Hamilton WJ, Boyd JD (1960) Development of the human placenta in the first 3 months of gestation. J Anat 94:297–328
CAS
PubMed
PubMed Central
Google Scholar
Burton GJ, Fowden AL (2015) The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci 370:20140066
Article
PubMed
PubMed Central
Google Scholar
Burton GJ, Charnock-Jones DS, Jauniaux E (2009) Regulation of vascular growth and function in the human placenta. Reproduction 138:895–902
Article
CAS
PubMed
Google Scholar
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN (2018) The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol 9:1091
Article
PubMed
PubMed Central
Google Scholar
Mastorakos G, Ilias I (2003) Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci 997:136–149
Article
CAS
PubMed
Google Scholar
Velegrakis A, Sfakiotaki M, Sifakis S (2017) Human placental growth hormone in normal and abnormal fetal growth. Biomed Rep 7:115–122
Article
CAS
PubMed
PubMed Central
Google Scholar
Brosens JJ, Pijnenborg R, Brosens IA (2002) The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol 187:1416–1423
Article
PubMed
Google Scholar
Fisher SJ (2015) Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol 213:S115–S122
Article
PubMed
PubMed Central
Google Scholar
Hustin J, Jauniaux E, Schaaps JP (1990) Histological study of the materno-embryonic interface in spontaneous abortion. Placenta 11:477–486
Article
CAS
PubMed
Google Scholar
Khong TY, De Wolf F, Robertson WB, Brosens I (1986) Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol 93:1049–1059
Article
CAS
PubMed
Google Scholar
Khong TY, Liddell HS, Robertson WB (1987) Defective haemochorial placentation as a cause of miscarriage: a preliminary study. Br J Obstet Gynaecol 94:649–655
Article
CAS
PubMed
Google Scholar
Pijnenborg R, Anthony J, Davey DA, Rees A, Tiltman A, Vercruysse L, van Assche A (1991) Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol 98:648–655
Article
CAS
PubMed
Google Scholar
Romero R, Kusanovic JP, Chaiworapongsa T, Hassan SS (2011) Placental bed disorders in preterm labor, preterm PROM, spontaneous abortion and abruptio placentae. Best Pract Res Clin Obstet Gynaecol 25:313–327
Article
PubMed
PubMed Central
Google Scholar
Wallenstein MB, Harper LM, Odibo AO, Roehl KA, Longman RE, Macones GA, Cahill AG (2012) Fetal congenital heart disease and intrauterine growth restriction: a retrospective cohort study. J Matern Fetal Neonatal Med 25:662–665
Article
PubMed
Google Scholar
Wang H et al (2015) Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep 5:11262
Article
PubMed
PubMed Central
Google Scholar
Brosens I, Pijnenborg R, Vercruysse L, Romero R (2011) The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol 204:193–201
Article
PubMed
Google Scholar
Weiner E, Feldstein O, Tamayev L, Grinstein E, Barber E, Bar J, Schreiber L, Kovo M (2018) Placental histopathological lesions in correlation with neonatal outcome in preeclampsia with and without severe features. Pregnancy Hypertens 12:6–10
Article
PubMed
Google Scholar
Parks WT (2015) Placental hypoxia: the lesions of maternal malperfusion. Semin Perinatol 39:9–19
Article
PubMed
Google Scholar
Silver RM (2018) Examining the link between placental pathology, growth restriction, and stillbirth. Best Pract Res Clin Obstet Gynaecol 49:89–102
Article
PubMed
Google Scholar
Leavey K, Benton SJ, Grynspan D, Kingdom JC, Bainbridge SA, Cox BJ (2016) Unsupervised placental gene expression profiling identifies clinically relevant subclasses of human preeclampsia. Hypertension 68:137–147
Article
CAS
PubMed
Google Scholar
Sober S et al (2015) Extensive shift in placental transcriptome profile in preeclampsia and placental origin of adverse pregnancy outcomes. Sci Rep 5:13336
Article
CAS
PubMed
PubMed Central
Google Scholar
Than NG et al (2018) Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia. Front Immunol 9:1661
Article
CAS
PubMed
PubMed Central
Google Scholar
Barker DJ (2004) The developmental origins of chronic adult disease. Acta Paediatr Suppl 93:26–33
