelly PN, Ekert PG, Metcalf D, Roberts AW, Huang DC, Kile BT (2007) Programmed anuclear cell death delimits platelet life span. Cell 128(6):1173–1186. https://doi.org/10.1016/j.cell.2007.01.037
CAS
Article
PubMed
Google Scholar
Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270(5233):96–99. https://doi.org/10.1126/science.270.5233.96
CAS
Article
PubMed
Google Scholar
Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K, Chen Y, Wei M, Eng VM, Adelman DM, Simon MC, Ma A, Golden JA, Evan G, Korsmeyer SJ, MacGregor GR, Thompson CB (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6(6):1389–1399. https://doi.org/10.1016/s1097-2765(00)00136-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Mitchell CA, Risau W, Drexler HC (1998) Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium. Dev Dyn 213(3):322–333. https://doi.org/10.1002/(SICI)1097-0177(199811)213:3%3c322::AID-AJA8%3e3.0.CO;2-E
CAS
Article
PubMed
Google Scholar
Goldberg MF (1997) Persistent fetal vasculature (PFV): an integrated interpretation of signs and symptoms associated with persistent hyperplastic primary vitreous (PHPV). LIV Edward Jackson Memorial Lecture. Am J Ophthalmol 124(5):587–626. https://doi.org/10.1016/s0002-9394(14)70899-2
CAS
Article
PubMed
Google Scholar
Lang RA, Bishop JM (1993) Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74(3):453–462. https://doi.org/10.1016/0092-8674(93)80047-i
CAS
Article
PubMed
Google Scholar
Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, Kurup S, Glass DA, Patel MS, Shu W, Morrisey EE, McMahon AP, Karsenty G, Lang RA (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437(7057):417–421. https://doi.org/10.1038/nature03928
CAS
Article
PubMed
PubMed Central
Google Scholar
Rao S, Lobov IB, Vallance JE, Tsujikawa K, Shiojima I, Akunuru S, Walsh K, Benjamin LE, Lang RA (2007) Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development 134(24):4449–4458. https://doi.org/10.1242/dev.012187
CAS
Article
PubMed
PubMed Central
Google Scholar
Meeson A, Palmer M, Calfon M, Lang R (1996) A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development 122(12):3929–3938
CAS
PubMed
Google Scholar
Meeson AP, Argilla M, Ko K, Witte L, Lang RA (1999) VEGF deprivation-induced apoptosis is a component of programmed capillary regression. Development 126(7):1407–1415
CAS
PubMed
Google Scholar
Naik E, O’Reilly LA, Asselin-Labat ML, Merino D, Lin A, Cook M, Coultas L, Bouillet P, Adams JM, Strasser A (2011) Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells. J Exp Med 208(7):1351–1358. https://doi.org/10.1084/jem.20100951
CAS
Article
PubMed
PubMed Central
Google Scholar
Koenig MN, Naik E, Rohrbeck L, Herold MJ, Trounson E, Bouillet P, Thomas T, Voss AK, Strasser A, Coultas L (2014) Pro-apoptotic BIM is an essential initiator of physiological endothelial cell death independent of regulation by FOXO3. Cell Death Differ 21(11):1687–1695. https://doi.org/10.1038/cdd.2014.90
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang S, Park S, Fei P, Sorenson CM (2011) Bim is responsible for the inherent sensitivity of the developing retinal vasculature to hyperoxia. Dev Biol 349(2):296–309. https://doi.org/10.1016/j.ydbio.2010.10.034
CAS
Article
PubMed
PubMed Central
Google Scholar
Coultas L, Bouillet P, Stanley EG, Brodnicki TC, Adams JM, Strasser A (2004) Proapoptotic BH3-only Bcl-2 family member Bik/Blk/Nbk is expressed in hemopoietic and endothelial cells but is redundant for their programmed death. Mol Cell Biol 24(4):1570–1581. https://doi.org/10.1128/mcb.24.4.1570-1581.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang S, Sorenson CM, Sheibani N (2005) Attenuation of retinal vascular development and neovascularization during oxygen-induced ischemic retinopathy in Bcl-2-/- mice. Dev Biol 279(1):205–219. https://doi.org/10.1016/j.ydbio.2004.12.017
