Skip to main content
Log in

Prox1 inhibits neurite outgrowth during central nervous system development

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

During central nervous system (CNS) development, proper and timely induction of neurite elongation is critical for generating functional, mature neurons, and neuronal networks. Despite the wealth of information on the action of extracellular cues, little is known about the intrinsic gene regulatory factors that control this developmental decision. Here, we report the identification of Prox1, a homeobox transcription factor, as a key player in inhibiting neurite elongation. Although Prox1 promotes acquisition of early neuronal identity and is expressed in nascent post-mitotic neurons, it is heavily down-regulated in the majority of terminally differentiated neurons, indicating a regulatory role in delaying neurite outgrowth in newly formed neurons. Consistently, we show that Prox1 is sufficient to inhibit neurite extension in mouse and human neuroblastoma cell lines. More importantly, Prox1 overexpression suppresses neurite elongation in primary neuronal cultures as well as in the developing mouse brain, while Prox1 knock-down promotes neurite outgrowth. Mechanistically, RNA-Seq analysis reveals that Prox1 affects critical pathways for neuronal maturation and neurite extension. Interestingly, Prox1 strongly inhibits many components of Ca2+ signaling pathway, an important mediator of neurite extension and neuronal maturation. In accordance, Prox1 represses Ca2+ entry upon KCl-mediated depolarization and reduces CREB phosphorylation. These observations suggest that Prox1 acts as a potent suppressor of neurite outgrowth by inhibiting Ca2+ signaling pathway. This action may provide the appropriate time window for nascent neurons to find the correct position in the CNS prior to initiation of neurites and axon elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Polleux F, Snider W (2010) Initiating and growing an axon. Cold Spring Harb Perspect Biol 2(4):a001925. https://doi.org/10.1101/cshperspect.a001925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bennison SA, Blazejewski SM, Smith TH, Toyo-Oka K (2019) Protein kinases: master regulators of neuritogenesis and therapeutic targets for axon regeneration. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03336-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dyer MA, Livesey FJ, Cepko CL, Oliver G (2003) Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet 34(1):53–58. https://doi.org/10.1038/ng1144

    Article  CAS  PubMed  Google Scholar 

  4. Lavado A, Oliver G (2007) Prox1 expression patterns in the developing and adult murine brain. Dev Dyn 236(2):518–524. https://doi.org/10.1002/dvdy.21024

    Article  CAS  PubMed  Google Scholar 

  5. Misra K, Gui H, Matise MP (2008) Prox1 regulates a transitory state for interneuron neurogenesis in the spinal cord. Dev Dyn 237(2):393–402. https://doi.org/10.1002/dvdy.21422

    Article  CAS  PubMed  Google Scholar 

  6. Kaltezioti V, Kouroupi G, Oikonomaki M, Mantouvalou E, Stergiopoulos A, Charonis A, Rohrer H, Matsas R, Politis PK (2010) Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biol 8(12):e1000565. https://doi.org/10.1371/journal.pbio.1000565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaltezioti V, Antoniou D, Stergiopoulos A, Rozani I, Rohrer H, Politis PK (2014) Prox1 regulates Olig2 expression to modulate binary fate decisions in spinal cord neurons. J Neurosci 34(47):15816–15831. https://doi.org/10.1523/JNEUROSCI.1865-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sosa-Pineda B, Wigle JT, Oliver G (2000) Hepatocyte migration during liver development requires Prox1. Nat Genet 25(3):254–255. https://doi.org/10.1038/76996

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Kilic G, Aydin M, Burke Z, Oliver G, Sosa-Pineda B (2005) Prox1 activity controls pancreas morphogenesis and participates in the production of “secondary transition” pancreatic endocrine cells. Dev Biol 286(1):182–194. https://doi.org/10.1016/j.ydbio.2005.07.021

    Article  CAS  PubMed  Google Scholar 

  10. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98(6):769–778. https://doi.org/10.1016/S0092-8674(00)81511-1

    Article  CAS  PubMed  Google Scholar 

  11. Risebro CA, Searles RG, Melville AA, Ehler E, Jina N, Shah S, Pallas J, Hubank M, Dillard M, Harvey NL, Schwartz RJ, Chien KR, Oliver G, Riley PR (2009) Prox1 maintains muscle structure and growth in the developing heart. Development 136(3):495–505. https://doi.org/10.1242/dev.030007

    Article  CAS  PubMed  Google Scholar 

  12. Hope KJ, Sauvageau G (2011) Roles for MSI2 and PROX1 in hematopoietic stem cell activity. Curr Opin Hematol 18(4):203–207. https://doi.org/10.1097/MOH.0b013e328347888a

    Article  CAS  PubMed  Google Scholar 

  13. Tomarev SI, Sundin O, Banerjee-Basu S, Duncan MK, Yang JM, Piatigorsky J (1996) Chicken homeobox gene Prox 1 related to Drosophila prospero is expressed in the developing lens and retina. Dev Dyn 206(4):354–367. https://doi.org/10.1002/(SICI)1097-0177(199608)206:4%3c354::AID-AJA2%3e3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  14. Wigle JT, Chowdhury K, Gruss P, Oliver G (1999) Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet 21(3):318–322. https://doi.org/10.1038/6844

