Skip to main content

Advertisement

Log in

RE-1 silencing transcription factor (REST): a regulator of neuronal development and neuronal/endocrine function

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

RE-1 silencing transcription factor (REST) is a transcriptional repressor that has been proposed to function as a master negative regulator of neurogenesis, as REST target genes encode neuronal receptors, ion channels, neuropeptides and synaptic proteins. During neuronal differentiation, REST expression levels are reduced, allowing expression of selected REST target genes. The analysis of neural stem/progenitor cells that are either devoid of REST or overexpress REST revealed that REST is not the master regulator that is solely responsible for the acquisition of the neuronal fate. Rather, REST provides a regulatory hub that coordinately regulates multiple tiers of neuronal development in vitro. In addition, REST may play an important role for maintaining the integrity of adult neurons. REST confers oxidative stress resistance and is essential for maintaining neuronal viability. Furthermore, the concentration of REST has been reported to influence the pathogenic outcome by neuronal diseases, including stroke, epilepsy and Alzheimer’s disease. Experiments performed with PC12 pheochromocytoma cells indicate that REST may function as a key regulator of the neurosecretory phenotype. Moreover, transgenic mice overexpressing REST in pancreatic β-cells showed impaired insulin secretion leading to significantly reduced plasma insulin levels. Based on the fact that REST plays a prominent role in controlling stimulus-induced secretion in endocrine cells, we propose that REST may also be important for neurotransmitter release via regulation of genes that encode important proteins of the exocytotic machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abderrahmani A, Niederhauser G, Plaisance V, Roehrich M-E, Lenain V, Coppola T, Regazzi R, Waeber G (2004) Complexin I regulates glucose-induced secretion in pancreatic β-cells. J Cell Sci 117:2239–2247

    Article  CAS  PubMed  Google Scholar 

  • Aoki H, Hara A, Era T, Kunisada T, Yamada Y (2012) Genetic ablation of Rest leads to in vitro-specific derepression of neuronal genes during neurogenesis. Development 139:667–677

    Article  CAS  PubMed  Google Scholar 

  • Ariano P, Zamburlin P, D’Alessandro R, Meldolesi J, Lovisolo D (2010) Differential repression by the transcription factor REST/NRSF of the various Ca2+ signalling mechanisms in pheochromocytoma PC12 cells. Cell Calcium 47:360–368

    Article  CAS  PubMed  Google Scholar 

  • Atouf F, Czernichow P, Scharfmann R (1997) Expression of neuronal traits in pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J Biol Chem 272:1929–1934

    Article  CAS  PubMed  Google Scholar 

  • Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:1–7

    Article  Google Scholar 

  • Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657

    Article  CAS  PubMed  Google Scholar 

  • Belyaev ND, Wood IC, Bruce AW, Street M, Trinh JB, Buckley NJ (2003) Distinct RE1 silencing transcription factor (REST)-containing complexes interact with different target genes. J Biol Chem 279:556–561

    Article  PubMed  Google Scholar 

  • Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Göttgens B, Buckley NJ (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A 101:10458–10463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruce AW, Krejci A, Ooi L, Deuchars J, Wood IC, Dolezal V, Buckley NJ (2006) The transcriptional repressor REST is a critical regulator of the neurosecretory phenotype. J Neurochem 98:1828–1840

    Article  CAS  PubMed  Google Scholar 

  • Bruce AW, López-Contreras A, Flicek P, Down TA, Dhami P, Dillon SC, Koch CM, Langford CF, Dunham I, Andrews RM, Vetrie D (2009) Functional diversity for REST (NRSF) is defined by in vivo binding affinity hierarchies at the DNA sequence level. Genome Res 19:994–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buckley NJ, Johnson R, Sun Y-M, Stanton LW (2009) Is REST a regulator of pluripotency? Nature 457:E5–E6

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-F, Paquette AJ, Anderson DJ (1998) NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genet 20:136–142

    Article  CAS  PubMed  Google Scholar 

  • Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957

    Article  CAS  PubMed  Google Scholar 

  • Covey MV, Streb JW, Spektor R, Ballas N (2012) REST regulates the pool size of the different neural lineages by restricting the generation of neurons and oligodendrocytes from neural stem/progenitor cells. Development 139:2878–2890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D'Alessandro R, Klajn A, Stucchi L, Podini P, Malosio ML, Meldolesi J (2008) Expression of the neurosecretory process in pc12 cells is governed by rest. J Neurochem 105:1369–1383