CAS
Article
PubMed
Google Scholar
Fruttiger M (2002) Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci 43(2):522–527
PubMed
Google Scholar
Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, Seaward MR, Willett KL, Aderman CM, Guerin KI, Hua J, Lofqvist C, Hellstrom A, Smith LEH (2010) The mouse retina as an angiogenesis model. Invest Ophth Vis Sci 51(6):2813–2826. https://doi.org/10.1167/iovs.10-5176
Article
Google Scholar
Uemura AK, Kusuhara S, Katsuta H, Nishikawa S (2006) Angiogenesis in the mouse retina: A model system for experimental manipulation. Exp Cell Res 312(5):676–683. https://doi.org/10.1016/j.yexcr.2005.10.030
CAS
Article
PubMed
Google Scholar
Ehling M, Adams S, Benedito R, Adams RH (2013) Notch controls retinal blood vessel maturation and quiescence. Development 140(14):3051–3061. https://doi.org/10.1242/dev.093351
CAS
Article
PubMed
Google Scholar
Franco CA, Jones ML, Bernabeu MO, Geudens I, Mathivet T, Rosa A, Lopes FM, Lima AP, Ragab A, Collins RT, Phng LK, Coveney PV, Gerhardt H (2015) Dynamic endothelial cell rearrangements drive developmental vessel regression. Plos Biol. https://doi.org/10.1371/journal.pbio.1002125
Article
PubMed
PubMed Central
Google Scholar
Hughes S, Chan-Ling TL (2000) Roles of endothelial cell migration and apoptosis in vascular remodeling during development of the central nervous system. Microcirculation 7(5):317–333. https://doi.org/10.1038/sj.mn.7300119
CAS
Article
PubMed
Google Scholar
Korn C, Scholz B, Hu J, Srivastava K, Wojtarowicz J, Arnsperger T, Adams RH, Boutros M, Augustin HG, Augustin I (2014) Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis. Development 141(8):1757–1766. https://doi.org/10.1242/dev.104422
CAS
Article
PubMed
Google Scholar
Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177. https://doi.org/10.1038/nrm2639
CAS
Article
PubMed
Google Scholar
Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA (2003) Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 264(1):275–288. https://doi.org/10.1016/j.ydbio.2003.08.015
CAS
Article
PubMed
Google Scholar
Park DY, Lee J, Kim J, Kim K, Hong S, Han S, Kubota Y, Augustin HG, Ding L, Kim JW, Kim H, He Y, Adams RH, Koh GY (2017) Plastic roles of pericytes in the blood-retinal barrier. Nat Commun 8:15296. https://doi.org/10.1038/ncomms15296
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang S, Zaitoun IS, Johnson RP, Jamali N, Gurel Z, Wintheiser CM, Strasser A, Lindner V, Sheibani N, Sorenson CM (2017) Bim expression in endothelial cells and pericytes is essential for regression of the fetal ocular vasculature. PLoS ONE 12(5):e0178198. https://doi.org/10.1371/journal.pone.0178198
CAS
Article
PubMed
PubMed Central
Google Scholar
Simonavicius N, Ashenden M, van Weverwijk A, Lax S, Huso DL, Buckley CD, Huijbers IJ, Yarwood H, Isacke CM (2012) Pericytes promote selective vessel regression to regulate vascular patterning. Blood 120(7):1516–1527. https://doi.org/10.1182/blood-2011-01-332338
CAS
Article
PubMed
Google Scholar
Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, Ondr JK, Rao S, Lang RA, Thurston G, Gerhardt H (2009) Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16(1):70–82. https://doi.org/10.1016/j.devcel.2008.12.009
CAS
Article
PubMed
Google Scholar
Baffert F, Le T, Sennino B, Thurston G, Kuo CJ, Hu-Lowe D, McDonald DM (2006) Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol 290(2):H547-559. https://doi.org/10.1152/ajpheart.00616.2005