    Article  CAS  PubMed  Google Scholar 

  15. Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, Sleeman MW, Oliver G (2005) Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet 37(10):1072–1081. https://doi.org/10.1038/ng1642

    Article  CAS  PubMed  Google Scholar 

  16. Qin J, Gao DM, Jiang QF, Zhou Q, Kong YY, Wang Y, Xie YH (2004) Prospero-related homeobox (Prox1) is a corepressor of human liver receptor homolog-1 and suppresses the transcription of the cholesterol 7-alpha-hydroxylase gene. Mol Endocrinol 18(10):2424–2439. https://doi.org/10.1210/me.2004-0009

    Article  CAS  PubMed  Google Scholar 

  17. Kamiya A, Kakinuma S, Onodera M, Miyajima A, Nakauchi H (2008) Prospero-related homeobox 1 and liver receptor homolog 1 coordinately regulate long-term proliferation of murine fetal hepatoblasts. Hepatology 48(1):252–264. https://doi.org/10.1002/hep.22303

    Article  CAS  PubMed  Google Scholar 

  18. Stein S, Oosterveer MH, Mataki C, Xu P, Lemos V, Havinga R, Dittner C, Ryu D, Menzies KJ, Wang X, Perino A, Houten SM, Melchior F, Schoonjans K (2014) SUMOylation-dependent LRH-1/PROX1 interaction promotes atherosclerosis by decreasing hepatic reverse cholesterol transport. Cell Metab 20(4):603–613. https://doi.org/10.1016/j.cmet.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  19. Charest-Marcotte A, Dufour CR, Wilson BJ, Tremblay AM, Eichner LJ, Arlow DH, Mootha VK, Giguere V (2010) The homeobox protein Prox1 is a negative modulator of ERR{alpha}/PGC-1{alpha} bioenergetic functions. Genes Dev 24(6):537–542. https://doi.org/10.1101/gad.1871610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Armour SM, Remsberg JR, Damle M, Sidoli S, Ho WY, Li Z, Garcia BA, Lazar MA (2017) An HDAC3-PROX1 corepressor module acts on HNF4alpha to control hepatic triglycerides. Nat Commun 8(1):549. https://doi.org/10.1038/s41467-017-00772-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee S, Kang J, Yoo J, Ganesan SK, Cook SC, Aguilar B, Ramu S, Lee J, Hong YK (2009) Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 113(8):1856–1859. https://doi.org/10.1182/blood-2008-03-145789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S, Studer M, Porto MP, Lagutin O, Oliver G (2010) The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev 24(7):696–707. https://doi.org/10.1101/gad.1859310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aranguren XL, Beerens M, Coppiello G, Wiese C, Vandersmissen I, Lo Nigro A, Verfaillie CM, Gessler M, Luttun A (2013) COUP-TFII orchestrates venous and lymphatic endothelial identity by homo- or hetero-dimerisation with PROX1. J Cell Sci 126(Pt 5):1164–1175. https://doi.org/10.1242/jcs.116293

    Article  CAS  PubMed  Google Scholar 

  24. Ouyang H, Qin Y, Liu Y, Xie Y, Liu J (2013) Prox1 directly interacts with LSD1 and recruits the LSD1/NuRD complex to epigenetically co-repress CYP7A1 transcription. PLoS ONE 8(4):e62192. https://doi.org/10.1371/journal.pone.0062192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Zhang JB, Qin Y, Wang W, Wei L, Teng Y, Guo L, Zhang B, Lin Z, Liu J, Ren ZG, Ye QH, Xie Y (2013) PROX1 promotes hepatocellular carcinoma metastasis by way of up-regulating hypoxia-inducible factor 1alpha expression and protein stability. Hepatology 58(2):692–705. https://doi.org/10.1002/hep.26398

    Article  CAS  PubMed  Google Scholar 

  26. Takeda Y, Jetten AM (2013) Prospero-related homeobox 1 (Prox1) functions as a novel modulator of retinoic acid-related orphan receptors alpha- and gamma-mediated transactivation. Nucleic Acids Res 41(14):6992–7008. https://doi.org/10.1093/nar/gkt447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petrova TV, Nykanen A, Norrmen C, Ivanov KI, Andersson LC, Haglund C, Puolakkainen P, Wempe F, von Melchner H, Gradwohl G, Vanharanta S, Aaltonen LA, Saharinen J, Gentile M, Clarke A, Taipale J, Oliver G, Alitalo K (2008) Transcription factor PROX1 induces colon cancer progression by promoting the transition from benign to highly dysplastic phenotype. Cancer Cell 13(5):407–419. https://doi.org/10.1016/j.ccr.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  28. Elsir T, Eriksson A, Orrego A, Lindstrom MS, Nister M (2010) Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas. J Neuropathol Exp Neurol 69(2):129–138. https://doi.org/10.1097/NEN.0b013e3181ca4767