    Article  PubMed  Google Scholar 

  • Ding N, Tomomori-Sato C, Sato S, Conaway RC, Boyer TG (2009) MED19 and MED26 are synergistic functional targets of the RE1 silencing transcription factor in epigenetic silencing of neuronal gene expression. J Biol Chem 284:2648–2656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ekici M, Hohl M, Schuit F, Martínez-Serrano A, Thiel G (2008) Transcription of Genes Encoding Synaptic Vesicle Proteins in Human Neural Stem Cells: Chromatin accessibility, histone methylation pattern, and the essential role of REST. J Biol Chem 283:9257–9268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ekici M, Keim A, Rössler OG, Hohl M, Thiel G (2012) Chromatin structure and expression of the AMPA receptor subunit GluR2 in human glioma cells: major role of REST and Sp1. J Cell Biochem 113:528–543

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Ure K, Ding P, Nashaat M, Yuan L, Ma J, Hammer RE, Hsieh J (2011) The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci 31:9772–9786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM, Morrison JF, Ockuly J, Stafstrom C, Sutula T, Roopa A (2006) 2-deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387

    Article  CAS  PubMed  Google Scholar 

  • Greenway DJ, Street M, Jeffries A, Buckley NJ (2007) RE1 silencing transcription factor maintains a repressive chromatin environment in embryonic hippocampal neural stem cells. Stem Cells 25:354–363

    Article  CAS  PubMed  Google Scholar 

  • Gustavsson N, Lao Y, Maximov A, Chuang J-C, Kostromina E, Repa JJ, Li C, Radda GK, Südhof TC, Han W (2008) Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proc Natl Acad Sci U S A 105:3992–3997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gustavsson N, Wei S-H, Hoang DN, Lao Y, Zhang Q, Radda GK, Rorsman P, Südhof TC, Han W (2009) Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+-induced glucagon exocytosis in pancreas. J Physiol 587(6):1169–1178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hohl M, Thiel G (2005) Cell type-specific regulation of RE-1 silencing transcription factor (REST) target genes. Eur J Neurosci 22:2216–2230

    Article  PubMed  Google Scholar 

  • Hu X-L, Cheng X, Cai L, Tan G-H, Xu L, Feng X-Y, Lu T-J, Xiong H, Fei J, Xiong Z-Q (2011) Conditional deletion of NRSF in forebrain neurons accelerates epileptogenesis in the kindling model. Cereb Cortex 21:2158–2165

    Article  PubMed  Google Scholar 

  • Hwang J-Y, Aromolaran KA, Zukin RZ (2013) Epigenetic mechanisms in stroke and epilepsy. Neuropsychopharmacol 38:167–182

    Article  CAS  Google Scholar 

  • Jeans AF, Oliver PL, Johnson R, Capogna M, Vikman J, Molnár Z, Babbs A, Partridge CJ, Salehi A, Bengtsson M, Eliasson L, Rorsman P, Davies KE (2007) A dominant mutation of Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse. Proc Natl Acad Sci U S A 104:2431–2436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 31:1497–1502

    Article  Google Scholar 

  • Jorgensen HF, Chen Z-F, Merkenschlager M, Fisher AG (2009a) Is REST required for ESC pluripotency ? Nature 457:E4–E5

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen HF, Terry A, Beretta C, Pereira CF, Leleu M, Chen Z-F, Kelly C, Merkenschlager M, Fisher AG (2009b) REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development 136:715–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneko N, Hwang J-Y, Gertner M, Pontarelli F, Zukin RZ (2014) Casein kinase 1 suppresses activation of REST in insulted hippocampal neurons and halts ischemia-induced neuronal death. J Neurosci 34:6030–6039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kemp DM, Lin JC, Habener JF (2003) Regulation of pax4 paired homeodomain gene by neuron-restrictive silencer factor. J Biol Chem 278:35057–35062

    Article  CAS  PubMed  Google Scholar 

  • Kojima N, Wang J, Mansuy IM, Grant SGN, Mayford M, Kandel ER (1997) Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene. Proc Natl Acad Sci U S A 94:4761–4765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leichter M, Thiel G (1999) Transcriptional repression by the zinc finger protein REST is mediated by titratable nuclear factors. Eur J Neurosci 11:1937–1946