CAS
Article
PubMed
Google Scholar
Baluk P, Lee CG, Link H, Ator E, Haskell A, Elias JA, McDonald DM (2004) Regulated angiogenesis and vascular regression in mice overexpressing vascular endothelial growth factor in airways. Am J Pathol 165(4):1071–1085. https://doi.org/10.1016/S0002-9440(10)63369-X
CAS
Article
PubMed
PubMed Central
Google Scholar
Ishida S, Yamashiro K, Usui T, Kaji Y, Ogura Y, Hida T, Honda Y, Oguchi Y, Adamis AP (2003) Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nat Med 9(6):781–788. https://doi.org/10.1038/nm877
CAS
Article
PubMed
Google Scholar
Shen J, Xie B, Dong A, Swaim M, Hackett SF, Campochiaro PA (2007) In vivo immunostaining demonstrates macrophages associate with growing and regressing vessels. Invest Ophthalmol Vis Sci 48(9):4335–4341. https://doi.org/10.1167/iovs.07-0113
Article
PubMed
Google Scholar
Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840. https://doi.org/10.1182/blood-2009-12-257832
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Xu B, Chen Q, Yan Y, Du J, Du X (2018) Apoptosis of endothelial cells contributes to brain vessel pruning of zebrafish during development. Front Mol Neurosci 11:222. https://doi.org/10.3389/fnmol.2018.00222
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheng C, Haasdijk R, Tempel D, van de Kamp EH, Herpers R, Bos F, Den Dekker WK, Blonden LA, de Jong R, Burgisser PE, Chrifi I, Biessen EA, Dimmeler S, Schulte-Merker S, Duckers HJ (2012) Endothelial cell-specific FGD5 involvement in vascular pruning defines neovessel fate in mice. Circulation 125(25):3142–3158. https://doi.org/10.1161/CIRCULATIONAHA.111.064030
Article
PubMed
Google Scholar
Korn C, Augustin HG (2015) Mechanisms of vessel pruning and regression. Dev Cell 34(1):5–17. https://doi.org/10.1016/j.devcel.2015.06.004
CAS
Article
PubMed
Google Scholar
Kochhan E, Lenard A, Ellertsdottir E, Herwig L, Affolter M, Belting HG, Siekmann AF (2013) Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos. PLoS ONE 8(10):e75060. https://doi.org/10.1371/journal.pone.0075060
CAS
Article
PubMed
PubMed Central
Google Scholar
Wietecha MS, Cerny WL, DiPietro LA (2013) Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis. Curr Top Microbiol Immunol 367:3–32. https://doi.org/10.1007/82_2012_287
Article
PubMed
Google Scholar
Savant S, La Porta S, Budnik A, Busch K, Hu J, Tisch N, Korn C, Valls AF, Benest AV, Terhardt D, Qu X, Adams RH, Baldwin HS, Ruiz de Almodovar C, Rodewald HR, Augustin HG (2015) The orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in Tip and stalk cells. Cell reports 12(11):1761–1773. https://doi.org/10.1016/j.celrep.2015.08.024
CAS
Article
PubMed
PubMed Central
Google Scholar
Scholz B, Korn C, Wojtarowicz J, Mogler C, Augustin I, Boutros M, Niehrs C, Augustin HG (2016) Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca(2+)/NFAT signaling. Dev Cell 36(1):79–93. https://doi.org/10.1016/j.devcel.2015.12.015
CAS
Article
PubMed
Google Scholar
Franco CA, Jones ML, Bernabeu MO, Vion AC, Barbacena P, Fan J, Mathivet T, Fonseca CG, Ragab A, Yamaguchi TP, Coveney PV, Lang RA, Gerhardt H (2016) Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. Elife 5:e07727. https://doi.org/10.7554/eLife.07727
CAS
Article
PubMed
PubMed Central
Google Scholar
Hubert KE, Davies MH, Stempel AJ, Griffith TS, Powers MR (2009) TRAIL-deficient mice exhibit delayed regression of retinal neovascularization. Am J Pathol 175(6):2697–2708. https://doi.org/10.2353/ajpath.2009.090099
