Skip to main content

Advertisement

Log in

New inhibitor targeting Acyl-CoA synthetase 4 reduces breast and prostate tumor growth, therapeutic resistance and steroidogenesis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Acyl-CoA synthetase 4 (ACSL4) is an isoenzyme of the fatty acid ligase-coenzyme-A family taking part in arachidonic acid metabolism and steroidogenesis. ACSL4 is involved in the development of tumor aggressiveness in breast and prostate tumors through the regulation of various signal transduction pathways. Here, a bioinformatics analysis shows that the ACSL4 gene expression and proteomic signatures obtained using a cell model was also observed in tumor samples from breast and cancer patients. A well-validated ACSL4 inhibitor, however, has not been reported hindering the full exploration of this promising target and its therapeutic application on cancer and steroidogenesis inhibition. In this study, ACSL4 inhibitor PRGL493 was identified using a homology model for ACSL4 and docking based virtual screening. PRGL493 was then chemically characterized through nuclear magnetic resonance and mass spectroscopy. The inhibitory activity was demonstrated through the inhibition of arachidonic acid transformation into arachidonoyl-CoA using the recombinant enzyme and cellular models. The compound blocked cell proliferation and tumor growth in both breast and prostate cellular and animal models and sensitized tumor cells to chemotherapeutic and hormonal treatment. Moreover, PGRL493 inhibited de novo steroid synthesis in testis and adrenal cells, in a mouse model and in prostate tumor cells. This work provides proof of concept for the potential application of PGRL493 in clinical practice. Also, these findings may prove key to therapies aiming at the control of tumor growth and drug resistance in tumors which express ACSL4 and depend on steroid synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from the 817 breast tumor samples in TGCA dataset. TN, triple-negative breast tumors; LumB, invasive ductal cancer luminal B subtype; LumA, invasive ductal cancer luminal A subtype; ILC-LumA: invasive lobular cancer luminal A; ILC: invasive lobular cancer; All, all samples

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Abbreviations

ACSL4:

Acyl-CoA synthetase 4

ER:

Estrogen receptor

PR:

Progesterone receptors

HER2:

Epidermal growth factor-2 receptor

AR:

Androgen receptor

StAR:

Steroidogenic acute regulatory protein

D-MEM:

Dulbecco’s modified Eagle medium

FCS:

Fetal calf serum

MTT:

3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazoliumbromide)

BrdU:

5-Bromo-2′-deoxyuridine

hCG:

Human chorionic gonadotropin

[3H]-AA:

Arachidonic Acid [5, 6, 8, 9, 11, 12, 14, 15-3H (N)]

NMR:

Nuclear magnetic resonance

MS:

High-resolution mass spectra

HRMS-ESI:

High resolution electrospray ionization mass spectrometry

RPMI:

Roswell Park Memorial Institute media

HS:

Horse serum

RIA:

Radioimmunoassay

i.p.:

Intraperitoneal

BSA:

Bovine serum albumin

DAPI:

4′, 6-Diamidino-2-phenylindole

CAM:

Chick embryo chorioallantoic membrane assay

IHC:

Immunohistochemistry

ANOVA:

Analysis of variance

RPPA:

Reverse-phase protein array

AA-CoA:

Arachidonoyl-CoA

AA:

Arachidonic acid

LH:

Luteinizing hormone

ACTH :

Adrenocorticotropic hormone

4-OHTAM:

4-Hydroxytamoxifen

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN. A cancer. J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Perou CM, Sørile T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  3. Sorlie T, Sørlie T, Perou CM et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. https://doi.org/10.1073/pnas.191367098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sartor O, de Bono JS, de Bono SJ (2018) Metastatic prostate cancer. N Engl J Med 378:645–657. https://doi.org/10.1056/NEJMra1701695

    Article  CAS  PubMed  Google Scholar 

  5. Mashek DG, Bornfeldt KE, Coleman RA et al (2004) Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. J Lipid Res 45:1958–1961. https://doi.org/10.1194/jlr.E400002-JLR200