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi M, Yoshimoto T, Shimoda M, Kono T, Koizumi M, Yazumi S, Shimada Y, Doi R, Chiba T, Kubo H (2006) Loss of function of the candidate tumor suppressor prox1 by RNA mutation in human cancer cells. Neoplasia 8(12):1003–1010. https://doi.org/10.1593/neo.06595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Foskolou IP, Stellas D, Rozani I, Lavigne MD, Politis PK (2013) Prox1 suppresses the proliferation of neuroblastoma cells via a dual action in p27-Kip1 and Cdc25A. Oncogene 32(8):947–960. https://doi.org/10.1038/onc.2012.129

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Ye X, Zhang JB, Ouyang H, Shen Z, Wu Y, Wang W, Wu J, Tao S, Yang X, Qiao K, Zhang J, Liu J, Fu Q, Xie Y (2015) PROX1 promotes hepatocellular carcinoma proliferation and sorafenib resistance by enhancing beta-catenin expression and nuclear translocation. Oncogene 34(44):5524–5535. https://doi.org/10.1038/onc.2015.7

    Article  CAS  PubMed  Google Scholar 

  32. Versmold B, Felsberg J, Mikeska T, Ehrentraut D, Kohler J, Hampl JA, Rohn G, Niederacher D, Betz B, Hellmich M, Pietsch T, Schmutzler RK, Waha A (2007) Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic breast cancer. Int J Cancer 121(3):547–554. https://doi.org/10.1002/ijc.22705

    Article  CAS  PubMed  Google Scholar 

  33. Drosos Y, Neale G, Ye J, Paul L, Kuliyev E, Maitra A, Means AL, Washington MK, Rehg J, Finkelstein DB, Sosa-Pineda B (2016) Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation. Neoplasia 18(3):172–184. https://doi.org/10.1016/j.neo.2016.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elsir T, Smits A, Lindstrom MS, Nister M (2012) Transcription factor PROX1: its role in development and cancer. Cancer Metastasis Rev 31(3–4):793–805. https://doi.org/10.1007/s10555-012-9390-8

    Article  CAS  PubMed  Google Scholar 

  35. Miyoshi G, Young A, Petros T, Karayannis T, McKenzie Chang M, Lavado A, Iwano T, Nakajima M, Taniguchi H, Huang ZJ, Heintz N, Oliver G, Matsuzaki F, Machold RP, Fishell G (2015) Prox1 regulates the subtype-specific development of caudal ganglionic eminence-derived GABAergic cortical interneurons. J Neurosci 35(37):12869–12889. https://doi.org/10.1523/JNEUROSCI.1164-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Touzot A, Ruiz-Reig N, Vitalis T, Studer M (2016) Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. Development 143(10):1753–1765. https://doi.org/10.1242/dev.131102

    Article  CAS  PubMed  Google Scholar 

  37. Karalay O, Doberauer K, Vadodaria KC, Knobloch M, Berti L, Miquelajauregui A, Schwark M, Jagasia R, Taketo MM, Tarabykin V, Lie DC, Jessberger S (2011) Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 108(14):5807–5812. https://doi.org/10.1073/pnas.1013456108

    Article  PubMed  PubMed Central  Google Scholar 

  38. Iwano T, Masuda A, Kiyonari H, Enomoto H, Matsuzaki F (2012) Prox1 postmitotically defines dentate gyrus cells by specifying granule cell identity over CA3 pyramidal cell fate in the hippocampus. Development 139(16):3051–3062. https://doi.org/10.1242/dev.080002

    Article  CAS  PubMed  Google Scholar 

  39. Torii M, Matsuzaki F, Osumi N, Kaibuchi K, Nakamura S, Casarosa S, Guillemot F, Nakafuku M (1999) Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 126(3):443–456

    CAS  PubMed  Google Scholar 

  40. Rubin AN, Kessaris N (2013) PROX1: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. PLoS ONE 8(10):e77339. https://doi.org/10.1371/journal.pone.0077339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, Yi Q, Li C, Li X, Shen J, Song Z, Ji W, Wang M, Zhou J, Chen B, Liu Y, Wang J, Wang P, Yang P, Wang Q, Feng G, Liu B, Sun W, Li B, He G, Li W, Wan C, Xu Q, Li W, Wen Z, Liu K, Huang F, Ji J, Ripke S, Yue W, Sullivan PF, O’Donovan MC, Shi Y (2017) Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet 49(11):1576–1583. https://doi.org/10.1038/ng.3973

    Article  CAS  PubMed  Google Scholar 

  42. Goes FS, McGrath J, Avramopoulos D, Wolyniec P, Pirooznia M, Ruczinski I, Nestadt G, Kenny EE, Vacic V, Peters I, Lencz T, Darvasi A, Mulle JG, Warren ST, Pulver AE (2015) Genome-wide association study of schizophrenia in Ashkenazi Jews. Am J Med Genet B Neuropsychiatr Genet 168(8):649–659. https://doi.org/10.1002/ajmg.b.32349

