Skip to main content
Log in

Transcriptional regulation of CRMP5 controls neurite outgrowth through Sox5

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Transcriptional regulation of proteins involved in neuronal polarity is a key process that underlies the ability of neurons to transfer information in the central nervous system. The Collapsin Response Mediator Protein (CRMP) family is best known for its role in neurite outgrowth regulation conducting to neuronal polarity and axonal guidance, including CRMP5 that drives dendrite differentiation. Although CRMP5 is able to control dendritic development, the regulation of its expression remains poorly understood. Here we identify a Sox5 consensus binding sequence in the putative promoter sequence upstream of the CRMP5 gene. By luciferase assays we show that Sox5 increases CRMP5 promoter activity, but not if the putative Sox5 binding site is mutated. We demonstrate that Sox5 can physically bind to the CRMP5 promoter DNA in gel mobility shift and chromatin immunoprecipitation assays. Using a combination of real-time RT-PCR and quantitative immunocytochemistry, we provide further evidence for a Sox5-dependent upregulation of CRMP5 transcription and protein expression in N1E115 cells: a commonly used cell line model for neuronal differentiation. Furthermore, we report that increasing Sox5 levels in this neuronal cell line inhibits neurite outgrowth. This inhibition requires CRMP5 because CRMP5 knockdown prevents the Sox5-dependent effect. We confirm the physiological relevance of the Sox5–CRMP5 pathway in the regulation of neurite outgrowth using mouse primary hippocampal neurons. These findings identify Sox5 as a critical modulator of neurite outgrowth through the selective activation of CRMP5 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404(6778):567–573. doi:10.1038/35007001

    Article  CAS  PubMed  Google Scholar 

  2. Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376(6540):509–514. doi:10.1038/376509a0

    Article  CAS  PubMed  Google Scholar 

  3. Maniar TA, Kaplan M, Wang GJ, Shen K, Wei L, Shaw JE, Koushika SP, Bargmann CI (2011) UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon–dendrite sorting. Nat Neurosci 15(1):48–56. doi:10.1038/nn.2970

    Article  PubMed  PubMed Central  Google Scholar 

  4. Quach TT, Honnorat J, Kolattukudy PE, Khanna R, Duchemin AM (2015) CRMPs: critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry 20(9):1037–1045. doi:10.1038/mp.2015.77

    Article  CAS  PubMed  Google Scholar 

  5. Fukata Y, Kimura T, Kaibuchi K (2002) Axon specification in hippocampal neurons. Neurosci Res 43(4):305–315

    Article  CAS  PubMed  Google Scholar 

  6. Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8(3):194–205. doi:10.1038/nrn2056

    Article  CAS  PubMed  Google Scholar 

  7. Khanna R, Wilson SM, Brittain JM, Weimer J, Sultana R, Butterfield A, Hensley K (2012) Opening Pandora’s jar: a primer on the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders. Future Neurol 7(6):749–771. doi:10.2217/FNL.12.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brot S, Rogemond V, Perrot V, Chounlamountri N, Auger C, Honnorat J, Moradi-Ameli M (2010) CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2. J Neurosci 30(32):10639–10654. doi:10.1523/JNEUROSCI.0059-10.2010

    Article  CAS  PubMed  Google Scholar 

  9. Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N, Nishimura T, Amano M, Kaibuchi K (2001) CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 4(8):781–782. doi:10.1038/90476

    Article  CAS  PubMed  Google Scholar 

  10. Hotta A, Inatome R, Yuasa-Kawada J, Qin Q, Yamamura H, Yanagi S (2005) Critical role of collapsin response mediator protein-associated molecule CRAM for filopodia and growth cone development in neurons. Mol Biol Cell 16(1):32–39. doi:10.1091/mbc.E04-08-0679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamashita N, Mosinger B, Roy A, Miyazaki M, Ugajin K, Nakamura F, Sasaki Y, Yamaguchi K, Kolattukudy P, Goshima Y (2011) CRMP5 (collapsin response mediator protein 5) regulates dendritic development and synaptic plasticity in the cerebellar Purkinje cells. J Neurosci 31(5):1773–1779. doi:10.1523/JNEUROSCI.5337-10.2011

    Article  CAS  PubMed  Google Scholar 

  12. Noatynska A, Gotta M (2012) Cell polarity and asymmetric cell division: the C. elegans early embryo. Essays Biochem 53:1–14. doi:10.1042/bse0530001