    Article  CAS  PubMed  Google Scholar 

  6. Maloberti PM, Duarte AB, Orlando UD et al (2010) Functional interaction between acyl-coa synthetase 4, lipoxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. PLoS ONE 5:1–12. https://doi.org/10.1371/journal.pone.0015540

    Article  CAS  Google Scholar 

  7. Wu X, Deng F, Li Y, et al (2015) ACSL4 promotes prostate cancer growth, invasion and hormonal resistance. Oncotarget 6:44849–44863. https://doi.org/10.18632/oncotarget.6438

  8. Sung YK, Hwang SY, Park MK et al (2003) Fatty acid-CoA ligase 4 is overexpressed in human hepatocellular carcino. Cancer Sci 94:421–424. https://doi.org/10.1111/j.1349-7006.2003.tb01458.x

    Article  CAS  PubMed  Google Scholar 

  9. Cao Y, Dave KB, Doan TP, Prescott SM (2001) Fatty acid CoA ligase 4 is up-regulated in colon adenocarcinoma. Cancer Res 61:8429–8434

    CAS  PubMed  Google Scholar 

  10. Orlando UD, Garona J, Ripoll GV et al (2012) The functional interaction between acyl-coa synthetase 4, 5-lipooxygenase and cyclooxygenase-2 controls tumor growth: a novel therapeutic target. PLoS ONE 7:1–14. https://doi.org/10.1371/journal.pone.0040794

    Article  CAS  Google Scholar 

  11. Monaco ME, Creighton CJ, Lee P et al (2010) Expression of long-chain fatty acyl-coa synthetase 4 in breast and prostate cancers is associated with sex steroid hormone receptor negativity. Transl Oncol 3:91–98. https://doi.org/10.1593/tlo.09202

    Article  PubMed  PubMed Central  Google Scholar 

  12. Orlando UD, Castillo AF, Dattilo MA, et al (2015) Acyl-CoA synthetase-4, a new regulator of mTOR and a potential therapeutic target for enhanced estrogen receptor function in receptor-positive and -negative breast cancer. Oncotarget 6:42632–42650. https://doi.org/10.18632/oncotarget.5822

  13. Wu X, Li Y, Wang J et al (2013) Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer. PLoS ONE 8:1–20. https://doi.org/10.1371/journal.pone.0077060

    Article  CAS  Google Scholar 

  14. Orlando UD, Castillo AF, Medrano MAR et al (2019) Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression. Biochem Pharmacol 159:52–63. https://doi.org/10.1016/J.BCP.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  15. Castillo AF, Orlando UD, Lopez P et al (2016) Gene expression profile and signaling pathways in MCF-7 breast cancer cells mediated by acyl-coa synthetase 4 overexpression. Transcr Open Access 3:1–9. https://doi.org/10.4172/2329-8936.1000120

    Article  Google Scholar 

  16. Kang MJ, Fujino T, Sasano H, et al (1997) A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci USA 94:2880–2884. https://doi.org/10.1073/pnas.94.7.2880

  17. Cornejo Maciel F, Maloberti P, Neuman I et al (2005) An arachidonic acid-preferring acyl-CoA synthetase is a hormone-dependent and obligatory protein in the signal transduction pathway of steroidogenic hormones. J Mol Endocrinol 34:655–666. https://doi.org/10.1677/jme.1.01691

    Article  CAS  PubMed  Google Scholar 

  18. Maloberti P, Castilla R, Castillo F et al (2005) Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis. FEBS J 272:1804–1814. https://doi.org/10.1111/j.1742-4658.2005.04616.x

    Article  CAS  PubMed  Google Scholar 

  19. Paz C, Cornejo Maciel F, Gorostizaga A et al (2016) Role of protein phosphorylation and tyrosine phosphatases in the adrenal regulation of steroid synthesis and mitochondrial function. Front Endocrinol 7:1–15. https://doi.org/10.3389/fendo.2016.00060