Article
CAS
PubMed
Google Scholar
Barker DJ (2004) The developmental origins of well-being. Philos Trans R Soc Lond B Biol Sci 359:1359–1366
Article
CAS
PubMed
PubMed Central
Google Scholar
Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20
Article
CAS
PubMed
Google Scholar
Barker DJ, Martyn CN (1992) The maternal and fetal origins of cardiovascular disease. J Epidemiol Community Health 46:8–11
Article
CAS
PubMed
PubMed Central
Google Scholar
Bassily E, Bell C, Verma S, Patel N, Patel A (2018) Significance of obstetrical history with future cardiovascular disease risk. Am J Med. https://doi.org/10.1016/j.amjmed.2018.11.029
Article
PubMed
Google Scholar
Burton GJ, Fowden AL, Thornburg KL (2016) Placental origins of chronic disease. Physiol Rev 96:1509–1565
Article
CAS
PubMed
PubMed Central
Google Scholar
Bronson SL, Bale TL (2016) The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology 41:207–218
Article
PubMed
Google Scholar
Burton GJ, Jauniaux E, Charnock-Jones DS (2010) The influence of the intrauterine environment on human placental development. Int J Dev Biol 54:303–312
Article
CAS
PubMed
Google Scholar
Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, Fisher SJ (2004) Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest 114:744–754
Article
CAS
PubMed
PubMed Central
Google Scholar
Gamage TK, Chamley LW, James JL (2016) Stem cell insights into human trophoblast lineage differentiation. Hum Reprod Update 23:77–103
Article
CAS
PubMed
Google Scholar
Okae H et al (2018) Derivation of human trophoblast stem cells. Cell Stem Cell 22(50–63):e6
Google Scholar
Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M, Kaindl U, Ellinger A, Burkard TR, Fiala C, Pollheimer J, Mendjan S, Latos PA, Knöfler M (2018) Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep 11(2):537–551. https://doi.org/10.1016/j.stemcr.2018.07.004
CAS
Article
Google Scholar
Latos PA, Hemberger M (2014) Review: the transcriptional and signalling networks of mouse trophoblast stem cells. Placenta 35(Suppl):S81–S85
Article
CAS
PubMed
Google Scholar
Simmons DG, Cross JC (2005) Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol 284:12–24
Article
CAS
PubMed
Google Scholar
Knöfler M, Vasicek R, Schreiber M (2001) Key regulatory transcription factors involved in placental trophoblast development—a review. Placenta 22(Suppl A):S83–S92
Article
PubMed
Google Scholar
Loregger T, Pollheimer J, Knöfler M (2003) Regulatory transcription factors controlling function and differentiation of human trophoblast—a review. Placenta 24(Suppl A):S104–S110
Article
CAS
PubMed
Google Scholar
Woods L, Perez-Garcia V, Hemberger M (2018) Regulation of placental development and its impact on fetal growth-new insights from mouse models. Front Endocrinol (Lausanne) 9:570
Article
Google Scholar
Perez-Garcia V et al (2018) Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature 555:463–468
Article
CAS
PubMed
PubMed Central
Google Scholar
Burton GJ, Jauniaux E (2018) Development of the human placenta and fetal heart: synergic or independent? Front Physiol 9:373
Article
PubMed
PubMed Central
Google Scholar
Carter AM (2007) Animal models of human placentation—a review. Placenta 28(Suppl A):S41–S47
Article
PubMed
Google Scholar
Hertig AT, Rock J, Adams EC (1956) A description of 34 human ova within the first 17 days of development. Am J Anat 98:435–493
Article
CAS
PubMed
Google Scholar
Cockburn K, Rossant J (2010) Making the blastocyst: lessons from the mouse. J Clin Invest 120:995–1003
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahbazi MN, Zernicka-Goetz M (2018) Deconstructing and reconstructing the mouse and human early embryo. Nat Cell Biol 20:878–887
Article
CAS
PubMed
Google Scholar
Carter AM, Enders AC (2004) Comparative aspects of trophoblast development and placentation. Reprod Biol Endocrinol 2:46
Article
CAS
PubMed
PubMed Central
Google Scholar
