Skip to main content

Advertisement

Log in

DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dual kinase that can phosphorylate its own activation loop on tyrosine residue and phosphorylate its substrates on threonine and serine residues. It is the most studied member of DYRK kinases, because its gene maps to human chromosome 21 within the Down syndrome critical region (DSCR). DYRK1A overexpression was found to be responsible for the phenotypic features observed in Down syndrome such as mental retardation, early onset neurodegenerative, and developmental heart defects. Besides its dual activity in phosphorylation, DYRK1A carries the characteristic of duality in tumorigenesis. Many studies indicate its possible role as a tumor suppressor gene; however, others prove its pro-oncogenic activity. In this review, we will focus on its multifaceted role in tumorigenesis by explaining its participation in some cancer hallmarks pathways such as proliferative signaling, transcription, stress, DNA damage repair, apoptosis, and angiogenesis, and finally, we will discuss targeting DYRK1A as a potential strategy for management of cancer and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. El-Awady RA, Saleh EM, Dahm-Daphi J (2010) Targeting DNA double-strand break repair: Is it the right way for sensitizing cells to 5-fluorouracil? Anticancer Drugs 21(3):277–287. https://doi.org/10.1097/CAD.0b013e328334b0ae

    Article  CAS  PubMed  Google Scholar 

  2. Saleh EM, El-Awady RA, Anis N, El-Sharkawy N (2012) Induction and repair of DNA double-strand breaks using constant-field gel electrophoresis and apoptosis as predictive markers for sensitivity of cancer cells to cisplatin. Biomed Pharmacother. 66(7):554–562. https://doi.org/10.1016/j.biopha.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  3. El-Awady RA, Semreen MH, Saber-Ayad MM, Cyprian F, Menon V, Al-Tel TH (2016) Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells. DNA Repair (Amst). 37:1–11. https://doi.org/10.1016/j.dnarep.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  4. Singh R, Lauth M (2017) Emerging roles of DYRK kinases in embryogenesis and hedgehog pathway control. J Dev Biol. https://doi.org/10.3390/jdb5040013

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kinstrie R, Lochhead PA, Sibbet G, Morrice N, Cleghon V (2006) dDYRK2 and Minibrain interact with the chromatin remodelling factors SNR1 and TRX. Biochem J 398(1):45–54. https://doi.org/10.1042/BJ20060159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Widowati EW, Bamberg-Lemper S, Becker W (2018) Mutational analysis of two residues in the DYRK homology box of the protein kinase DYRK1A. BMC Res Notes. 11(1):297. https://doi.org/10.1186/s13104-018-3416-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hakem R (2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27(4):589–605. https://doi.org/10.1038/emboj.2008.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP et al (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 17(1):48. https://doi.org/10.1186/s12943-018-0804-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934. https://doi.org/10.1126/science.1075762

    Article  CAS  PubMed  Google Scholar 

  10. Wright WD, Shah SS, Heyer WD (2018) Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem. 293(27):10524–10535. https://doi.org/10.1074/jbc.TM118.000372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abu Jhaisha S, Widowati EW, Kii I, Sonamoto R, Knapp S, Papadopoulos C et al (2017) DYRK1B mutations associated with metabolic syndrome impair the chaperone-dependent maturation of the kinase domain. Sci Rep. 7(1):6420. https://doi.org/10.1038/s41598-017-06874-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ardito F, Giuliani M, Perrone D, Troiano G, Lo ML (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med. 40(2):271–280. https://doi.org/10.3892/ijmm.2017.3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kentrup H, Becker W, Heukelbach J, Wilmes A, Schürmann A, Huppertz C et al (1996) Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem 271(7):3488–3495. https://doi.org/10.1074/jbc.271.7.3488

    Article  CAS  PubMed  Google Scholar 

  14. Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a012716

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qile M, Ji Y, Houtman MJC, Veldhuis M, Romunde F, Kok B et al (2019) Identification of a PEST sequence in vertebrate K. Front Physiol. 10:863. https://doi.org/10.3389/fphys.2019.00863

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lahiry P, Torkamani A, Schork NJ, Hegele RA (2010) Kinase mutations in human disease: Interpreting genotype–phenotype relationships. Nat Rev Genet 11(1):60–74. https://doi.org/10.1038/nrg2707

    Article  CAS  PubMed  Google Scholar 

  17. Daley JM, Sung P (2014) 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol. 34(8):1380–1388. https://doi.org/10.1128/MCB.01639-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aranda S, Laguna A, de la Luna S (2011) DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J. 25(2):449–462. https://doi.org/10.1096/fj.10-165837

    Article  CAS  PubMed  Google Scholar 

  19. Kinstrie R, Luebbering N, Miranda-Saavedra D, Sibbet G, Han J, Lochhead PA et al (2010) Characterization of a domain that transiently converts class 2 DYRKs into intramolecular tyrosine kinases. Sci Signal. 3(111):16. https://doi.org/10.1126/scisignal.2000579