    Article  Google Scholar 

  20. Privalle CT, Crivello JF, Jefcoate CR (1983) Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proc Natl Acad Sci USA 80:702–706. https://doi.org/10.1073/pnas.80.3.702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Capper CP, Rae JM, Auchus RJ (2016) The metabolism, analysis, and targeting of steroid hormones in breast and prostate cancer. Horm Cancer 7:149–164. https://doi.org/10.1007/s12672-016-0259-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Courtin A, Smyth T, Hearn K et al (2016) Emergence of resistance to tyrosine kinase inhibitors in non-small-cell lung cancer can be delayed by an upfront combination with the HSP90 inhibitor onalespib. Br J Cancer 115:1069–1077. https://doi.org/10.1038/bjc.2016.294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamaguchi N, Lucena-Araujo AR, Nakayama S et al (2014) Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer 83:37–43. https://doi.org/10.1016/j.lungcan.2013.09.019

    Article  PubMed  Google Scholar 

  24. Sudhan DR, Guerrero-Zotano A, Won H et al (2020) Hyperactivation of Torc1 drives resistance to the pan-her tyrosine kinase inhibitor neratinib in Her2-mutant cancers. Cancer Cell 37(2):258–259. https://doi.org/10.1016/j.ccell.2020.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Colombero C, Papademetrio D, Sacca P et al (2017) Role of 20-hydroxyeicosatetraenoic acid (20-HETE) in androgen-mediated cell viability in prostate cancer cells. Horm Cancer 8:243–256. https://doi.org/10.1007/s12672-017-0299-0

    Article  CAS  PubMed  Google Scholar 

  26. Ascoli M (1981) Regulation of gonadotropin receptors and gonadotropin responses in a clonal strain of Leydig tumor cells by epidermal growth factor. J Biol Chem 256:179–183

    Article  CAS  PubMed  Google Scholar 

  27. Rae PA, Gutmann NS, Tsao J, Schimmer BP (2006) Mutations in cyclic AMP-dependent protein kinase and corticotropin (ACTH)-sensitive adenylate cyclase affect adrenal steroidogenesis. Proc Natl Acad Sci 76:1896–1900. https://doi.org/10.1073/pnas.76.4.1896

    Article  Google Scholar 

  28. Kim JH, Lewin TM, Coleman RA (2001) Expression and characterization of recombinant rat acyl-CoA synthetases 1, 4, and 5: selective inhibition by triacsin C and thiazolidinediones. J Biol Chem 276:24667–24673. https://doi.org/10.1074/jbc.M010793200

    Article  CAS  PubMed  Google Scholar 

  29. Castillo AF, Cornejo Maciel F, Castilla R et al (2006) cAMP increases mitochondrial cholesterol transport through the induction of arachidonic acid release inside this organelle in Leydig cells. FEBS J 273:5011–5021. https://doi.org/10.1111/j.1742-4658.2006.05496.x

    Article  CAS  PubMed  Google Scholar 

  30. Chasalow F, Marr H, Haour F, Saez JM (1979) Testicular steroidogenesis after human chorionic gonadotropin desensitization in rats. J Biol Chem 256:5613–5617

    Article  Google Scholar 

  31. Mele PG, Dada LA, Paz C et al (1996) Site of action of proteinases in the activation of steroidogenesis in rat adrenal gland. Biochim Biophys Acta 1310:260–268. https://doi.org/10.1016/0167-4889(95)00177-8

    Article  PubMed  Google Scholar 

  32. Yamamoto A, Kiguchi N, Kobayashi Y et al (2011) Pharmacological relationship between nicotinic and opioid systems in analgesia and corticosterone elevation. Life Sci 89:956–961. https://doi.org/10.1016/j.lfs.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  33. Orellana-Serradell O, Poblete CE, Sanchez C et al (2015) Proapoptotic effect of endocannabinoids in prostate cancer cells. Oncol Rep 33:1599–1608. https://doi.org/10.3892/or.2015.3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perera Y, Farina HG, Hernández I et al (2008) Systemic administration of a peptide that impairs the Protein Kinase (CK2) phosphorylation reduces solid tumor growth in mice. Int J Cancer 122:57–62. https://doi.org/10.1002/ijc.23013