    Article  CAS  PubMed  Google Scholar 

  43. Logue MW, Schu M, Vardarajan BN, Buros J, Green RC, Go RC, Griffith P, Obisesan TO, Shatz R, Borenstein A, Cupples LA, Lunetta KL, Fallin MD, Baldwin CT, Farrer LA, Multi-Institutional Research on Alzheimer Genetic Epidemiology Study G (2011) A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol 68(12):1569–1579. https://doi.org/10.1001/archneurol.2011.646

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rosenberg SS, Spitzer NC (2011) Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol 3(10):a004259. https://doi.org/10.1101/cshperspect.a004259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sutherland DJ, Pujic Z, Goodhill GJ (2014) Calcium signaling in axon guidance. Trends Neurosci 37(8):424–432. https://doi.org/10.1016/j.tins.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  46. Sheng L, Leshchyns’ka I, Sytnyk V (2013) Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal 11:94. https://doi.org/10.1186/1478-811X-11-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Politis PK, Akrivou S, Hurel C, Papadodima O, Matsas R (2008) BM88/Cend1 is involved in histone deacetylase inhibition-mediated growth arrest and differentiation of neuroblastoma cells. FEBS Lett 582(5):741–748. https://doi.org/10.1016/j.febslet.2008.01.052

    Article  CAS  PubMed  Google Scholar 

  48. Politis PK, Makri G, Thomaidou D, Geissen M, Rohrer H, Matsas R (2007) BM88/CEND1 coordinates cell cycle exit and differentiation of neuronal precursors. Proc Natl Acad Sci U S A 104(45):17861–17866. https://doi.org/10.1073/pnas.0610973104

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kyrousi C, Arbi M, Pilz GA, Pefani DE, Lalioti ME, Ninkovic J, Gotz M, Lygerou Z, Taraviras S (2015) Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development 142(21):3661–3674. https://doi.org/10.1242/dev.126342

    Article  CAS  PubMed  Google Scholar 

  50. Stergiopoulos A, Politis PK (2016) Nuclear receptor NR5A2 controls neural stem cell fate decisions during development. Nat Commun 7:12230. https://doi.org/10.1038/ncomms12230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108(5):689–703. https://doi.org/10.1016/s0092-8674(02)00657-8

    Article  CAS  PubMed  Google Scholar 

  52. Mayr BM, Canettieri G, Montminy MR (2001) Distinct effects of cAMP and mitogenic signals on CREB-binding protein recruitment impart specificity to target gene activation via CREB. Proc Natl Acad Sci U S A 98(19):10936–10941. https://doi.org/10.1073/pnas.191152098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Macias W, Carlson R, Rajadhyaksha A, Barczak A, Konradi C (2001) Potassium chloride depolarization mediates CREB phosphorylation in striatal neurons in an NMDA receptor-dependent manner. Brain Res 890(2):222–232. https://doi.org/10.1016/s0006-8993(00)03163-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sakagami H, Kamata A, Nishimura H, Kasahara J, Owada Y, Takeuchi Y, Watanabe M, Fukunaga K, Kondo H (2005) Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons. Eur J Neurosci 22(11):2697–2707. https://doi.org/10.1111/j.1460-9568.2005.04463.x

    Article  PubMed  Google Scholar 

  55. Lv X, Jiang H, Li B, Liang Q, Wang S, Zhao Q, Jiao J (2014) The crucial role of Atg5 in cortical neurogenesis during early brain development. Sci Rep 4:6010. https://doi.org/10.1038/srep06010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moulos P, Hatzis P (2015) Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns. Nucleic Acids Res 43(4):e25. https://doi.org/10.1093/nar/gku1273

    Article  CAS  PubMed  Google Scholar 

  57. Lavigne MD, Vatsellas G, Polyzos A, Mantouvalou E, Sianidis G, Maraziotis I, Agelopoulos M, Thanos D (2015) Composite macroH2A/NRF-1 nucleosomes suppress noise and generate robustness in gene expression. Cell Rep 11(7):1090–1101. https://doi.org/10.1016/j.celrep.2015.04.022

    Article  CAS  PubMed  Google Scholar 

  58. Melachroinou K, Xilouri M, Emmanouilidou E, Masgrau R, Papazafiri P, Stefanis L, Vekrellis K (2013) Deregulation of calcium homeostasis mediates secreted alpha-synuclein-induced neurotoxicity. Neurobiol Aging 34(12):2853–2865. https://doi.org/10.1016/j.neurobiolaging.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  59. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  60. Saito A, Miyajima K, Akatsuka J, Kondo H, Mashiko T, Kiuchi T, Ohashi K, Mizuno K (2013) CaMKIIbeta-mediated LIM-kinase activation plays a crucial role in BDNF-induced neuritogenesis. Genes Cells 18(7):533–543. https://doi.org/10.1111/gtc.12054