Carter AM, Enders AC, Pijnenborg R (2015) The role of invasive trophoblast in implantation and placentation of primates. Philos Trans R Soc Lond B Biol Sci 370:20140070
Article
PubMed
PubMed Central
Google Scholar
James JL, Carter AM, Chamley LW (2012) Human placentation from nidation to 5 weeks of gestation. Part I: What do we know about formative placental development following implantation? Placenta 33:327–334
Article
CAS
PubMed
Google Scholar
Boss AL, Chamley LW, James JL (2018) Placental formation in early pregnancy: how is the centre of the placenta made? Hum Reprod Update 24:750–760
Article
PubMed
Google Scholar
Bianchi DW, Wilkins-Haug LE, Enders AC, Hay ED (1993) Origin of extraembryonic mesoderm in experimental animals: relevance to chorionic mosaicism in humans. Am J Med Genet 46:542–550
Article
CAS
PubMed
Google Scholar
Sheng G (2015) The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Dev Biol 15:44
Article
PubMed
PubMed Central
Google Scholar
Aplin JD (2010) Developmental cell biology of human villous trophoblast: current research problems. Int J Dev Biol 54:323–329
Article
PubMed
Google Scholar
Evain-Brion D, Malassine A (2003) Human placenta as an endocrine organ. Growth Horm IGF Res 13(Suppl A):S34–S37
Article
CAS
PubMed
Google Scholar
Boyd JD, Hamilton WJ (1970) The human placenta. Heffer, Cambridge
Book
Google Scholar
Jones CJ, Fox H (1991) Ultrastructure of the normal human placenta. Electron Microsc Rev 4:129–178
Article
CAS
PubMed
Google Scholar
Burton GJ, Jauniaux E (2017) The cytotrophoblastic shell and complications of pregnancy. Placenta 60:134–139
Article
CAS
PubMed
Google Scholar
Velicky P et al (2018) Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet 14:e1007698
Article
CAS
PubMed
PubMed Central
Google Scholar
Pijnenborg R, Dixon G, Robertson WB, Brosens I (1980) Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta 1:3–19
Article
CAS
PubMed
Google Scholar
Pijnenborg R, Vercruysse L, Hanssens M (2006) The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27:939–958
Article
CAS
PubMed
Google Scholar
Moffett A, Chazara O, Colucci F (2017) Maternal allo-recognition of the fetus. Fertil Steril 107:1269–1272
Article
PubMed
Google Scholar
Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M (2018) Regulation of placental extravillous trophoblasts by the maternal uterine environment. Front Immunol 9:2597
Article
CAS
PubMed
PubMed Central
Google Scholar
Moser G, Weiss G, Gauster M, Sundl M, Huppertz B (2015) Evidence from the very beginning: endoglandular trophoblasts penetrate and replace uterine glands in situ and in vitro. Hum Reprod 30:2747–2757
Article
CAS
PubMed
Google Scholar
Moser G, Weiss G, Sundl M, Gauster M, Siwetz M, Lang-Olip I, Huppertz B (2017) Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochem Cell Biol 147:353–366
Article
CAS
PubMed
Google Scholar
Windsperger K et al (2017) Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum Reprod 32:1208–1217
Article
CAS
PubMed
Google Scholar
Velicky P et al (2018) Pregnancy-associated diamine oxidase originates from extravillous trophoblasts and is decreased in early-onset preeclampsia. Sci Rep 8:6342
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL (2009) Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol 174:1959–1971
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace AE, Fraser R, Cartwright JE (2012) Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum Reprod Update 18:458–471
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, Damsky CH (1997) Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest 99:2139–2151
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris LK (2011) IFPA Gabor Than Award lecture: transformation of the spiral arteries in human pregnancy: key events in the remodelling timeline. Placenta 32(Suppl 2):S154–S158
Article
CAS
PubMed
Google Scholar
Robson A et al (2012) Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J 26:4876–4885
Article
CAS
PubMed
Google Scholar