    Article  CAS  Google Scholar 

  20. Becker W, Joost HG (1999) Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog Nucleic Acid Res Mol Biol 62:1–17

    CAS  PubMed  Google Scholar 

  21. Lu Z, Hunter T (2018) Metabolic kinases moonlighting as protein kinases. Trends Biochem Sci. 43(4):301–310. https://doi.org/10.1016/j.tibs.2018.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amin F, Ahmed A, Feroz A, Khaki PSS, Khan MS, Tabrez S et al (2019) An update on the association of protein kinases with cardiovascular diseases. Curr Pharm Des 25(2):174–183. https://doi.org/10.2174/1381612825666190312115140

    Article  CAS  PubMed  Google Scholar 

  23. Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 18(8):495–506. https://doi.org/10.1038/nrm.2017.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brandsma I, Gent DC (2012) Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr. 3(1):9. https://doi.org/10.1186/2041-9414-3-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bunting SF, Callén E, Wong N, Chen HT, Polato F, Gunn A et al (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141(2):243–254. https://doi.org/10.1016/j.cell.2010.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. An L, Dong C, Li J, Chen J, Yuan J, Huang J et al (2018) RNF169 limits 53BP1 deposition at DSBs to stimulate single-strand annealing repair. Proc Natl Acad Sci USA. 115(35):E8286–E8295. https://doi.org/10.1073/pnas.1804823115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kitevski-LeBlanc J, Fradet-Turcotte A, Kukic P, Wilson MD, Portella G, Yuwen T et al (2017) The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. Elife. https://doi.org/10.7554/eLife.23872

    Article  PubMed  PubMed Central  Google Scholar 

  28. Poulsen M, Lukas C, Lukas J, Bekker-Jensen S, Mailand N (2012) Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J Cell Biol. 197(2):189–199. https://doi.org/10.1083/jcb.201109100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duong-Ly KC, Peterson JR (2013) The human kinome and kinase inhibition. Curr Protoc Pharmacol. https://doi.org/10.1002/0471141755.ph0209s60

    Article  PubMed  PubMed Central  Google Scholar 

  30. Varjosalo M, Keskitalo S, Van Drogen A, Nurkkala H, Vichalkovski A, Aebersold R et al (2013) The protein interaction landscape of the human CMGC kinase group. Cell Rep. 3(4):1306–1320. https://doi.org/10.1016/j.celrep.2013.03.027

    Article  CAS  PubMed  Google Scholar 

  31. Germann UA, Furey BF, Markland W, Hoover RR, Aronov AM, Roix JJ et al (2017) Targeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (ulixertinib). Mol Cancer Ther. 16(11):2351–2363. https://doi.org/10.1158/1535-7163.MCT-17-0456

    Article  CAS  PubMed  Google Scholar 

  32. Vijayaraghavan S, Moulder S, Keyomarsi K, Layman RM (2018) Inhibiting CDK in cancer therapy: current evidence and future directions. Target Oncol 13(1):21–38. https://doi.org/10.1007/s11523-017-0541-2

    Article  PubMed  Google Scholar 

  33. Lochhead PA, Sibbet G, Morrice N, Cleghon V (2005) Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell 121(6):925–936. https://doi.org/10.1016/j.cell.2005.03.034

    Article  CAS  PubMed  Google Scholar 

  34. Walte A, Rüben K, Birner-Gruenberger R, Preisinger C, Bamberg-Lemper S, Hilz N et al (2013) Mechanism of dual specificity kinase activity of DYRK1A. FEBS J. 280(18):4495–4511. https://doi.org/10.1111/febs.12411

    Article  CAS  PubMed  Google Scholar 

  35. Soundararajan M, Roos AK, Savitsky P, Filippakopoulos P, Kettenbach AN, Olsen JV et al (2013) Structures of down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure. 21(6):986–996. https://doi.org/10.1016/j.str.2013.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fernandez-Martinez P, Zahonero C, Sanchez-Gomez P (2015) DYRK1A: the double-edged kinase as a protagonist in cell growth and tumorigenesis. Mol Cell Oncol. 2(1):e970048. https://doi.org/10.4161/23723548.2014.970048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Møller RS, Kübart S, Hoeltzenbein M, Heye B, Vogel I, Hansen CP et al (2008) Truncation of the down syndrome candidate gene DYRK1A in two unrelated patients with microcephaly. Am J Hum Genet. 82(5):1165–1170. https://doi.org/10.1016/j.ajhg.2008.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ji J, Lee H, Argiropoulos B, Dorrani N, Mann J, Martinez-Agosto JA et al (2015) DYRK1A haploinsufficiency causes a new recognizable syndrome with microcephaly, intellectual disability, speech impairment, and distinct facies. Eur J Hum Genet. 23(11):1473–1481. https://doi.org/10.1038/ejhg.2015.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Widowati EW, Ernst S, Hausmann R, Müller-Newen G, Becker W (2018) Functional characterization of DYRK1A missense variants associated with a syndromic form of intellectual deficiency and autism. Biol Open. https://doi.org/10.1242/bio.032862