    Article  CAS  PubMed  Google Scholar 

  61. Ageta-Ishihara N, Takemoto-Kimura S, Nonaka M, Adachi-Morishima A, Suzuki K, Kamijo S, Fujii H, Mano T, Blaeser F, Chatila TA, Mizuno H, Hirano T, Tagawa Y, Okuno H, Bito H (2009) Control of cortical axon elongation by a GABA-driven Ca2+/calmodulin-dependent protein kinase cascade. J Neurosci 29(43):13720–13729. https://doi.org/10.1523/JNEUROSCI.3018-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takemura M, Mishima T, Wang Y, Kasahara J, Fukunaga K, Ohashi K, Mizuno K (2009) Ca2+/calmodulin-dependent protein kinase IV-mediated LIM kinase activation is critical for calcium signal-induced neurite outgrowth. J Biol Chem 284(42):28554–28562. https://doi.org/10.1074/jbc.M109.006296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Buraei Z, Yang J (2010) The ss subunit of voltage-gated Ca2+ channels. Physiol Rev 90(4):1461–1506. https://doi.org/10.1152/physrev.00057.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82(1):24–45. https://doi.org/10.1016/j.neuron.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  65. Kamijo S, Ishii Y, Horigane SI, Suzuki K, Ohkura M, Nakai J, Fujii H, Takemoto-Kimura S, Bito H (2018) A Critical Neurodevelopmental Role for L-Type Voltage-Gated Calcium Channels in Neurite Extension and Radial Migration. J Neurosci 38(24):5551–5566. https://doi.org/10.1523/JNEUROSCI.2357-17.2018

    Article  CAS  PubMed  Google Scholar 

  66. Khatib T, Marini P, Nunna S, Chisholm DR, Whiting A, Redfern C, Greig IR, McCaffery P (2019) Genomic and non-genomic pathways are both crucial for peak induction of neurite outgrowth by retinoids. Cell Commun Signal 17(1):40. https://doi.org/10.1186/s12964-019-0352-4

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fujibayashi T, Kurauchi Y, Hisatsune A, Seki T, Shudo K, Katsuki H (2015) Mitogen-activated protein kinases regulate expression of neuronal nitric oxide synthase and neurite outgrowth via non-classical retinoic acid receptor signaling in human neuroblastoma SH-SY5Y cells. J Pharmacol Sci 129(2):119–126. https://doi.org/10.1016/j.jphs.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  68. Duhr F, Deleris P, Raynaud F, Seveno M, Morisset-Lopez S, Mannoury la Cour C, Millan MJ, Bockaert J, Marin P, Chaumont-Dubel S (2014) Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth. Nat Chem Biol 10(7):590–597. https://doi.org/10.1038/nchembio.1547

    Article  CAS  PubMed  Google Scholar 

  69. Speranza L, Chambery A, Di Domenico M, Crispino M, Severino V, Volpicelli F, Leopoldo M, Bellenchi GC, di Porzio U, Perrone-Capano C (2013) The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways. Neuropharmacology 67:155–167. https://doi.org/10.1016/j.neuropharm.2012.10.026

    Article  CAS  PubMed  Google Scholar 

  70. Gao X, Castro-Gomez S, Grendel J, Graf S, Susens U, Binkle L, Mensching D, Isbrandt D, Kuhl D, Ohana O (2018) Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks. Proc Natl Acad Sci U S A 115(49):12531–12536. https://doi.org/10.1073/pnas.1810125115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A, Mahlke C, Welzl H, Kobalz U, Stawrakakis A, Fernandez E, Waltereit R, Bick-Sander A, Therstappen E, Cooke SF, Blanquet V, Wurst W, Salmen B, Bosl MR, Lipp HP, Grant SG, Bliss TV, Wolfer DP, Kuhl D (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52(3):437–444. https://doi.org/10.1016/j.neuron.2006.08.024

    Article  CAS  PubMed  Google Scholar 

  72. Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, Rugiero F, Wood JN (2012) Neurological perspectives on voltage-gated sodium channels. Brain 135(Pt 9):2585–2612. https://doi.org/10.1093/brain/aws225

    Article  PubMed  PubMed Central  Google Scholar 

  73. Clagett-Dame M, McNeill EM, Muley PD (2006) Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J Neurobiol 66(7):739–756. https://doi.org/10.1002/neu.20241

    Article  CAS  PubMed  Google Scholar 

  74. Park SY, Kang MJ, Han JS (2017) Neuronal NOS induces neuronal differentiation through a PKCalpha-dependent GSK3beta inactivation pathway in hippocampal neural progenitor cells. Mol Neurobiol 54(7):5646–5656. https://doi.org/10.1007/s12035-016-0110-1

    Article  CAS  PubMed  Google Scholar 

  75. Evangelopoulos ME, Wuller S, Weis J, Kruttgen A (2010) A role of nitric oxide in neurite outgrowth of neuroblastoma cells triggered by mevastatin or serum reduction. Neurosci Lett 468(1):28–33. https://doi.org/10.1016/j.neulet.2009.10.054