Roberts VHJ, Morgan TK, Bednarek P, Morita M, Burton GJ, Lo JO, Frias AE (2017) Early first trimester uteroplacental flow and the progressive disintegration of spiral artery plugs: new insights from contrast-enhanced ultrasound and tissue histopathology. Hum Reprod 32:2382–2393
Article
CAS
PubMed
PubMed Central
Google Scholar
Hustin J, Schaaps JP (1987) Echographic [corrected] and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol 157:162–168
Article
CAS
PubMed
Google Scholar
Jauniaux E, Watson A, Burton G (2001) Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation. Am J Obstet Gynecol 184:998–1003
Article
CAS
PubMed
Google Scholar
Clark AR, James JL, Stevenson GN, Collins SL (2018) Understanding abnormal uterine artery Doppler waveforms: a novel computational model to explore potential causes within the utero-placental vasculature. Placenta 66:74–81
Article
PubMed
PubMed Central
Google Scholar
James JL, Saghian R, Perwick R, Clark AR (2018) Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling. Hum Reprod. https://doi.org/10.1093/humrep/dey225
Article
PubMed
Google Scholar
Osol G, Mandala M (2009) Maternal uterine vascular remodeling during pregnancy. Physiology (Bethesda) 24:58–71
Google Scholar
Borbely AU et al (2014) The term basal plate of the human placenta as a source of functional extravillous trophoblast cells. Reprod Biol Endocrinol 12:7
Article
PubMed
PubMed Central
Google Scholar
Douglas GC, King BF (1990) Differentiation of human trophoblast cells in vitro as revealed by immunocytochemical staining of desmoplakin and nuclei. J Cell Sci 96(Pt 1):131–141
PubMed
Google Scholar
Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF 3rd (1986) Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118:1567–1582
Article
CAS
PubMed
Google Scholar
Morrish DW, Bhardwaj D, Dabbagh LK, Marusyk H, Siy O (1987) Epidermal growth factor induces differentiation and secretion of human chorionic gonadotropin and placental lactogen in normal human placenta. J Clin Endocrinol Metab 65:1282–1290
Article
CAS
PubMed
Google Scholar
Yang M, Lei ZM, Rao CV (2003) The central role of human chorionic gonadotropin in the formation of human placental syncytium. Endocrinology 144:1108–1120
Article
CAS
PubMed
Google Scholar
Gerbaud P, Pidoux G (2015) Review: an overview of molecular events occurring in human trophoblast fusion. Placenta 36(Suppl 1):S35–S42
Article
CAS
PubMed
Google Scholar
Huppertz B, Gauster M (2011) Trophoblast fusion. Adv Exp Med Biol 713:81–95
Article
CAS
PubMed
Google Scholar
Keryer G, Alsat E, Tasken K, Evain-Brion D (1998) Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro. J Cell Sci 111(Pt 7):995–1004
CAS
PubMed
Google Scholar
Knöfler M, Saleh L, Bauer S, Vasicek R, Griesinger G, Strohmer H, Helmer H, Husslein P (2000) Promoter elements and transcription factors involved in differentiation-dependent human chorionic gonadotrophin-alpha messenger ribonucleic acid expression of term villous trophoblasts. Endocrinology 141:3737–3748
Article
PubMed
Google Scholar
Lokossou AG, Toudic C, Barbeau B (2014) Implication of human endogenous retrovirus envelope proteins in placental functions. Viruses 6:4609–4627
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng YH, Handwerger S (2005) A placenta-specific enhancer of the human syncytin gene. Biol Reprod 73:500–509
Article
CAS
PubMed
Google Scholar
Yu C, Shen K, Lin M, Chen P, Lin C, Chang GD, Chen H (2002) GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem 277:50062–50068
Article
CAS
PubMed
Google Scholar
Anson-Cartwright L, Dawson K, Holmyard D, Fisher SJ, Lazzarini RA, Cross JC (2000) The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet 25:311–314
Article
CAS
PubMed
Google Scholar
Baczyk D, Drewlo S, Proctor L, Dunk C, Lye S, Kingdom J (2009) Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ 16:719–727
Article
CAS
PubMed
Google Scholar
Murthi P, Kalionis B, Cocquebert M, Rajaraman G, Chui A, Keogh RJ, Evain-Brion D, Fournier T (2013) Homeobox genes and down-stream transcription factor PPARgamma in normal and pathological human placental development. Placenta 34:299–309