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen Q, Jiang L, Li C, Hu D, Bu JW, Cai D, Du JL (2012) Haemodynamics-driven developmental pruning of brain vasculature in zebrafish. Plos Biol 10(8):e1001374. https://doi.org/10.1371/journal.pbio.1001374
CAS
Article
PubMed
PubMed Central
Google Scholar
Lenard A, Daetwyler S, Betz C, Ellertsdottir E, Belting HG, Huisken J, Affolter M (2015) Endothelial cell self-fusion during vascular pruning. Plos Biol 13(4):e1002126. https://doi.org/10.1371/journal.pbio.1002126
CAS
Article
PubMed
PubMed Central
Google Scholar
Zwerts F, Lupu F, De Vriese A, Pollefeyt S, Moons L, Altura RA, Jiang Y, Maxwell PH, Hill P, Oh H, Rieker C, Collen D, Conway SJ, Conway EM (2007) Lack of endothelial cell survivin causes embryonic defects in angiogenesis, cardiogenesis, and neural tube closure. Blood 109(11):4742–4752. https://doi.org/10.1182/blood-2006-06-028068
CAS
Article
PubMed
PubMed Central
Google Scholar
Kang TB, Jeong JS, Yang SH, Kovalenko A, Wallach D (2018) Caspase-8 deficiency in mouse embryos triggers chronic RIPK1-dependent activation of inflammatory genes, independently of RIPK3. Cell Death Differ 25(6):1107–1117. https://doi.org/10.1038/s41418-018-0104-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Qiu W, Carson-Walter EB, Liu H, Epperly M, Greenberger JS, Zambetti GP, Zhang L, Yu J (2008) PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2(6):576–583. https://doi.org/10.1016/j.stem.2008.03.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Biancone L, Martino AD, Orlandi V, Conaldi PG, Toniolo A, Camussi G (1997) Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J Exp Med 186(1):147–152. https://doi.org/10.1084/jem.186.1.147
CAS
Article
PubMed
PubMed Central
Google Scholar
Hanggi K, Vasilikos L, Valls AF, Yerbes R, Knop J, Spilgies LM, Rieck K, Misra T, Bertin J, Gough PJ, Schmidt T, de Almodovar CR, Wong WW (2017) RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function. Cell Death Dis 8(2):e2588. https://doi.org/10.1038/cddis.2017.20
CAS
Article
PubMed
PubMed Central
Google Scholar
Matsumoto T, Turesson I, Book M, Gerwins P, Claesson-Welsh L (2002) p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J Cell Biol 156(1):149–160. https://doi.org/10.1083/jcb.200103096
CAS
Article
PubMed
PubMed Central
Google Scholar
Li JH, Kirkiles-Smith NC, McNiff JM, Pober JS (2003) TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells. J Immunology 171(3):1526–1533. https://doi.org/10.4049/jimmunol.171.3.1526
CAS
Article
Google Scholar
Na HJ, Hwang JY, Lee KS, Choi YK, Choe J, Kim JY, Moon HE, Kim KW, Koh GY, Lee H, Jeoung D, Won MH, Ha KS, Kwon YG, Kim YM (2014) TRAIL negatively regulates VEGF-induced angiogenesis via caspase-8-mediated enzymatic and non-enzymatic functions. Angiogenesis 17(1):179–194. https://doi.org/10.1007/s10456-013-9387-0
CAS
Article
PubMed
Google Scholar
Cantarella G, Di Benedetto G, Ribatti D, Saccani-Jotti G, Bernardini R (2014) Involvement of caspase 8 and c-FLIPL in the proangiogenic effects of the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). FEBS J 281(5):1505–1513. https://doi.org/10.1111/febs.12720
CAS
Article
PubMed
Google Scholar
Sosna J, Philipp S, Fuchslocher Chico J, Saggau C, Fritsch J, Foll A, Plenge J, Arenz C, Pinkert T, Kalthoff H, Trauzold A, Schmitz I, Schutze S, Adam D (2016) Differences and similarities in TRAIL- and tumor necrosis factor-mediated necroptotic signaling in cancer cells. Mol Cell Biol 36(20):2626–2644. https://doi.org/10.1128/MCB.00941-15
CAS
Article
PubMed
PubMed Central
Google Scholar
Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187(9):1477–1485. https://doi.org/10.1084/jem.187.9.1477