    Article  CAS  PubMed  Google Scholar 

  76. Fink CC, Bayer KU, Myers JW, Ferrell JE Jr, Schulman H, Meyer T (2003) Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39(2):283–297. https://doi.org/10.1016/s0896-6273(03)00428-8

    Article  CAS  PubMed  Google Scholar 

  77. Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, Hu X, Luo Z (2016) CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS ONE 11(9):e0162784. https://doi.org/10.1371/journal.pone.0162784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cao W, Sohail M, Liu G, Koumbadinga GA, Lobo VG, Xie J (2011) Differential effects of PKA-controlled CaMKK2 variants on neuronal differentiation. RNA Biol 8(6):1061–1072. https://doi.org/10.4161/rna.8.6.16691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakamuta S, Funahashi Y, Namba T, Arimura N, Picciotto MR, Tokumitsu H, Soderling TR, Sakakibara A, Miyata T, Kamiguchi H, Kaibuchi K (2011) Local application of neurotrophins specifies axons through inositol 1,4,5-trisphosphate, calcium, and Ca2+/calmodulin-dependent protein kinases. Sci Signaling 4(199):ra76. https://doi.org/10.1126/scisignal.2002011

    Article  CAS  Google Scholar 

  80. Spencer TK, Mellado W, Filbin MT (2008) BDNF activates CaMKIV and PKA in parallel to block MAG-mediated inhibition of neurite outgrowth. Mol Cell Neurosci 38(1):110–116. https://doi.org/10.1016/j.mcn.2008.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34(6):999–1010. https://doi.org/10.1016/s0896-6273(02)00737-7

    Article  CAS  PubMed  Google Scholar 

  82. Takemoto-Kimura S, Suzuki K, Horigane SI, Kamijo S, Inoue M, Sakamoto M, Fujii H, Bito H (2017) Calmodulin kinases: essential regulators in health and disease. J Neurochem 141(6):808–818. https://doi.org/10.1111/jnc.14020

    Article  CAS  PubMed  Google Scholar 

  83. Hudmon A, Schulman H (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510. https://doi.org/10.1146/annurev.biochem.71.110601.135410

    Article  CAS  PubMed  Google Scholar 

  84. Carpentier A, Balitrand N, Rochette-Egly C, Shroot B, Degos L, Chomienne C (1997) Distinct sensitivity of neuroblastoma cells for retinoid receptor agonists: evidence for functional receptor heterodimers. Oncogene 15(15):1805–1813. https://doi.org/10.1038/sj.onc.1201335

    Article  CAS  PubMed  Google Scholar 

  85. Sato T, Okumura F, Kano S, Kondo T, Ariga T, Hatakeyama S (2011) TRIM32 promotes neural differentiation through retinoic acid receptor-mediated transcription. J Cell Sci 124(Pt 20):3492–3502. https://doi.org/10.1242/jcs.088799

    Article  CAS  PubMed  Google Scholar 

  86. Yamazaki M, Chiba K (2008) Genipin exhibits neurotrophic effects through a common signaling pathway in nitric oxide synthase-expressing cells. Eur J Pharmacol 581(3):255–261. https://doi.org/10.1016/j.ejphar.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  87. Nomura T, Kumatoriya K, Yoshimura Y, Yamauchi T (1997) Overexpression of alpha and beta isoforms of Ca2+/calmodulin-dependent protein kinase II in neuroblastoma cells – H-7 promotes neurite outgrowth. Brain Res 766(1–2):129–141. https://doi.org/10.1016/s0006-8993(97)00535-0

    Article  CAS  PubMed  Google Scholar 

  88. Sheng M, Thompson MA, Greenberg ME (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252(5011):1427–1430. https://doi.org/10.1126/science.1646483

    Article  CAS  PubMed  Google Scholar 

  89. Bito H, Deisseroth K, Tsien RW (1997) Ca2+-dependent regulation in neuronal gene expression. Curr Opin Neurobiol 7(3):419–429. https://doi.org/10.1016/s0959-4388(97)80072-4

    Article  CAS  PubMed  Google Scholar 

  90. Lavado A, Lagutin OV, Chow LM, Baker SJ, Oliver G (2010) Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000460

    Article  PubMed  PubMed Central  Google Scholar 

  91. Risebro CA, Petchey LK, Smart N, Gomes J, Clark J, Vieira JM, Yanni J, Dobrzynski H, Davidson S, Zuberi Z, Tinker A, Shui B, Tallini YI, Kotlikoff MI, Miquerol L, Schwartz RJ, Riley PR (2012) Epistatic rescue of Nkx2.5 adult cardiac conduction disease phenotypes by prospero-related homeobox protein 1 and HDAC3. Circ Res 111(2):e19-31. https://doi.org/10.1161/CIRCRESAHA.111.260695

    Article  CAS  PubMed  Google Scholar 

  92. Mikkola I, Bruun JA, Holm T, Johansen T (2001) Superactivation of Pax6-mediated transactivation from paired domain-binding sites by dna-independent recruitment of different homeodomain proteins. J Biol Chem 276(6):4109–4118. https://doi.org/10.1074/jbc.M008882200