Article
CAS
PubMed
Google Scholar
Rouault C et al (2016) Transcriptomic signatures of villous cytotrophoblast and syncytiotrophoblast in term human placenta. Placenta 44:83–90
Article
CAS
PubMed
Google Scholar
Liu Y, Fan X, Wang R, Lu X, Dang YL, Wang H, Lin HY, Zhu C, Ge H, Cross JC, Wang H (2018) Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res 28(8):819–832. https://doi.org/10.1038/s41422-018-0066-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Suryawanshi H et al (2018) A single-cell survey of the human first-trimester placenta and decidua. Sci Adv 4:eaau4788
Article
CAS
PubMed
PubMed Central
Google Scholar
Vento-Tormo R et al (2018) Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563:347–353
Article
CAS
PubMed
Google Scholar
Yabe S, Alexenko AP, Amita M, Yang Y, Schust DJ, Sadovsky Y, Ezashi T, Roberts RM (2016) Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas. Proc Natl Acad Sci USA 113:E2598–E2607
Article
CAS
PubMed
PubMed Central
Google Scholar
Knöfler M, Pollheimer J (2012) IFPA Award in placentology lecture: molecular regulation of human trophoblast invasion. Placenta 33(Suppl):S55–S62
Article
PubMed
PubMed Central
Google Scholar
Pollheimer J, Knöfler M (2005) Signalling pathways regulating the invasive differentiation of human trophoblasts: a review. Placenta 26(Suppl A):S21–S30
Article
CAS
PubMed
Google Scholar
Steinberg ML, Robins JC (2016) Cellular models of trophoblast differentiation. Semin Reprod Med 34:50–56
Article
CAS
PubMed
Google Scholar
Apps R, Murphy SP, Fernando R, Gardner L, Ahad T, Moffett A (2009) Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127:26–39
Article
CAS
PubMed
PubMed Central
Google Scholar
Bilban M, Tauber S, Haslinger P, Pollheimer J, Saleh L, Pehamberger H, Wagner O, Knöfler M (2010) Trophoblast invasion: assessment of cellular models using gene expression signatures. Placenta 31:989–996
Article
CAS
PubMed
Google Scholar
Genbacev O, Schubach SA, Miller RK (1992) Villous culture of first trimester human placenta–model to study extravillous trophoblast (EVT) differentiation. Placenta 13:439–461
Article
CAS
PubMed
Google Scholar
Vicovac L, Jones CJ, Aplin JD (1995) Trophoblast differentiation during formation of anchoring villi in a model of the early human placenta in vitro. Placenta 16:41–56
Article
CAS
PubMed
Google Scholar
Damsky CH, Fitzgerald ML, Fisher SJ (1992) Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J Clin Invest 89:210–222
Article
CAS
PubMed
PubMed Central
Google Scholar
Fock V, Plessl K, Draxler P, Otti GR, Fiala C, Knöfler M, Pollheimer J (2015) Neuregulin-1-mediated ErbB2-ErbB3 signalling protects human trophoblasts against apoptosis to preserve differentiation. J Cell Sci 128:4306–4316
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223
Article
CAS
PubMed
Google Scholar
Fisher SJ, Cui TY, Zhang L, Hartman L, Grahl K, Zhang GY, Tarpey J, Damsky CH (1989) Adhesive and degradative properties of human placental cytotrophoblast cells in vitro. J Cell Biol 109:891–902
Article
CAS
PubMed
Google Scholar
Pollheimer J, Fock V, Knöfler M (2014) Review: the ADAM metalloproteinases—novel regulators of trophoblast invasion? Placenta 35(Suppl):S57–S63
Article
CAS
PubMed
Google Scholar
Biadasiewicz K, Sonderegger S, Haslinger P, Haider S, Saleh L, Fiala C, Pollheimer J, Knöfler M (2011) Transcription factor AP-2alpha promotes EGF-dependent invasion of human trophoblast. Endocrinology 152:1458–1469
Article
CAS
PubMed
Google Scholar
Poehlmann TG, Fitzgerald JS, Meissner A, Wengenmayer T, Schleussner E, Friedrich K, Markert UR (2005) Trophoblast invasion: tuning through LIF, signalling via Stat3. Placenta 26(Suppl A):S37–S41
Article
CAS
PubMed
Google Scholar
Renaud SJ, Kubota K, Rumi MA, Soares MJ (2014) The FOS transcription factor family differentially controls trophoblast migration and invasion. J Biol Chem 289:5025–5039
Article
CAS