    Article  CAS  PubMed  Google Scholar 

  35. Ripoll GV, Giron S, Krzymuski MJ et al (2008) Antitumor effects of desmopressin in combination with chemotherapeutic agents in a mouse model of breast cancer. Anticancer Res 25:2607–2611

    Google Scholar 

  36. Ortega HH, Salvetti NR, Padmanabhan V (2009) Developmental programming: prenatal androgen excess disrupts ovarian steroid receptor balance. Reproduction 135:865–877. https://doi.org/10.1530/REP-08-0491

    Article  CAS  Google Scholar 

  37. Ciriello G, Gatza ML, Beck AH et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163:506–519. https://doi.org/10.1016/j.cell.2015.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Long Q, Xu J, Osunkoya AO et al (2014) Global transcriptome analysis of formalin-fixed prostate cancer specimens identifies biomarkers of disease recurrence. Cancer Res 74:3228–3237. https://doi.org/10.1158/0008-5472.CAN-13-2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hisanaga Y, Ago H, Nakagawa N et al (2004) Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer. J Biol Chem 279:31717–31726. https://doi.org/10.1074/jbc.M400100200

    Article  CAS  PubMed  Google Scholar 

  40. Askari B, Kanter JE, Sherrid AM et al (2007) Rosiglitazone inhibits acyl-CoA synthetase activity and fatty acid partitioning to diacylglycerol and triacylglycerol via a peroxisome proliferator-activated receptor-gamma-independent mechanism in human arterial smooth muscle cells and macrophages. Diabetes 56:1143–1152. https://doi.org/10.2337/db06-0267

    Article  CAS  PubMed  Google Scholar 

  41. Yan S, Yang XF, Liu HL et al (2015) Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J Gastroenterol 12:3492–3498. https://doi.org/10.3748/wjg.v21.i12.3492

    Article  CAS  Google Scholar 

  42. Coleman RA, Lewin TM, Van Horn CG, Gonzalez-Baró MR (2002) Do long-chain Acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr 132:2123–2126. https://doi.org/10.1093/jn/132.8.2123

    Article  CAS  PubMed  Google Scholar 

  43. Kang MJ, Fujino T, Sasano H et al (1997) A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci USA 94:2880–2884. https://doi.org/10.1073/pnas.94.7.2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mashek DG, Li LO, Coleman RA (2006) Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. J Lipid Res 47:2004–2010. https://doi.org/10.1194/jlr.M600150-JLR200

    Article  CAS  PubMed  Google Scholar 

  45. Li LO, Klett EL, Coleman RA (2010) Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 1801:246–251. https://doi.org/10.1016/j.bbalip.2009.09.024

    Article  CAS  Google Scholar 

  46. Klett EL, Chen S, Yechoor A et al (2017) Long-chain acyl-CoA synthetase isoforms differ in preferences for eicosanoid species and long-chain fatty acids. J Lipid Res 58:884–894. https://doi.org/10.1194/jlr.M072512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cooke M, Orlando U, Maloberti P et al (2011) Tyrosine phosphatase SHP2 regulates the expression of acyl-CoA synthetase ACSL4. J Lipid Res 52:1936–1948. https://doi.org/10.1194/jlr.M015552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pham S, Deb S, Ming DS et al (2014) Next-generation steroidogenesis inhibitors, dutasteride and abiraterone, attenuate but still do not eliminate androgen biosynthesis in 22RV1 cells in vitro. J Steroid Biochem Mol Biol 144:436–444. https://doi.org/10.1016/j.jsbmb.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  49. Vessey DA, Kelley M, Warren RS (2004) Characterization of triacsin C inhibition of short-, medium-, and long-chain fatty acid: CoA ligases of human liver. J Biochem Mol Toxicol 18:100–106. https://doi.org/10.1002/jbt.20009