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blackburn ATM, Bekheirnia N, Uma VC, Corkins ME, Xu Y, Rosenfeld JA et al (2019) DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract. Genet Med. 21(12):2755–2764. https://doi.org/10.1038/s41436-019-0576-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tejedor F, Zhu XR, Kaltenbach E, Ackermann A, Baumann A, Canal I et al (1995) minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 14(2):287–301. https://doi.org/10.1016/0896-6273(95)90286-4

    Article  CAS  PubMed  Google Scholar 

  42. Guimerá J, Casas C, Pucharcòs C, Solans A, Domènech A, Planas AM et al (1996) A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum Mol Genet 5(9):1305–1310. https://doi.org/10.1093/hmg/5.9.1305

    Article  PubMed  Google Scholar 

  43. Altafaj X, Dierssen M, Baamonde C, Martí E, Visa J, Guimerà J et al (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum Mol Genet 10(18):1915–1923. https://doi.org/10.1093/hmg/10.18.1915

    Article  CAS  PubMed  Google Scholar 

  44. de Martínez LM, Altafaj X, Gallego X, Martí E, Estivill X, Sahún I et al (2004) Motor phenotypic alterations in TgDyrk1a transgenic mice implicate DYRK1A in Down syndrome motor dysfunction. Neurobiol Dis. 15(1):132–142. https://doi.org/10.1016/j.nbd.2003.10.002

    Article  CAS  Google Scholar 

  45. Soppa U, Schumacher J, Florencio Ortiz V, Pasqualon T, Tejedor FJ, Becker W (2014) The down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation. Cell Cycle 13(13):2084–2100. https://doi.org/10.4161/cc.29104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Litovchick L, Florens LA, Swanson SK, Washburn MP, DeCaprio JA (2011) DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes Dev 25(8):801–813. https://doi.org/10.1101/gad.2034211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fernandez-Martinez J, Vela EM, Tora-Ponsioen M, Ocaña OH, Nieto MA, Galceran J (2009) Attenuation of Notch signalling by the down-syndrome-associated kinase DYRK1A. J Cell Sci. 122(Pt 10):1574–1583. https://doi.org/10.1242/jcs.044354

    Article  CAS  PubMed  Google Scholar 

  48. Tejedor FJ, Hämmerle B (2011) MNB/DYRK1A as a multiple regulator of neuronal development. FEBS J. 278(2):223–235. https://doi.org/10.1111/j.1742-4658.2010.07954.x

    Article  CAS  PubMed  Google Scholar 

  49. Thiel G, Ekici M, Rössler OG (2015) RE-1 silencing transcription factor (REST): a regulator of neuronal development and neuronal/endocrine function. Cell Tissue Res. 359(1):99–109. https://doi.org/10.1007/s00441-014-1963-0

    Article  CAS  PubMed  Google Scholar 

  50. Hämmerle B, Carnicero A, Elizalde C, Ceron J, Martínez S, Tejedor FJ (2003) Expression patterns and subcellular localization of the Down syndrome candidate protein MNB/DYRK1A suggest a role in late neuronal differentiation. Eur J Neurosci 17(11):2277–2286. https://doi.org/10.1046/j.1460-9568.2003.02665.x

    Article  PubMed  Google Scholar 

  51. Fan F, Funk L, Lou X (2016) Dynamin 1- and 3-mediated endocytosis is essential for the development of a large central synapse in vivo. J Neurosci 36(22):6097–6115. https://doi.org/10.1523/JNEUROSCI.3804-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choong XY, Tosh JL, Pulford LJ, Fisher EM (2015) Dissecting Alzheimer disease in down syndrome using mouse models. Front Behav Neurosci. 9:268. https://doi.org/10.3389/fnbeh.2015.00268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wegiel J, Gong CX, Hwang YW (2011) The role of DYRK1A in neurodegenerative diseases. FEBS J. 278(2):236–245. https://doi.org/10.1111/j.1742-4658.2010.07955.x

    Article  CAS  PubMed  Google Scholar 

  54. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189. https://doi.org/10.1101/cshperspect.a006189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Branca C, Shaw DM, Belfiore R, Gokhale V, Shaw AY, Foley C et al (2017) Dyrk1 inhibition improves Alzheimer’s disease-like pathology. Aging Cell 16(5):1146–1154. https://doi.org/10.1111/acel.12648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Souchet B, Audrain M, Billard JM, Dairou J, Fol R, Orefice NS et al (2019) Inhibition of DYRK1A proteolysis modifies its kinase specificity and rescues Alzheimer phenotype in APP/PS1 mice. Acta Neuropathol Commun. 7(1):46. https://doi.org/10.1186/s40478-019-0678-6

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yin X, Jin N, Shi J, Zhang Y, Wu Y, Gong CX et al (2017) Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn Down syndrome mice. Sci Rep. 7(1):619. https://doi.org/10.1038/s41598-017-00682-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol. 37(5):942–946. https://doi.org/10.1016/j.biocel.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  59. Kim EJ, Sung JY, Lee HJ, Rhim H, Hasegawa M, Iwatsubo T et al (2006) Dyrk1A phosphorylates alpha-synuclein and enhances intracellular inclusion formation. J Biol Chem. 281(44):33250–33257. https://doi.org/10.1074/jbc.M606147200