PubMed
Google Scholar
Wakeland AK et al (2017) Hypoxia directs human extravillous trophoblast differentiation in a hypoxia-inducible factor-dependent manner. Am J Pathol 187:767–780
Article
CAS
PubMed
PubMed Central
Google Scholar
Haider S, Meinhardt G, Saleh L, Fiala C, Pollheimer J, Knöfler M (2016) Notch1 controls development of the extravillous trophoblast lineage in the human placenta. Proc Natl Acad Sci USA 113:E7710–E7719
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonderegger S, Pollheimer J, Knöfler M (2010) Wnt signalling in implantation, decidualisation and placental differentiation—review. Placenta 31:839–847
Article
CAS
PubMed
PubMed Central
Google Scholar
Meinhardt G, Haider S, Haslinger P, Proestling K, Fiala C, Pollheimer J, Knöfler M (2014) Wnt-dependent T-cell factor-4 controls human extravillous trophoblast motility. Endocrinology 155:1908–1920
Article
CAS
PubMed
Google Scholar
Pollheimer J et al (2006) Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am J Pathol 168:1134–1147
Article
CAS
PubMed
PubMed Central
Google Scholar
Goffin F et al (2003) Evidence of a limited contribution of feto-maternal interactions to trophoblast differentiation along the invasive pathway. Tissue Antigens 62:104–116
Article
CAS
PubMed
Google Scholar
Red-Horse K et al (2006) Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation. J Clin Invest 116:2643–2652
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim KH, Zhou Y, Janatpour M, McMaster M, Bass K, Chun SH, Fisher SJ (1997) Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am J Pathol 151:1809–1818
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y et al (2013) Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. J Clin Invest 123:2862–2872
Article
PubMed
PubMed Central
Google Scholar
Leavey K, Bainbridge SA, Cox BJ (2015) Large scale aggregate microarray analysis reveals three distinct molecular subclasses of human preeclampsia. PLoS One 10:e0116508
Article
CAS
PubMed
PubMed Central
Google Scholar
Pavlicev M et al (2017) Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res 27:349–361
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsang JCH et al (2017) Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. Proc Natl Acad Sci USA 114:E7786–E7795
Article
CAS
PubMed
PubMed Central
Google Scholar
Baczyk D, Dunk C, Huppertz B, Maxwell C, Reister F, Giannoulias D, Kingdom JC (2006) Bi-potential behaviour of cytotrophoblasts in first trimester chorionic villi. Placenta 27:367–374
Article
CAS
PubMed
Google Scholar
James JL, Stone PR, Chamley LW (2007) The isolation and characterization of a population of extravillous trophoblast progenitors from first trimester human placenta. Hum Reprod 22:2111–2119
Article
PubMed
Google Scholar
Aboagye-Mathiesen G, Laugesen J, Zdravkovic M, Ebbesen P (1996) Isolation and characterization of human placental trophoblast subpopulations from first-trimester chorionic villi. Clin Diagn Lab Immunol 3:14–22
CAS
PubMed
PubMed Central
Google Scholar
James JL, Stone PR, Chamley LW (2005) Cytotrophoblast differentiation in the first trimester of pregnancy: evidence for separate progenitors of extravillous trophoblasts and syncytiotrophoblast. Reproduction 130:95–103
Article
CAS
PubMed
Google Scholar
Flechon JE, Laurie S, Notarianni E (1995) Isolation and characterization of a feeder-dependent, porcine trophectoderm cell line obtained from a 9-day blastocyst. Placenta 16:643–658
Article
CAS
PubMed
Google Scholar
Hashizume K, Shimada A, Nakano H, Takahashi T (2006) Bovine trophoblast cell culture systems: a technique to culture bovine trophoblast cells without feeder cells. Methods Mol Med 121:179–188
CAS
PubMed
Google Scholar
Vandevoort CA, Thirkill TL, Douglas GC (2007) Blastocyst-derived trophoblast stem cells from the rhesus monkey. Stem Cells Dev 16:779–788
Article
CAS
PubMed
Google Scholar
Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282:2072–2075
Article
CAS
PubMed
Google Scholar