    Article  CAS  PubMed  Google Scholar 

  93. Song KH, Li T, Chiang JY (2006) A Prospero-related homeodomain protein is a novel co-regulator of hepatocyte nuclear factor 4alpha that regulates the cholesterol 7alpha-hydroxylase gene. J Biol Chem 281(15):10081–10088. https://doi.org/10.1074/jbc.M513420200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Steffensen KR, Holter E, Bavner A, Nilsson M, Pelto-Huikko M, Tomarev S, Treuter E (2004) Functional conservation of interactions between a homeodomain cofactor and a mammalian FTZ-F1 homologue. EMBO Rep 5(6):613–619. https://doi.org/10.1038/sj.embor.7400147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen Q, Dowhan DH, Liang D, Moore DD, Overbeek PA (2002) CREB-binding protein/p300 co-activation of crystallin gene expression. J Biol Chem 277(27):24081–24089. https://doi.org/10.1074/jbc.M201821200

    Article  CAS  PubMed  Google Scholar 

  96. Choi D, Park E, Jung E, Seong YJ, Yoo J, Lee E, Hong M, Lee S, Ishida H, Burford J, Peti-Peterdi J, Adams RH, Srikanth S, Gwack Y, Chen CS, Vogel HJ, Koh CJ, Wong AK, Hong YK (2017) Laminar flow downregulates Notch activity to promote lymphatic sprouting. J Clin Investig 127(4):1225–1240. https://doi.org/10.1172/JCI87442

    Article  PubMed  Google Scholar 

  97. Morton LM, Sampson JN, Armstrong GT, Chen TH, Hudson MM, Karlins E, Dagnall CL, Li SA, Wilson CL, Srivastava DK, Liu W, Kang G, Oeffinger KC, Henderson TO, Moskowitz CS, Gibson TM, Merino DM, Wong JR, Hammond S, Neglia JP, Turcotte LM, Miller J, Bowen L, Wheeler WA, Leisenring WM, Whitton JA, Burdette L, Chung C, Hicks BD, Jones K, Machiela MJ, Vogt A, Wang Z, Yeager M, Neale G, Lear M, Strong LC, Yasui Y, Stovall M, Weathers RE, Smith SA, Howell R, Davies SM, Radloff GA, Onel K, Berrington de Gonzalez A, Inskip PD, Rajaraman P, Fraumeni JF, Bhatia S, Chanock SJ, Tucker MA, Robison LL (2017) Genome-wide association study to identify susceptibility loci that modify radiation-related risk for breast cancer after childhood cancer. JNCI. https://doi.org/10.1093/jnci/djx058

    Article  PubMed  Google Scholar 

  98. Goudarzi KM, Espinoza JA, Guo M, Bartek J, Nister M, Lindstrom MS, Hagerstrand D (2018) Reduced expression of PROX1 transitions glioblastoma cells into a mesenchymal gene expression subtype. Can Res 78(20):5901–5916. https://doi.org/10.1158/0008-5472.CAN-18-0320

    Article  CAS  Google Scholar 

  99. Saukkonen K, Hagstrom J, Mustonen H, Juuti A, Nordling S, Kallio P, Alitalo K, Seppanen H, Haglund C (2016) PROX1 and beta-catenin are prognostic markers in pancreatic ductal adenocarcinoma. BMC cancer 16:472. https://doi.org/10.1186/s12885-016-2497-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rauch TA, Wang Z, Wu X, Kernstine KH, Riggs AD, Pfeifer GP (2012) DNA methylation biomarkers for lung cancer. Tumour Biol 33(2):287–296. https://doi.org/10.1007/s13277-011-0282-2

    Article  CAS  PubMed  Google Scholar 

  101. Lu MH, Huang CC, Pan MR, Chen HH, Hung WC (2012) Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clinical Cancer Res 18(23):6416–6425. https://doi.org/10.1158/1078-0432.CCR-12-0832

    Article  CAS  Google Scholar 

  102. Wiener Z, Hogstrom J, Hyvonen V, Band AM, Kallio P, Holopainen T, Dufva O, Haglund C, Kruuna O, Oliver G, Ben-Neriah Y, Alitalo K (2014) Prox1 promotes expansion of the colorectal cancer stem cell population to fuel tumor growth and ischemia resistance. Cell Rep 8(6):1943–1956. https://doi.org/10.1016/j.celrep.2014.08.034

    Article  CAS  PubMed  Google Scholar 

  103. Ragusa S, Cheng J, Ivanov KI, Zangger N, Ceteci F, Bernier-Latmani J, Milatos S, Joseph JM, Tercier S, Bouzourene H, Bosman FT, Letovanec I, Marra G, Gonzalez M, Cammareri P, Sansom OJ, Delorenzi M, Petrova TV (2014) PROX1 promotes metabolic adaptation and fuels outgrowth of Wnt(high) metastatic colon cancer cells. Cell Rep 8(6):1957–1973. https://doi.org/10.1016/j.celrep.2014.08.041