CAS
Article
PubMed
PubMed Central
Google Scholar
Kearney CJ, Martin SJ (2017) An inflammatory perspective on necroptosis. Mol Cell 65(6):965–973. https://doi.org/10.1016/j.molcel.2017.02.024
CAS
Article
PubMed
Google Scholar
Richardson BC, Lalwani ND, Johnson KJ, Marks RM (1994) Fas ligation triggers apoptosis in macrophages but not endothelial cells. Eur J Immunol 24(11):2640–2645. https://doi.org/10.1002/eji.1830241111
CAS
Article
PubMed
Google Scholar
Sata M, Suhara T, Walsh K (2000) Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol 20(2):309–316. https://doi.org/10.1161/01.atv.20.2.309
CAS
Article
PubMed
Google Scholar
Walsh K, Sata M (1999) Negative regulation of inflammation by Fas ligand expression on the vascular endothelium. Trends Cardiovasc Med 9(1–2):34–41. https://doi.org/10.1016/s1050-1738(99)00006-7
CAS
Article
PubMed
Google Scholar
Smyth LA, Brady HJ (2005) cMet and Fas receptor interaction inhibits death-inducing signaling complex formation in endothelial cells. Hypertension 46(1):100–106. https://doi.org/10.1161/01.HYP.0000167991.82153.16
CAS
Article
PubMed
Google Scholar
Takemura Y, Fukuo K, Yasuda O, Inoue T, Inomata N, Yokoi T, Kawamoto H, Suhara T, Ogihara T (2004) Fas signaling induces Akt activation and upregulation of endothelial nitric oxide synthase expression. Hypertension 43(4):880–884. https://doi.org/10.1161/01.HYP.0000120124.27641.03
CAS
Article
PubMed
Google Scholar
Shioiri T, Muroi M, Hatao F, Nishida M, Ogawa T, Mimura Y, Seto Y, Kaminishi M, Tanamoto K (2009) Caspase-3 is activated and rapidly released from human umbilical vein endothelial cells in response to lipopolysaccharide. Biochim Biophys Acta 1792(10):1011–1018. https://doi.org/10.1016/j.bbadis.2009.06.006
CAS
Article
PubMed
Google Scholar
Suresh K, Carino K, Johnston L, Servinsky L, Machamer CE, Kolb TM, Lam H, Dudek SM, An SS, Rane MJ, Shimoda LA, Damarla M (2019) A nonapoptotic endothelial barrier-protective role for caspase-3. Am J Physiol Lung Cell Mol Physiol 316(6):L1118–L1126. https://doi.org/10.1152/ajplung.00487.2018
CAS
Article
PubMed
PubMed Central
Google Scholar
Kondo S, Tang Y, Scheef EA, Sheibani N, Sorenson CM (2008) Attenuation of retinal endothelial cell migration and capillary morphogenesis in the absence of bcl-2. Am J Physiol Cell Physiol 294(6):C1521-1530. https://doi.org/10.1152/ajpcell.90633.2007
CAS
Article
PubMed
Google Scholar
Scott A, Fruttiger M (2010) Oxygen-induced retinopathy: a model for vascular pathology in the retina. Eye (Lond) 24(3):416–421. https://doi.org/10.1038/eye.2009.306
CAS
Article
Google Scholar
Kim CB, D’Amore PA, Connor KM (2016) Revisiting the mouse model of oxygen-induced retinopathy. Eye Brain 8:67–79. https://doi.org/10.2147/EB.S94447
Article
PubMed
PubMed Central
Google Scholar
Sapieha P, Hamel D, Shao Z, Rivera JC, Zaniolo K, Joyal JS, Chemtob S (2010) Proliferative retinopathies: angiogenesis that blinds. Int J Biochem Cell B 42(1):5–12. https://doi.org/10.1016/j.biocel.2009.10.006
CAS
Article
Google Scholar
Donahue ML, Phelps DL, Watkins RH, LoMonaco MB, Horowitz S (1996) Retinal vascular endothelial growth factor (VEGF) mRNA expression is altered in relation to neovascularization in oxygen induced retinopathy. Curr Eye Res 15(2):175–184. https://doi.org/10.3109/02713689608997411
CAS
Article
PubMed
Google Scholar
Shih SC, Ju M, Liu N, Smith LE (2003) Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J Clin Invest 112(1):50–57. https://doi.org/10.1172/JCI17808
CAS
Article
PubMed
PubMed Central
Google Scholar