Kunath T, Yamanaka Y, Detmar J, MacPhee D, Caniggia I, Rossant J, Jurisicova A (2014) Developmental differences in the expression of FGF receptors between human and mouse embryos. Placenta 35:1079–1088
Article
CAS
PubMed
Google Scholar
Blakeley P et al (2015) Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142:3151–3165
Article
CAS
PubMed
PubMed Central
Google Scholar
Petropoulos S et al (2016) Single-cell RNA-Seq reveals lineage and X Chromosome dynamics in human preimplantation embryos. Cell 165:1012–1026
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee CQ et al (2016) What is trophoblast? A combination of criteria define human first-trimester trophoblast. Stem Cell Rep 6:257–272
Article
CAS
Google Scholar
Li Y, Moretto-Zita M, Leon-Garcia S, Parast MM (2014) p63 inhibits extravillous trophoblast migration and maintains cells in a cytotrophoblast stem cell-like state. Am J Pathol 184:3332–3343
Article
CAS
PubMed
PubMed Central
Google Scholar
Genbacev O et al (2011) Establishment of human trophoblast progenitor cell lines from the chorion. Stem Cells 29:1427–1436
CAS
PubMed
PubMed Central
Google Scholar
Genbacev O et al (2016) Integrin alpha4-positive human trophoblast progenitors: functional characterization and transcriptional regulation. Hum Reprod 31:1300–1314
Article
CAS
PubMed
PubMed Central
Google Scholar
Challen GA, Little MH (2006) A side order of stem cells: the SP phenotype. Stem Cells 24:3–12
Article
PubMed
Google Scholar
Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806
Article
CAS
PubMed
Google Scholar
Bai Q et al (2012) Dissecting the first transcriptional divergence during human embryonic development. Stem Cell Rev 8:150–162
Article
CAS
Google Scholar
Takao T et al (2011) Isolation and characterization of human trophoblast side-population (SP) cells in primary villous cytotrophoblasts and HTR-8/SVneo cell line. PLoS One 6:e21990
Article
CAS
PubMed
PubMed Central
Google Scholar
James JL, Hurley DG, Gamage TK, Zhang T, Vather R, Pantham P, Murthi P, Chamley LW (2015) Isolation and characterisation of a novel trophoblast side-population from first trimester placentae. Reproduction 150:449–462
Article
CAS
PubMed
Google Scholar
Gamage TKJB, Schierding W, Hurley D, Tsai P, Ludgate JL, Bhoothpur C, Chamley LW, Weeks RJ, Macaulay EC, James JL (2018) The role of DNA methylation in human trophoblast differentiation. Epigenetics 13(12):1154–1173. https://doi.org/10.1080/15592294.2018.1549462
Article
PubMed
PubMed Central
Google Scholar
Rodriguez AM, Downs KM (2017) Visceral endoderm and the primitive streak interact to build the fetal-placental interface of the mouse gastrula. Dev Biol 432:98–124
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura T et al (2016) A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537:57–62
Article
CAS
PubMed
Google Scholar
Takashina T (1987) Haemopoiesis in the human yolk sac. J Anat 151:125–135
CAS
PubMed
PubMed Central
Google Scholar
Shafiee A, Patel J, Hutmacher DW, Fisk NM, Khosrotehrani K (2018) Meso-endothelial bipotent progenitors from human placenta display distinct molecular and cellular identity. Stem Cell Reports 10:890–904
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A et al (2017) Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep 19:1902–1916
Article
CAS
PubMed
PubMed Central
Google Scholar
Luckett WP (1978) Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am J Anat 152:59–97
Article
CAS
PubMed
Google Scholar
Aplin JD, Whittaker H, Jana Lim YT, Swietlik S, Charnock J, Jones CJ (2015) Hemangioblastic foci in human first trimester placenta: distribution and gestational profile. Placenta 36:1069–1077
Article
PubMed
Google Scholar
Rhodes KE et al (2008) The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2:252–263
Article
CAS
PubMed
PubMed Central
Google Scholar
Riddell MR, Winkler-Lowen B, Chakrabarti S, Dunk C, Davidge ST, Guilbert LJ (2012) The characterization of fibrocyte-like cells: a novel fibroblastic cell of the placenta. Placenta 33:143–150