    Article  CAS  PubMed  Google Scholar 

  60. Cen L, Xiao Y, Wei L, Mo M, Chen X, Li S et al (2016) Association of DYRK1A polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neurosci Lett. 632:39–43. https://doi.org/10.1016/j.neulet.2016.08.022

    Article  CAS  PubMed  Google Scholar 

  61. Freeman SB, Bean LH, Allen EG, Tinker SW, Locke AE, Druschel C et al (2008) Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genet Med 10(3):173–180. https://doi.org/10.1097/GIM.0b013e3181634867

    Article  PubMed  Google Scholar 

  62. Hille S, Dierck F, Kühl C, Sosna J, Adam-Klages S, Adam D et al (2016) Dyrk1a regulates the cardiomyocyte cell cycle via D-cyclin-dependent Rb/E2f-signalling. Cardiovasc Res. 110(3):381–394. https://doi.org/10.1093/cvr/cvw074

    Article  CAS  PubMed  Google Scholar 

  63. Kuhn C, Frank D, Will R, Jaschinski C, Frauen R, Katus HA et al (2009) DYRK1A is a novel negative regulator of cardiomyocyte hypertrophy. J Biol Chem. 284(25):17320–17327. https://doi.org/10.1074/jbc.M109.006759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Assenza GE, Autore C, Marino B (2007) Hypertrophic cardiomyopathy in a patient with Down's syndrome. J Cardiovasc Med (Hagerstown) 8(6):463–464. https://doi.org/10.2459/01.JCM.0000269712.86134.48

    Article  Google Scholar 

  65. da Costa Martins PA, De Windt LJ (2011) Letter concerning: 'Enhanced expression of DYRK1A in cardiomyocytes inhibits acute NFAT activation but does not prevent hypertrophy in vivo'. Cardiovasc Res. 91(4):742–743. https://doi.org/10.1093/cvr/cvr192

    Article  CAS  PubMed  Google Scholar 

  66. Xavier AC, Ge Y, Taub JW (2009) Down syndrome and malignancies: a unique clinical relationship: a paper from the 2008 william beaumont hospital symposium on molecular pathology. J Mol Diagn 11(5):371–380. https://doi.org/10.2353/jmoldx.2009.080132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Abbassi R, Johns TG, Kassiou M, Munoz L (2015) DYRK1A in neurodegeneration and cancer: molecular basis and clinical implications. Pharmacol Ther. 151:87–98. https://doi.org/10.1016/j.pharmthera.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  68. Pozo N, Zahonero C, Fernández P, Liñares JM, Ayuso A, Hagiwara M et al (2013) Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-dependent glioblastoma growth. J Clin Invest. 123(6):2475–2487. https://doi.org/10.1172/JCI63623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Radhakrishnan A, Nanjappa V, Raja R, Sathe G, Puttamallesh VN, Jain AP et al (2016) A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma. Sci Rep. 6:36132. https://doi.org/10.1038/srep36132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luna J, Boni J, Cuatrecasas M, Bofill-De Ros X, Núñez-Manchón E, Gironella M et al (2019) DYRK1A modulates c-MET in pancreatic ductal adenocarcinoma to drive tumour growth. Gut 68(8):1465–1476. https://doi.org/10.1136/gutjnl-2018-316128

    Article  CAS  PubMed  Google Scholar 

  71. Li YL, Ding K, Hu X, Wu LW, Zhou DM, Rao MJ et al (2019) DYRK1A inhibition suppresses STAT3/EGFR/Met signalling and sensitizes EGFR wild-type NSCLC cells to AZD9291. J Cell Mol Med. 23(11):7427–7437. https://doi.org/10.1111/jcmm.14609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, Gao X et al (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441(7093):595–600. https://doi.org/10.1038/nature04678

    Article  CAS  PubMed  Google Scholar 

  73. Malinge S, Bliss-Moreau M, Kirsammer G, Diebold L, Chlon T, Gurbuxani S et al (2012) Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. J Clin Invest. 122(3):948–962. https://doi.org/10.1172/JCI60455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu Q, Liu N, Zang S, Liu H, Wang P, Ji C et al (2014) Tumor suppressor DYRK1A effects on proliferation and chemoresistance of AML cells by downregulating c-Myc. PLoS ONE 9(6):e98853. https://doi.org/10.1371/journal.pone.0098853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Regad T, Targeting RTK (2015) Signaling pathways in cancer. Cancers (Basel). 7(3):1758–1784. https://doi.org/10.3390/cancers7030860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kelly PA, Rahmani Z (2005) DYRK1A enhances the mitogen-activated protein kinase cascade in PC12 cells by forming a complex with Ras, B-Raf, and MEK1. Mol Biol Cell. 16(8):3562–3573. https://doi.org/10.1091/mbc.e04-12-1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Aranda S, Alvarez M, Turró S, Laguna A, de la Luna S (2008) Sprouty2-mediated inhibition of fibroblast growth factor signaling is modulated by the protein kinase DYRK1A. Mol Cell Biol. 28(19):5899–5911. https://doi.org/10.1128/MCB.00394-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abekhoukh S, Planque C, Ripoll C, Urbaniak P, Paul JL, Delabar JM et al (2013) Dyrk1A, a serine/threonine kinase, is involved in ERK and Akt activation in the brain of hyperhomocysteinemic mice. Mol Neurobiol. 47(1):105–116. https://doi.org/10.1007/s12035-012-8326-1