    Article  CAS  PubMed  Google Scholar 

  50. Maloberti P, Lozano RC, Mele PG et al (2002) Concerted regulation of free arachidonic acid and hormone-induced steroid synthesis by acyl-CoA thioesterases and acyl-CoA synthetases in adrenal cells. Eur J Biochem 269:5599–5607. https://doi.org/10.1046/j.1432-1033.2002.03267.x

    Article  CAS  PubMed  Google Scholar 

  51. Dechandt CRP, Zuccolotto-dos-Reis FH, Teodoro BG et al (2017) Triacsin C reduces lipid droplet formation and induces mitochondrial biogenesis in primary rat hepatocytes. J Bioenerg Biomembr 49:399–411. https://doi.org/10.1007/s10863-017-9725-9

    Article  CAS  PubMed  Google Scholar 

  52. Schönfeld P, Wieckowski MR, Wojtczak L (2000) Long-chain fatty acid-promoted swelling of mitochondria: Further evidence for the protonophoric effect of fatty acids in the inner mitochondrial membrane. FEBS Lett 471:108–112. https://doi.org/10.1016/S0014-5793(00)01376-4

    Article  PubMed  Google Scholar 

  53. Hirshfield IN, Koritz SB (1964) The stimulation of pregnenolone synthesis in the large particles from rat adrenals by some agents which cause mitochondrial swelling. Biochemistry 3:1994–1998. https://doi.org/10.1021/bi00900a036

    Article  CAS  PubMed  Google Scholar 

  54. Belosludtsev K, Belosludtseva N, Agafonov A et al (2014) Ca2 +-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: a comparative study. Biochim Biophys Acta Biomembr 1838:2600–2606. https://doi.org/10.1016/j.bbamem.2014.06.017

    Article  CAS  Google Scholar 

  55. Gordon JA, Noble JW, Midha A et al (2019) Upregulation of scavenger receptor B1 is required for steroidogenic and nonsteroidogenic cholesterol metabolism in prostate cancer. Cancer Res 79:3320–3331. https://doi.org/10.1158/0008-5472.CAN-18-2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clark BJ, Wells J, King SR, Stocco DM (1994) The purification, cloning, and expression of a novel luteinizing hormone- induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 269:28314–28322

    Article  CAS  PubMed  Google Scholar 

  57. Stocco DM (2001) StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 63:193–213. https://doi.org/10.1146/annurev.physiol.63.1.193

    Article  CAS  PubMed  Google Scholar 

  58. Jiang X, Guo S, Zhang Y et al (2020) LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204–5p. Cell Signal 65:109422. https://doi.org/10.1016/j.cellsig.2019.109422

    Article  CAS  PubMed  Google Scholar 

  59. Sydes MR, Spears MR, Mason MD et al (2018) Adding abiraterone or docetaxel to long-term hormone therapy for prostate cancer: directly randomised data from the STAMPEDE multi-arm, multi-stage platform protocol. Ann Oncol 29:1235–1248. https://doi.org/10.1093/annonc/mdy072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Neophytou C, Boutsikos P, Papageorgis P (2018) Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis. Front Oncol 8:1–13. https://doi.org/10.3389/fonc.2018.00031

    Article  Google Scholar 

  61. Sebastiano MR, Konstantinidou G (2019) Targeting long chain acyl-coa synthetases for cancer therapy. Int J Mol Sci 15:1–16. https://doi.org/10.3390/ijms20153624

    Article  CAS  Google Scholar 

  62. Sánchez-Martínez R, Cruz-Gil S, de Cedrón MG, et al (2015) A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy. Oncotarget 36:38719–38736. https://doi.org/10.18632/oncotarget.5340