    Article  CAS  PubMed  Google Scholar 

  13. Veyrac A, Reibel S, Sacquet J, Mutin M, Camdessanche JP, Kolattukudy P, Honnorat J, Jourdan F (2011) CRMP5 regulates generation and survival of newborn neurons in olfactory and hippocampal neurogenic areas of the adult mouse brain. PLoS One 6(10):e23721. doi:10.1371/journal.pone.0023721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moutal A, Honnorat J, Massoma P, Desormeaux P, Bertrand C, Malleval C, Watrin C, Chounlamountri N, Mayeur ME, Besancon R, Naudet N, Magadoux L, Khanna R, Ducray F, Meyronet D, Thomasset N (2015) CRMP5 controls glioblastoma cell proliferation and survival through Notch-dependent signaling. Cancer Res 75(17):3519–3528. doi:10.1158/0008-5472.CAN-14-0631

    Article  CAS  PubMed  Google Scholar 

  15. Kamachi Y, Kondoh H (2013) Sox proteins: regulators of cell fate specification and differentiation. Development 140(20):4129–4144. doi:10.1242/dev.091793

    Article  CAS  PubMed  Google Scholar 

  16. Lai T, Jabaudon D, Molyneaux BJ, Azim E, Arlotta P, Menezes JR, Macklis JD (2008) SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57(2):232–247. doi:10.1016/j.neuron.2007.12.023

    Article  CAS  PubMed  Google Scholar 

  17. Lefebvre V, Li P, de Crombrugghe B (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17(19):5718–5733. doi:10.1093/emboj/17.19.5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwan KY, Lam MM, Krsnik Z, Kawasawa YI, Lefebvre V, Sestan N (2008) SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci USA 105(41):16021–16026. doi:10.1073/pnas.0806791105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wunderle VM, Critcher R, Ashworth A, Goodfellow PN (1996) Cloning and characterization of SOX5, a new member of the human SOX gene family. Genomics 36(2):354–358. doi:10.1006/geno.1996.0474

    Article  CAS  PubMed  Google Scholar 

  20. Schanze I, Schanze D, Bacino CA, Douzgou S, Kerr B, Zenker M (2013) Haploinsufficiency of SOX5, a member of the SOX (SRY-related HMG-box) family of transcription factors is a cause of intellectual disability. Eur J Med Genet 56(2):108–113. doi:10.1016/j.ejmg.2012.11.001

    Article  PubMed  Google Scholar 

  21. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, Weinstein JN (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24(3):236–244. doi:10.1038/73439

    Article  CAS  PubMed  Google Scholar 

  22. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21(13):2933–2942. doi:10.1093/bioinformatics/bti473

    Article  CAS  PubMed  Google Scholar 

  23. Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 101(1):16–22. doi:10.1073/pnas.2235688100

    Article  CAS  PubMed  Google Scholar 

  24. Azim E, Jabaudon D, Fame RM, Macklis JD (2009) SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nat Neurosci 12(10):1238–1247. doi:10.1038/nn.2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bocchini V, Casalone R, Collini P, Rebel G, Locurto F (1991) Changes in glial fibrillary acidic protein and karyotype during culturing of 2 cell-lines established from human glioblastoma-multiforme. Cell Tissue Res 265(1):73–81. doi:10.1007/Bf00318141

    Article  CAS  PubMed  Google Scholar 

  26. Kruman II, Kostenko MA, Gordon R, Popov VI, Umansky SR (1993) Differentiation and apoptosis of murine neuroblastoma cells N1E115. Biochem Biophys Res Commun 191(3):1309–1318

    Article  CAS  PubMed  Google Scholar 

  27. Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120(1):137–149. doi:10.1016/j.cell.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  28. Honnorat J, Byk T, Kusters I, Aguera M, Ricard D, Rogemond V, Quach T, Aunis D, Sobel A, Mattei MG, Kolattukudy P, Belin MF, Antoine JC (1999) Ulip/CRMP proteins are recognized by autoantibodies in paraneoplastic neurological syndromes. Eur J Neurosci 11(12):4226–4232

    Article  CAS  PubMed  Google Scholar 

  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ogle DH (2017) FSA: fisheries stock analysis. R package version 0.8.14.

  31. Sohur US, Padmanabhan HK, Kotchetkov IS, Menezes JR, Macklis JD (2014) Anatomic and molecular development of corticostriatal projection neurons in mice. Cereb Cortex 24(2):293–303. doi:10.1093/cercor/bhs342

    Article  PubMed  Google Scholar 

  32. Denny P, Swift S, Connor F, Ashworth A (1992) An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J 11(10):3705–3712

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Brot S, Smaoune H, Youssef-Issa M, Malleval C, Benetollo C, Besancon R, Auger C, Moradi-Ameli M, Honnorat J (2014) Collapsin response-mediator protein 5 (CRMP5) phosphorylation at threonine 516 regulates neurite outgrowth inhibition. Eur J Neurosci 40(7):3010–3020. doi:10.1111/ejn.12674