    Article  CAS  PubMed  Google Scholar 

  79. Kurabayashi N, Nguyen MD, Sanada K (2015) DYRK1A overexpression enhances STAT activity and astrogliogenesis in a Down syndrome mouse model. EMBO Rep. 16(11):1548–1562. https://doi.org/10.15252/embr.201540374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ehe BK, Lamson DR, Tarpley M, Onyenwoke RU, Graves LM, Williams KP (2017) Identification of a DYRK1A-mediated phosphorylation site within the nuclear localization sequence of the hedgehog transcription factor GLI1. Biochem Biophys Res Commun. 491(3):767–772. https://doi.org/10.1016/j.bbrc.2017.07.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang EJ, Ahn YS, Chung KC (2001) Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. J Biol Chem. 276(43):39819–39824. https://doi.org/10.1074/jbc.M104091200

    Article  CAS  PubMed  Google Scholar 

  82. Huynh J, Chand A, Gough D, Ernst M (2019) Therapeutically exploiting STAT3 activity in cancer—using tissue repair as a road map. Nat Rev Cancer 19(2):82–96. https://doi.org/10.1038/s41568-018-0090-8

    Article  CAS  PubMed  Google Scholar 

  83. Didiasova M, Schaefer L, Wygrecka M (2018) Targeting GLI transcription factors in cancer. Molecules. https://doi.org/10.3390/molecules23051003

    Article  PubMed  PubMed Central  Google Scholar 

  84. Di Vona C, Bezdan D, Islam AB, Salichs E, López-Bigas N, Ossowski S et al (2015) Chromatin-wide profiling of DYRK1A reveals a role as a gene-specific RNA polymerase II CTD kinase. Mol Cell. 57(3):506–520. https://doi.org/10.1016/j.molcel.2014.12.026

    Article  CAS  PubMed  Google Scholar 

  85. Jang SM, Azebi S, Soubigou G, Muchardt C (2014) DYRK1A phoshorylates histone H3 to differentially regulate the binding of HP1 isoforms and antagonize HP1-mediated transcriptional repression. EMBO Rep. 15(6):686–694. https://doi.org/10.15252/embr.201338356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li S, Xu C, Fu Y, Lei PJ, Yao Y, Yang W et al (2018) DYRK1A interacts with histone acetyl transferase p300 and CBP and localizes to enhancers. Nucleic Acids Res 46(21):11202–11213. https://doi.org/10.1093/nar/gky754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen M, Xie S (2018) Therapeutic targeting of cellular stress responses in cancer. Thorac Cancer. 9(12):1575–1582. https://doi.org/10.1111/1759-7714.12890

    Article  PubMed  PubMed Central  Google Scholar 

  88. Choi HK, Chung KC (2011) Dyrk1A positively stimulates ASK1-JNK signaling pathway during apoptotic cell death. Exp Neurobiol. 20(1):35–44. https://doi.org/10.5607/en.2011.20.1.35

    Article  PubMed  PubMed Central  Google Scholar 

  89. Seifert A, Clarke PR (2009) p38alpha- and DYRK1A-dependent phosphorylation of caspase-9 at an inhibitory site in response to hyperosmotic stress. Cell Signal. 21(11):1626–1633. https://doi.org/10.1016/j.cellsig.2009.06.009

    Article  CAS  PubMed  Google Scholar 

  90. Kwon J, Lee S, Kim YN, Lee IH (2019) Deacetylation of CHK2 by SIRT1 protects cells from oxidative stress-dependent DNA damage response. Exp Mol Med. 51(3):36. https://doi.org/10.1038/s12276-019-0232-4

    Article  CAS  Google Scholar 

  91. Lin Z, Fang D (2013) The roles of SIRT1 in cancer. Genes Cancer 4(3–4):97–104. https://doi.org/10.1177/1947601912475079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alves-Fernandes DK, Jasiulionis MG (2019) The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci. https://doi.org/10.3390/ijms20133153

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rahman S, Islam R (2011) Mammalian Sirt1: insights on its biological functions. Cell Commun Signal. 9:11. https://doi.org/10.1186/1478-811X-9-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Guo X, Williams JG, Schug TT, Li X (2010) DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem. 285(17):13223–13232. https://doi.org/10.1074/jbc.M110.102574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhao H, Traganos F, Darzynkiewicz Z (2008) Phosphorylation of p53 on Ser15 during cell cycle caused by Topo I and Topo II inhibitors in relation to ATM and Chk2 activation. Cell Cycle 7(19):3048–3055. https://doi.org/10.4161/cc.7.19.6750