  63. Miller WL (2007) Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta Mol Cell Biol Lipids 1771:663–676. https://doi.org/10.1016/j.bbalip.2007.02.012

    Article  CAS  Google Scholar 

  64. Miller WL, Auchus RJ (2011) The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 32:81–151. https://doi.org/10.1210/er.2010-0013

    Article  PubMed  Google Scholar 

  65. Dillard PR, Lin MF, Khan SA (2008) Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol Cell Endocrinol 295:115–120. https://doi.org/10.1016/j.mce.2008.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ko Y, Balk S (2005) Targeting steroid hormone receptor pathways in the treatment of hormone dependent cancers. Curr Pharm Biotechnol 5:459–470. https://doi.org/10.2174/1389201043376616

    Article  Google Scholar 

  67. Kazi A, Xiang S, Yang H et al (2019) Dual farnesyl and geranyl transferase inhibitor thwarts mutant KRAS-driven patient-derived pancreatic tumors. Clin Cancer Res 25:5984–5996. https://doi.org/10.1158/1078-0432.CCR-18-3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Armando RG, Gomez DM, Gomez DE (2016) AZT exerts its antitumoral effect by telomeric and non-telomeric effects in a mammary adenocarcinoma model. Oncol Rep 36:2731–2736. https://doi.org/10.3892/or.2016.5094

    Article  CAS  PubMed  Google Scholar 

  69. Watson PA, Arora VK, Sawyers CL (2015) Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 15:701–711. https://doi.org/10.1038/nrc4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Lucía M. Herrera and Nadin Calvente for technical support. We thank María M. Rancez for providing language help and writing assistance.

Funding

This work was supported by National Scientific and Technical Research Council (CONICET) – Argentina, P.U.E (2016–2021, 22920160100062, Podesta, https://www.conicet.gov.ar), University of Buenos Aires – Argentina (UBACYT 2017–2019, 20020160100099BA, Maloberti; UBACYT 2018–2019, 20020170200347BA, Castillo; https://www.uba.ar/secyt/), National Agency for Scientific and Technological Promotion, MinCyT – Argentina (PICT 2016–0418, Orlando; PICT 2015–3561, Castillo; PICT 2014–0972, Maloberti; https://www.agencia.mincyt.gob.ar/.

Author information

Authors and Affiliations

Authors

Contributions

AFC, UDO, PMM, conceptualized, designed and performed research; JGP, MAD, ARS, MMB, MARM, SS, PLM, MTT, SI, GC, HRC, BEM, FJS, NRS, HHO performed research; DEG, JBR conceptualized and performed research; EJP. conceptualized research; AFC, UDO, PMM, EJP analyzed data and wrote the paper.

Corresponding author

Correspondence to Ernesto J. Podesta.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Ethics approval

All procedures were approved by the Ethics and Animal Welfare Committee according to the Standardized Operational Procedures of the Center for Comparative Medicine at Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral) and by the Ethics and Safety Committee at the School of Veterinary Sciences, Universidad Nacional del Litoral. All human procedures are conformed to the guidelines of the World Medical Assembly (Declaration of Helsinki) and were approved by the Ethics Committee for Research on Human Beings and the Risk Prevention and Biosafety Unit at the School of Medicine, Universidad de Chile, and the Ethics and Research Committee of the Clinical Hospital, Universidad de Chile. In all cases, informed consent was obtained from each patient.

Consent to participate

All co-authors of the manuscript agree to submit the manuscript to CMLS.

Consent for publication

All co-authors of the manuscript consent to publication the manuscript to CMLS.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, A.F., Orlando, U.D., Maloberti, P.M. et al. New inhibitor targeting Acyl-CoA synthetase 4 reduces breast and prostate tumor growth, therapeutic resistance and steroidogenesis. Cell. Mol. Life Sci. 78, 2893–2910 (2021). https://doi.org/10.1007/s00018-020-03679-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03679-5

Keywords

Navigation