    Article  CAS  PubMed  Google Scholar 

  • Lietz M, Bach K, Thiel G (2001) Biological activity of RE-1 silencing transcription factor (REST) towards distinct transcriptional activators. Eur J Neurosci 14:1303–1312

    Article  CAS  PubMed  Google Scholar 

  • Lietz M, Hohl M, Thiel G (2003) RE-1 silencing transcription factor (REST) regulates human synaptophysin gene transcription through an intronic sequence-specific DNA-binding site. Eur J Biochem 270:2–9

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu M, Niu G, Cheng Y, Fei J (2009) Genome-wide identification of target genes repressed by the zinc finger transcription factor REST/NRSF in the HEK 293 cell line. Acta Biochim Biophys Sin 41:1008–1017

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang T-H, Kim H-M, Drake D, Liu XS, Bennett DA, Colaiácovo MP, Yankner BA (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507:448–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandel G, Fiondella CG, Covey MV, Lu DD, LoTurco JJ, Ballas N (2011) Repressor element 1 silencing transcription factor (REST) controls radial migration and temporal neuronal specification during neocortical development. Proc Natl Acad Sci U S A 108:16789–16794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin D, Tawadros T, Meylan L, Abderrahmani A, Condorelli DF, Waeber G, Haefliger J-A (2003) Critical role of the transcriptional repressor neuron-restrictive silencer factor in the specific control of connexin36 in insulin-producing cell lines. J Biol Chem 278:53082–53089

    Article  CAS  PubMed  Google Scholar 

  • Martin D, Allagnat F, Chaffard G, Caille D, Fukuda M, Regazzi R, Abderrahmani A, Waeber G, Meda P, Maechler P, Haefliger J-A (2008) Functional significance of repressor element 1 silencing transcription factor (REST) target genes in pancreatic beta cells. Diabetologia 51:1429–1439

    Article  CAS  PubMed  Google Scholar 

  • Martin D, Allagnat F, Gesina E, Caille D, Gjinovci A, Waeber G, Meda P, Haefliger J-A (2012) Specific silencing of the REST target genes in insulin-secreting cells uncovers their participation in beta cell survival. PLoS ONE 7:e45844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maximov A, Lao Y, Li H, Chen X, Rizo J, Sorensen JB, Südhof TC (2008) Genetic analysis of synaptotagmin-7 function in synaptoc vesicle exocytosis. Proc Natl Acad Sci U S A 105:3986–3991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGirr R, Ejbick CE, Carter DE, Andrews JD, Nie Y, Friedman TC, Dhanvantari S (2005) Glucose dependence of the regulated secretory pathway in αTC1-6 cells. Endocrinology 146:4514–4523

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Thompson ECL, Garcia ST, Myers RM, Wold B (2006) Comparative genomics modeling of the NRSF/REST repressor network: From single conserved sites to genome-wide repertoire. Genome Res 16:1208–1221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Myers SJ, Peters J, Huang Y, Comer MB, Barthel F, Dingledine R (1998) Transcriptional regulation of the GluR2 gene: neural-specific expression, multiple promoters, and regulatory elements. J Neurosci 18:6723–6739

    CAS  PubMed  Google Scholar 

  • Noh K-M, Hwang J-Y, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, Bennett MVL, Zukin RZ (2012) Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proc Natl Acad Sci U S A 109:E962–E971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Obermüller S, Calegari F, King A, Lindqvist A, Lundquist I, Salehi A, Francolini M, Rosa P, Rorsman P, Huttner WB, Barg S (2010) Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS ONE 5:e8936

    Article  PubMed Central  PubMed  Google Scholar 

  • Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lession from REST. Nat Rev Genet 8:544–554

    Article  CAS  PubMed  Google Scholar 

  • Ooi L, Belyaev ND, Miyake K, Wood IC, Buckley NJ (2006) BRG1 chromatin remodeling activity is required for efficient chromatin binding by the transcriptional repressor (REST) and facilitates REST-mediated repression. J Biol Chem 281:38974–38980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Otto SJ, McCorkle SR, Hover J, Conaco C, Han J-J, Impey S, Yochum GS, Dunn JJ, Goodman RH, Mandel G (2007) A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions. J Neurosci 27:6729–6739

    Article  CAS  PubMed  Google Scholar 

  • Palm K, Belluardo N, Metsis M, Timmusk T (1998) Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. J Neurosci 18:1280–1296