    Article  CAS  PubMed  Google Scholar 

  96. Park J, Oh Y, Yoo L, Jung MS, Song WJ, Lee SH et al (2010) Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic neuronal cells. J Biol Chem. 285(41):31895–31906. https://doi.org/10.1074/jbc.M110.147520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang Y, Liao JM, Zeng SX, Lu H (2011) p53 downregulates Down syndrome-associated DYRK1A through miR-1246. EMBO Rep. 12(8):811–817. https://doi.org/10.1038/embor.2011.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xu X, Liu Q, Zhang C, Ren S, Xu L, Zhao Z et al (2019) Inhibition of DYRK1A-EGFR axis by p53-MDM2 cascade mediates the induction of cellular senescence. Cell Death Dis. 10(4):282. https://doi.org/10.1038/s41419-019-1521-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guard SE, Poss ZC, Ebmeier CC, Pagratis M, Simpson H, Taatjes DJ et al (2019) The nuclear interactome of DYRK1A reveals a functional role in DNA damage repair. Sci Rep. 9(1):6539. https://doi.org/10.1038/s41598-019-42990-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Menon VR, Ananthapadmanabhan V, Swanson S, Saini S, Sesay F, Yakovlev V et al (2019) DYRK1A regulates the recruitment of 53BP1 to the sites of DNA damage in part through interaction with RNF169. Cell Cycle 18(5):531–551. https://doi.org/10.1080/15384101.2019.1577525

    Article  CAS  PubMed  Google Scholar 

  101. Roewenstrunk J, Di Vona C, Chen J, Borras E, Dong C, Arató K et al (2019) A comprehensive proteomics-based interaction screen that links DYRK1A to RNF169 and to the DNA damage response. Sci Rep. 9(1):6014. https://doi.org/10.1038/s41598-019-42445-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Barallobre MJ, Perier C, Bové J, Laguna A, Delabar JM, Vila M et al (2014) DYRK1A promotes dopaminergic neuron survival in the developing brain and in a mouse model of Parkinson's disease. Cell Death Dis. 5:e1289. https://doi.org/10.1038/cddis.2014.253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Laguna A, Aranda S, Barallobre MJ, Barhoum R, Fernández E, Fotaki V et al (2008) The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during retina development. Dev Cell 15(6):841–853. https://doi.org/10.1016/j.devcel.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  104. Seifert A, Allan LA, Clarke PR (2008) DYRK1A phosphorylates caspase 9 at an inhibitory site and is potently inhibited in human cells by harmine. FEBS J. 275(24):6268–6280. https://doi.org/10.1111/j.1742-4658.2008.06751.x

    Article  CAS  PubMed  Google Scholar 

  105. Hatai T, Matsuzawa A, Inoshita S, Mochida Y, Kuroda T, Sakamaki K et al (2000) Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem 275(34):26576–26581. https://doi.org/10.1074/jbc.M003412200

    Article  CAS  PubMed  Google Scholar 

  106. Guo X, Namekata K, Kimura A, Harada C, Harada T (2017) ASK1 in neurodegeneration. Adv Biol Regul. 66:63–71. https://doi.org/10.1016/j.jbior.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  107. Hayakawa R, Hayakawa T, Takeda K, Ichijo H (2012) Therapeutic targets in the ASK1-dependent stress signaling pathways. Proc Jpn Acad Ser B Phys Biol Sci 88(8):434–453. https://doi.org/10.2183/pjab.88.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  109. Kazerounian S, Lawler J (2018) Integration of pro- and anti-angiogenic signals by endothelial cells. J Cell Commun Signal. 12(1):171–179. https://doi.org/10.1007/s12079-017-0433-3

    Article  PubMed  Google Scholar 

  110. Rosen LS (2005) VEGF-targeted therapy: therapeutic potential and recent advances. Oncologist 10(6):382–391. https://doi.org/10.1634/theoncologist.10-6-382

    Article  CAS  PubMed  Google Scholar 

  111. Gowda S, Bhat D, Feng Z, Chang CH, Ross RD (2014) Pulmonary vein stenosis with Down syndrome: a rare and frequently fatal cause of pulmonary hypertension in infants and children. Congenit Heart Dis. 9(3):E90–E97. https://doi.org/10.1111/chd.12088

    Article  PubMed  Google Scholar 

  112. Pipitone S, Garofalo C, Corsello G, Mongiovì M, Piccione M, Maresi E et al (2003) Abnormalities of the umbilico-portal venous system in Down syndrome: a report of two new patients. Am J Med Genet A 120A(4):528–532. https://doi.org/10.1002/ajmg.a.20081

    Article  PubMed  Google Scholar 

  113. Ryeom S, Folkman J (2009) Role of endogenous angiogenesis inhibitors in Down syndrome. J Craniofac Surg 20(Suppl 1):595–596. https://doi.org/10.1097/scs.0b013e3181927f47