    Article  CAS  PubMed  Google Scholar 

  104. Liu Y, Zhang Y, Wang S, Dong QZ, Shen Z, Wang W, Tao S, Gu C, Liu J, Xie Y, Qin LX (2017) Prospero-related homeobox 1 drives angiogenesis of hepatocellular carcinoma through selectively activating interleukin-8 expression. Hepatology 66(6):1894–1909. https://doi.org/10.1002/hep.29337

    Article  CAS  PubMed  Google Scholar 

  105. Zhu SH, Shan CJ, Wu ZF, Xu SZ (2013) Proliferation of small cell lung cancer cell line reduced by knocking-down PROX1 via shRNA in lentivirus. Anticancer Res 33(8):3169–3175

    CAS  PubMed  Google Scholar 

  106. Bedlack RS Jr, Wei M, Loew LM (1992) Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth. Neuron 9(3):393–403. https://doi.org/10.1016/0896-6273(92)90178-g

    Article  CAS  PubMed  Google Scholar 

  107. Rehder V, Kater SB (1992) Regulation of neuronal growth cone filopodia by intracellular calcium. J Neurosci 12(8):3175–3186

    Article  CAS  Google Scholar 

  108. Henley J, Poo MM (2004) Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14(6):320–330. https://doi.org/10.1016/j.tcb.2004.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zheng JQ, Poo MM (2007) Calcium signaling in neuronal motility. Annu Rev Cell Dev Biol 23:375–404. https://doi.org/10.1146/annurev.cellbio.23.090506.123221

    Article  CAS  PubMed  Google Scholar 

  110. Gomez TM, Zheng JQ (2006) The molecular basis for calcium-dependent axon pathfinding. Nat Rev Neurosci 7(2):115–125. https://doi.org/10.1038/nrn1844

    Article  CAS  PubMed  Google Scholar 

  111. Furuyashiki T, Arakawa Y, Takemoto-Kimura S, Bito H, Narumiya S (2002) Multiple spatiotemporal modes of actin reorganization by NMDA receptors and voltage-gated Ca2+ channels. Proc Natl Acad Sci U S A 99(22):14458–14463. https://doi.org/10.1073/pnas.212148999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hofmann F, Flockerzi V, Kahl S, Wegener JW (2014) L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 94(1):303–326. https://doi.org/10.1152/physrev.00016.2013

    Article  CAS  PubMed  Google Scholar 

  113. Buraei Z (1828) Yang J (2013) Structure and function of the beta subunit of voltage-gated Ca(2)(+) channels. Biochem Biophys Acta 7:1530–1540. https://doi.org/10.1016/j.bbamem.2012.08.028

    Article  CAS  Google Scholar 

  114. Horigane S, Ageta-Ishihara N, Kamijo S, Fujii H, Okamura M, Kinoshita M, Takemoto-Kimura S, Bito H (2016) Facilitation of axon outgrowth via a Wnt5a-CaMKK-CaMKIalpha pathway during neuronal polarization. Mol Brain 9:8. https://doi.org/10.1186/s13041-016-0189-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA (2009) Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase Igamma to promote axon formation in hippocampal neurons. J Neurosci 29(31):9794–9808. https://doi.org/10.1523/JNEUROSCI.1544-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Enslen H, Sun P, Brickey D, Soderling SH, Klamo E, Soderling TR (1994) Characterization of Ca2+/calmodulin-dependent protein kinase IV Role in transcriptional regulation. J Biol Chem 269(22):15520–15527

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by Fondation Sante grant and the Hellenic Foundation for Research and Innovation (H.F.R.I) under the “First Call for H.F.R.I Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 1782) to P.K.P.  as well as a European Research Council grant to M.F., Agreement-309612 (TransArrest). Elpinickie Ninou was supported by the Act “Scholarships grant program for the second round of postgraduate studies” from resources of OP “Human Resources Development, Education and Lifelong Learning” 2014–2020, co-funded by the European Social Fund (ESF) and the Greek State. We would also like to thank Vagelis Harokopos (BSRC Fleming) for performing RNA-seq library preparation and sequencing, Martin Reczko (BSRC Fleming) for bioinformatic analyses, and Pavlos Alexakos, Anna Agapaki, Katerina Melachroinou, Aristidis Charonis, Antonis Stamatakis, and Panagiota Papazafiri for reagents, helpful advice, and discussions. We would also thank Dr Stamatis Pagakis, Dr Anastasios Delis, and Dr Dimosthene Mitrossilis from the Biological Imaging Unit, BRFAA, for their help on image analysis; Dr. Mitrossilis was supported by “A Greek Research Infrastructure for Visualizing and Monitoring Fundamental Biological Processes (BIO-IMAGING-GR)” (MIS 5002755) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis K. Politis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaltezioti, V., Foskolou, I.P., Lavigne, M.D. et al. Prox1 inhibits neurite outgrowth during central nervous system development. Cell. Mol. Life Sci. 78, 3443–3465 (2021). https://doi.org/10.1007/s00018-020-03709-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03709-2

Keywords

Navigation