Lofqvist C, Chen J, Connor KM, Smith AC, Aderman CM, Liu N, Pintar JE, Ludwig T, Hellstrom A, Smith LE (2007) IGFBP3 suppresses retinopathy through suppression of oxygen-induced vessel loss and promotion of vascular regrowth. Proc Natl Acad Sci USA 104(25):10589–10594. https://doi.org/10.1073/pnas.0702031104
CAS
Article
PubMed
Google Scholar
Hartnett ME (2015) Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology 122(1):200–210. https://doi.org/10.1016/j.ophtha.2014.07.050
Article
PubMed
Google Scholar
Mizutani M, Kern TS, Lorenzi M (1996) Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 97(12):2883–2890. https://doi.org/10.1172/JCI118746
CAS
Article
PubMed
PubMed Central
Google Scholar
Hammes HP, Feng Y, Pfister F, Brownlee M (2011) Diabetic retinopathy: targeting vasoregression. Diabetes 60(1):9–16. https://doi.org/10.2337/db10-0454
CAS
Article
PubMed
PubMed Central
Google Scholar
Zaitoun IS, Johnson RP, Jamali N, Almomani R, Wang S, Sheibani N, Sorenson CM (2015) Endothelium expression of Bcl-2 is essential for normal and pathological ocular vascularization. PLoS ONE 10(10):e0139994. https://doi.org/10.1371/journal.pone.0139994
CAS
Article
PubMed
PubMed Central
Google Scholar
Grant ZL, Whitehead L, Wong VHY, He Z, Yan RY, Miles AR, Benest AV, Bates DO, Prahst C, Bentley K, Bui BV, Symons RC, Coultas L (2020) Blocking endothelial apoptosis revascularises the retina in a model of ischemic retinopathy. J Clin Invest. https://doi.org/10.1172/JCI127668
Article
PubMed
PubMed Central
Google Scholar
Barreiro R, Schadlu R, Herndon J, Kaplan HJ, Ferguson TA (2003) The role of Fas-FasL in the development and treatment of ischemic retinopathy. Invest Ophthalmol Vis Sci 44(3):1282–1286. https://doi.org/10.1167/iovs.02-0478
Article
PubMed
Google Scholar
Davies MH, Eubanks JP, Powers MR (2003) Increased retinal neovascularization in Fas ligand-deficient mice. Invest Ophthalmol Vis Sci 44(7):3202–3210. https://doi.org/10.1167/iovs.03-0050
Article
PubMed
Google Scholar
Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410. https://doi.org/10.1038/nrc1093
CAS
Article
PubMed
Google Scholar
Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186. https://doi.org/10.1056/NEJM197111182852108
CAS
Article
PubMed
Google Scholar
Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103(2):159–165. https://doi.org/10.1172/JCI5028
CAS
Article
PubMed
PubMed Central
Google Scholar
Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427. https://doi.org/10.1038/nrd3455
CAS
Article
PubMed
Google Scholar
Lemke J, von Karstedt S, Zinngrebe J, Walczak H (2014) Getting TRAIL back on track for cancer therapy. Cell Death Differ 21(9):1350–1364. https://doi.org/10.1038/cdd.2014.81
CAS
Article
PubMed
PubMed Central
Google Scholar
Fox JL, MacFarlane M (2016) Targeting cell death signalling in cancer: minimising ‘Collateral damage.’ Br J Cancer 115(1):5–11. https://doi.org/10.1038/bjc.2016.111
CAS
Article
PubMed
PubMed Central
Google Scholar
Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25(8):911–920. https://doi.org/10.1038/nbt1323
CAS
Article
PubMed
Google Scholar
Yang L, Joseph S, Sun T, Hoffmann J, Thevissen S, Offermanns S, Strilic B (2019) TAK1 regulates endothelial cell necroptosis and tumor metastasis. Cell Death Differ 26(10):1987–1997. https://doi.org/10.1038/s41418-018-0271-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Strilic B, Yang L, Albarran-Juarez J, Wachsmuth L, Han K, Muller UC, Pasparakis M, Offermanns S (2016) Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 536(7615):215–218. https://doi.org/10.1038/nature19076
CAS
Article
PubMed
Google Scholar