    Article  PubMed  Google Scholar 

  114. Minami T, Horiuchi K, Miura M, Abid MR, Takabe W, Noguchi N et al (2004) Vascular endothelial growth factor- and thrombin-induced termination factor, Down syndrome critical region-1, attenuates endothelial cell proliferation and angiogenesis. J Biol Chem. 279(48):50537–50554. https://doi.org/10.1074/jbc.M406454200

    Article  CAS  PubMed  Google Scholar 

  115. Rozen EJ, Roewenstrunk J, Barallobre MJ, Di Vona C, Jung C, Figueiredo AF et al (2018) DYRK1A kinase positively regulates angiogenic responses in endothelial cells. Cell Rep 23(6):1867–1878. https://doi.org/10.1016/j.celrep.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  116. Serfling E, Avots A, Klein-Hessling S, Rudolf R, Vaeth M, Berberich-Siebelt F (2012) NFATc1/αA: the other face of NFAT factors in lymphocytes. Cell Commun Signal. 10(1):16. https://doi.org/10.1186/1478-811X-10-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu H, Wang K, Chen S, Sun Q, Zhang Y, Chen L et al (2017) NFATc1 phosphorylation by DYRK1A increases its protein stability. PLoS ONE 12(2):e0172985. https://doi.org/10.1371/journal.pone.0172985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cho HJ, Lee JG, Kim JH, Kim SY, Huh YH, Kim HJ et al (2019) Vascular defects of. Dis Model Mech. https://doi.org/10.1242/dmm.037044

    Article  PubMed  PubMed Central  Google Scholar 

  119. Stotani S, Giordanetto F, Medda F (2016) DYRK1A inhibition as potential treatment for Alzheimer's disease. Future Med Chem. 8(6):681–696. https://doi.org/10.4155/fmc-2016-0013

    Article  CAS  PubMed  Google Scholar 

  120. Smith B, Medda F, Gokhale V, Dunckley T, Hulme C (2012) Recent advances in the design, synthesis, and biological evaluation of selective DYRK1A inhibitors: a new avenue for a disease modifying treatment of Alzheimer's? ACS Chem Neurosci. 3(11):857–872. https://doi.org/10.1021/cn300094k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Adayev T, Wegiel J, Hwang YW (2011) Harmine is an ATP-competitive inhibitor for dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). Arch Biochem Biophys. 507(2):212–218. https://doi.org/10.1016/j.abb.2010.12.024

    Article  CAS  PubMed  Google Scholar 

  122. He D, Wu H, Wei Y, Liu W, Huang F, Shi H et al (2015) Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice. Eur J Pharmacol. 768:96–107. https://doi.org/10.1016/j.ejphar.2015.10.037

    Article  CAS  PubMed  Google Scholar 

  123. Uhl KL, Schultz CR, Geerts D, Bachmann AS (2018) Harmine, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor induces caspase-mediated apoptosis in neuroblastoma. Cancer Cell Int. 18:82. https://doi.org/10.1186/s12935-018-0574-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu Y, Adayev T, Hwang YW (2017) An ELISA DYRK1A non-radioactive kinase assay suitable for the characterization of inhibitors. F1000Res. 6:42. https://doi.org/10.12688/f1000research.10582.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. De la Torre R, De Sola S, Pons M, Duchon A, de Lagran MM, Farré M et al (2014) Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol Nutr Food Res. 58(2):278–288. https://doi.org/10.1002/mnfr.201300325

    Article  CAS  PubMed  Google Scholar 

  126. Souchet B, Duchon A, Gu Y, Dairou J, Chevalier C, Daubigney F et al (2019) Prenatal treatment with EGCG enriched green tea extract rescues GAD67 related developmental and cognitive defects in Down syndrome mouse models. Sci Rep. 9(1):3914. https://doi.org/10.1038/s41598-019-40328-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. de la Torre R, de Sola S, Hernandez G, Farré M, Pujol J, Rodriguez J et al (2016) Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol 15(8):801–810. https://doi.org/10.1016/S1474-4422(16)30034-5

    Article  CAS  PubMed  Google Scholar 

  128. Gu Y, Moroy G, Paul JL, Rebillat AS, Dierssen M, de la Torre R et al (2020) Molecular rescue of Dyrk1A overexpression alterations in mice with fontup. Int J Mol Sci. https://doi.org/10.3390/ijms21041404

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lecumberri E, Dupertuis YM, Miralbell R, Pichard C (2013) Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin Nutr. 32(6):894–903. https://doi.org/10.1016/j.clnu.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  130. Du GJ, Zhang Z, Wen XD, Yu C, Calway T, Yuan CS et al (2012) Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients. 4(11):1679–1691. https://doi.org/10.3390/nu4111679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ogawa Y, Nonaka Y, Goto T, Ohnishi E, Hiramatsu T, Kii I et al (2010) Development of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A. Nat Commun. 1:86. https://doi.org/10.1038/ncomms1090