    Article  PubMed  Google Scholar 

  34. Wu CC, Lin JC, Yang SC, Lin CW, Chen JJ, Shih JY, Hong TM, Yang PC (2008) Modulation of the expression of the invasion-suppressor CRMP-1 by cyclooxygenase-2 inhibition via reciprocal regulation of Sp1 and C/EBPalpha. Mol Cancer Ther 7(6):1365–1375. doi:10.1158/1535-7163.MCT-08-0091

    Article  CAS  PubMed  Google Scholar 

  35. Gao M, Yeh PY, Lu YS, Chang WC, Kuo ML, Cheng AL (2008) NF-kappaB p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells. Biochem Biophys Res Commun 376(2):283–287. doi:10.1016/j.bbrc.2008.08.144

    Article  CAS  PubMed  Google Scholar 

  36. Li K, Pang J, Cheng H, Liu WP, Di JM, Xiao HJ, Luo Y, Zhang H, Huang WT, Chen MK, Li LY, Shao CK, Feng YH, Gao X (2015) Manipulation of prostate cancer metastasis by locus-specific modification of the CRMP4 promoter region using chimeric TALE DNA methyltransferase and demethylase. Oncotarget 6(12):10030–10044. doi:10.18632/oncotarget.3192

    Article  PubMed  PubMed Central  Google Scholar 

  37. Su KY, Chien WL, Fu WM, Yu IS, Huang HP, Huang PH, Lin SR, Shih JY, Lin YL, Hsueh YP, Yang PC, Lin SW (2007) Mice deficient in collapsin response mediator protein-1 exhibit impaired long-term potentiation and impaired spatial learning and memory. J Neurosci 27(10):2513–2524. doi:10.1523/JNEUROSCI.4497-06.2007

    Article  CAS  PubMed  Google Scholar 

  38. Yamashita N, Takahashi A, Takao K, Yamamoto T, Kolattukudy P, Miyakawa T, Goshima Y (2013) Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition. Front Behav Neurosci 7:216. doi:10.3389/fnbeh.2013.00216

    Article  PubMed  PubMed Central  Google Scholar 

  39. Niisato E, Nagai J, Yamashita N, Abe T, Kiyonari H, Goshima Y, Ohshima T (2012) CRMP4 suppresses apical dendrite bifurcation of CA1 pyramidal neurons in the mouse hippocampus. Dev Neurobiol 72(11):1447–1457. doi:10.1002/dneu.22007

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, Chen Z, Zhang C, Christian KM, Song H, Ming GL, Xu Z (2016) Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. doi:10.1038/ncomms11773

    Google Scholar 

  41. Wegner M (2011) SOX after SOX: SOXession regulates neurogenesis. Genes Dev 25(23):2423–2428. doi:10.1101/gad.181487.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shim S, Kwan KY, Li M, Lefebvre V, Sestan N (2012) Cis-regulatory control of corticospinal system development and evolution. Nature 486(7401):74–79. doi:10.1038/nature11094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stolt CC, Schlierf A, Lommes P, Hillgartner S, Werner T, Kosian T, Sock E, Kessaris N, Richardson WD, Lefebvre V, Wegner M (2006) SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell 11(5):697–709. doi:10.1016/j.devcel.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  44. Baroti T, Zimmermann Y, Schillinger A, Liu L, Lommes P, Wegner M, Stolt CC (2016) Transcription factors Sox5 and Sox6 exert direct and indirect influences on oligodendroglial migration in spinal cord and forebrain. Glia 64(1):122–138. doi:10.1002/glia.22919

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Annabelle Bouchardon from the Centre Commun de Quantimétrie (University Lyon 1). This study was supported by grants from the Institut National de la Santé et de la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Besançon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2017_2634_MOESM1_ESM.eps

Supplementary Figure 1: Identification of a putative Sox5 regulating binding site on murine CRMP5 gene. Partial putative promoter sequence of the murine CRMP5 gene (chromosome 5, forward strand), consisting in the 500 base pairs located before the transcription binding site (TSS), the putative Sox 5 regulatory-binding site (RBS) is underlined with its core domain bolded. (EPS 16345 kb)

18_2017_2634_MOESM2_ESM.eps

Supplementary Figure 2: L-Sox5 purification. Coomassie stained SDS-PAGE of L-Sox5 purification from IPTG induced, compared to non-induced, BL21 bacteria. Ni–NTA purification yielded a high enrichment for 6xHis-L-Sox5 at an observed molecular weight of ~ 80 kDa. The purification protocol ran on non-induced bacteria did not produce any observable protein signal at the same molecular weights. (EPS 1528 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naudet, N., Moutal, A., Vu, H.N. et al. Transcriptional regulation of CRMP5 controls neurite outgrowth through Sox5. Cell. Mol. Life Sci. 75, 67–79 (2018). https://doi.org/10.1007/s00018-017-2634-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2634-6

Keywords

Navigation