    CAS  PubMed  Google Scholar 

  • Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Südhof TC, Wernig M (2011) Induction of human neuronal cells by definied transcription factors. Nature 476:220–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pozzi D, Lignani G, Ferrea E, Contestabile A, Paonessa F, D’Alessandro R, Lippiello P, Boido D, Fassio A, Meldolesi J, Valtorta F, Benfenati F, Baldelli P (2013) REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. EMBO J 32:2994–3007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roopra A, Qazi R, Schoenike B, Daley TJ, Morrison JF (2004) Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol Cell 14:727–738

    Article  CAS  PubMed  Google Scholar 

  • Schoch S, Cibelli G, Thiel G (1996) Neuron-specific gene expression of synapsin I: major role of a negative regulatory mechanism. J Biol Chem 271:3317–3323

    Article  CAS  PubMed  Google Scholar 

  • Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Schoenherr CJ, Paquette AJ, Anderson DJ (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci U S A 93:9881–9886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schonn J-S, Maximov A, Lao Y, Südhof TC, Sorensen JB (2008) Synaptotagmin-1 and −7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci U S A 105:3998–4003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453:223–227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soldati C, Bithell A, Johnston C, Wong K-Y, Teng S-W, Beglopoulos V, Stanton LW, Buckley NJ (2012) Repressor element 1 silencing transcription factor couples loss of pluripotency with neural induction and neural differentiation. Stem Cells 30:425–434

    Article  CAS  PubMed  Google Scholar 

  • Su X, Kameoka S, Lentz S, Majumder S (2004) Activation of REST/NRSF in neural stem cells is sufficient to cause neuronal differentiation. Mol Cell Biol 24:8018–8025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tapia-Ramírez J, Eggen BJ, Peral-Rubio MJ, Toledo-Aral JJ, Mandel G (1997) A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc Natl Acad Sci U S A 94:1177–1182

    Article  PubMed Central  PubMed  Google Scholar 

  • Thiel G, Hohl M (2006) RE-1 silencing transcription factor: Regulation of neuronal gene expression via modification of the chromatin structure. In: Thiel G (ed) Transcription factors in the nervous system – Development, Brain Function and Disease. Wiley-VCH, Weinheim, pp 113–128

    Chapter  Google Scholar 

  • Thiel G, Lietz M, Cramer M (1998) Biological activity and modular structure of RE-1 silencing transcription factor (REST), a repressor of neuronal genes. J Biol Chem 273:26891–26899

    Article  CAS  PubMed  Google Scholar 

  • Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Meth 5:829–834

    Article  CAS  Google Scholar 

  • van Arensbergen J, Garcá-Hurtado J, Moran I, Maestro MA, Xu X, Van de Casteele M, Skoudy AL, Palassini M, Heimberg H, Ferrer J (2010) Derepression of polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res 20:722–732

    Article  PubMed Central  PubMed  Google Scholar 

  • Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A, Leng Y, Maehr R, Shi Y, Harper JW, Elledge SJ (2008) SCFβ-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452:370–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada Y, Aoki H, Kunisada T, Hara A (2010) Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance. Cell Stem Cell 6:10–15

  • Yu M, Suo H, Liu M, Cai L, Liu J, Huang Y, Xu J, Wang Y, Zhu C, Fei J, Huang F (2013) NRSF/REST neuronal deficient mice are more vulnerable to the neurotoxin MPTP. Neurobiol Aging 34:916–927

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Biswas N, Gayen JR, Miramontes-Gonzalez JP, Hightower CM, Mustapic M, Mahata M, Huang C-T, Hook VY, Mahata SK, Vaingankar S, O’Connor DT (2013) Chromogranin B: intra- and extra-cellular mechanaisms to regulate catecholamine storage and release, in catecholaminergic cells and organisms. J Neurochem. doi:10.1111/jnc.12527

    PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Libby Guethlein for critical reading of the manuscript. The research of the laboratory concerning the function of transcription factors in the nervous and endocrine system systems is supported by the University of Saarland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Thiel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiel, G., Ekici, M. & Rössler, O.G. RE-1 silencing transcription factor (REST): a regulator of neuronal development and neuronal/endocrine function. Cell Tissue Res 359, 99–109 (2015). https://doi.org/10.1007/s00441-014-1963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1963-0

Keywords

Navigation