    Article  CAS  PubMed  Google Scholar 

  132. Gourdain S, Dairou J, Denhez C, Bui LC, Rodrigues-Lima F, Janel N et al (2013) Development of DANDYs, new 3,5-diaryl-7-azaindoles demonstrating potent DYRK1A kinase inhibitory activity. J Med Chem. 56(23):9569–9585. https://doi.org/10.1021/jm401049v

    Article  CAS  PubMed  Google Scholar 

  133. Neumann F, Gourdain S, Albac C, Dekker AD, Bui LC, Dairou J et al (2018) DYRK1A inhibition and cognitive rescue in a Down syndrome mouse model are induced by new fluoro-DANDY derivatives. Sci Rep. 8(1):2859. https://doi.org/10.1038/s41598-018-20984-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Velazquez R, Meechoovet B, Ow A, Foley C, Shaw A, Smith B et al (2019) Chronic Dyrk1 inhibition delays the onset of AD-like pathology in 3×Tg-AD mice. Mol Neurobiol. 56(12):8364–8375. https://doi.org/10.1007/s12035-019-01684-9

    Article  CAS  PubMed  Google Scholar 

  135. Kim H, Lee KS, Kim AK, Choi M, Choi K, Kang M et al (2016) A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech. 9(8):839–848. https://doi.org/10.1242/dmm.025668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Silva-Pavez E, Villar P, Trigo C, Caamaño E, Niechi I, Pérez P et al (2019) CK2 inhibition with silmitasertib promotes methuosis-like cell death associated to catastrophic massive vacuolization of colorectal cancer cells. Cell Death Dis. 10(2):73. https://doi.org/10.1038/s41419-019-1306-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. CX-4945 granted orphan drug designation. Oncol Times. 2017;39(5):23. https://doi.org/10.1097/01.cot.0000514203.35081.69.

  138. Alvarez M, Altafaj X, Aranda S, de la Luna S (2007) DYRK1A autophosphorylation on serine residue 520 modulates its kinase activity via 14–3–3 binding. Mol Biol Cell. 18(4):1167–1178. https://doi.org/10.1091/mbc.e06-08-0668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S et al (2016) Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 7:11391. https://doi.org/10.1038/ncomms11391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jin N, Yin X, Gu J, Zhang X, Shi J, Qian W et al (2015) Truncation and activation of dual specificity tyrosine phosphorylation-regulated kinase 1A by calpain I: a molecular mechanism linked to tau pathology in Alzheimer disease. J Biol Chem. 290(24):15219–15237. https://doi.org/10.1074/jbc.M115.645507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nguyen TL, Duchon A, Manousopoulou A, Loaëc N, Villiers B, Pani G et al (2018) Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A. Dis Model Mech. https://doi.org/10.1242/dmm.035634

    Article  PubMed  PubMed Central  Google Scholar 

  142. O'Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ni WJ, Leng XM (2016) miRNA-dependent activation of mRNA translation. Microrna 5(2):83–86. https://doi.org/10.2174/2211536605666160825151201

    Article  CAS  PubMed  Google Scholar 

  144. Hanna J, Hossain GS, Kocerha J (2019) The potential for microRNA therapeutics and clinical research. Front Genet. 10:478. https://doi.org/10.3389/fgene.2019.00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. da Costa Martins PA, Salic K, Gladka MM, Armand AS, Leptidis S, el Azzouzi H et al (2010) MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol. 12(12):1220–1227. https://doi.org/10.1038/ncb2126

    Article  CAS  PubMed  Google Scholar 

  146. Chaves JCS, Machado FT, Almeida MF, Bacovsky TB, Ferrari MFR (2020) microRNAs expression correlates with levels of APP, DYRK1A, hyperphosphorylated Tau and BDNF in the hippocampus of a mouse model for Down syndrome during ageing. Neurosci Lett. 714:134541. https://doi.org/10.1016/j.neulet.2019.134541

    Article  CAS  PubMed  Google Scholar 

  147. Chiu CC, Yeh TH, Chen RS, Chen HC, Huang YZ, Weng YH et al (2019) Upregulated expression of microRNA-204–5p leads to the death of dopaminergic cells by targeting DYRK1A-mediated apoptotic signaling cascade. Front Cell Neurosci. 13:399. https://doi.org/10.3389/fncel.2019.00399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chu Y, Jiang M, Du F, Chen D, Ye T, Xu B et al (2018) miR-204–5p suppresses hepatocellular cancer proliferation by regulating homeoprotein SIX1 expression. FEBS Open Bio. 8(2):189–200. https://doi.org/10.1002/2211-5463.12363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Li M, Shen Y, Wang Q, Zhou X (2019) MiR-204–5p promotes apoptosis and inhibits migration of osteosarcoma via targeting EBF2. Biochimie 158:224–232. https://doi.org/10.1016/j.biochi.2018.12.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maha Saber-Ayad or Raafat El-Awady.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laham, A.J., Saber-Ayad, M. & El-Awady, R. DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis. Cell. Mol. Life Sci. 78, 603–619 (2021). https://doi.org/10.1007/s00018-020-03626-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03626-4

Keywords

Navigation