Article
CAS
PubMed
Google Scholar
Du WJ et al (2016) Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res Ther 7:163
Article
CAS
PubMed
PubMed Central
Google Scholar
Meraviglia V et al (2012) Human chorionic villus mesenchymal stromal cells reveal strong endothelial conversion properties. Differentiation 83:260–270
Article
CAS
PubMed
Google Scholar
Xu JG, Zhu SY, Heng BC, Dissanayaka WL, Zhang CF (2017) TGF-beta1-induced differentiation of SHED into functional smooth muscle cells. Stem Cell Res Ther 8:10
Article
CAS
PubMed
PubMed Central
Google Scholar
Babaie Y et al (2007) Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 25:500–510
Article
CAS
PubMed
Google Scholar
Tiruthani K, Sarkar P, Rao B (2013) Trophoblast differentiation of human embryonic stem cells. Biotechnol J 8:421–433
Article
CAS
PubMed
Google Scholar
Golos TG, Giakoumopoulos M, Gerami-Naini B (2013) Review: trophoblast differentiation from human embryonic stem cells. Placenta 34(Suppl):S56–S61
Article
CAS
PubMed
Google Scholar
Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 102:4783–4788
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoya-Arias R, Tomishima M, Perna F, Voza F, Nimer SD (2011) L3MBTL1 deficiency directs the differentiation of human embryonic stem cells toward trophectoderm. Stem Cells Dev 20:1889–1900
Article
CAS
PubMed
PubMed Central
Google Scholar
Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–2102
Article
CAS
PubMed
Google Scholar
Lichtner B, Knaus P, Lehrach H, Adjaye J (2013) BMP10 as a potent inducer of trophoblast differentiation in human embryonic and induced pluripotent stem cells. Biomaterials 34:9789–9802
Article
CAS
PubMed
Google Scholar
Sudheer S, Bhushan R, Fauler B, Lehrach H, Adjaye J (2012) FGF inhibition directs BMP4-mediated differentiation of human embryonic stem cells to syncytiotrophoblast. Stem Cells Dev 21:2987–3000
Article
CAS
PubMed
PubMed Central
Google Scholar
Adachi K, Suemori H, Yasuda SY, Nakatsuji N, Kawase E (2010) Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells 15:455–470
CAS
PubMed
Google Scholar
Wang Z, Oron E, Nelson B, Razis S, Ivanova N (2012) Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10:440–454
Article
CAS
PubMed
Google Scholar
Amita M, Adachi K, Alexenko AP, Sinha S, Schust DJ, Schulz LC, Roberts RM, Ezashi T (2013) Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci USA 110:E1212–E1221
Article
PubMed
PubMed Central
Google Scholar
Galat V et al (2012) A model of early human embryonic stem cell differentiation reveals inter- and intracellular changes on transition to squamous epithelium. Stem Cells Dev 21:1250–1263
Article
CAS
PubMed
Google Scholar
Drukker M et al (2012) Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nat Biotechnol 30:531–542
Article
CAS
PubMed
PubMed Central
Google Scholar
Erb TM et al (2011) Paracrine and epigenetic control of trophectoderm differentiation from human embryonic stem cells: the role of bone morphogenic protein 4 and histone deacetylases. Stem Cells Dev 20:1601–1614
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernardo AS et al (2011) BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9:144–155
Article
CAS
PubMed
PubMed Central
Google Scholar
Horii M et al (2016) Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc Natl Acad Sci USA 113:E3882–E3891
Article
CAS
PubMed
PubMed Central
Google Scholar
Zdravkovic T et al (2015) Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification. Development 142:4010–4025
Article
CAS
PubMed
PubMed Central
Google Scholar
Kretzschmar K, Clevers H (2017) Wnt/beta-catenin signaling in adult mammalian epithelial stem cells. Dev Biol 428:273–282
Article
CAS
PubMed
Google Scholar
Turco MY et al (2018) Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 564:263–267
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossant J, Cross JC (2001) Placental development: lessons from mouse mutants. Nat Rev Genet 2:538–548
Article
CAS
PubMed
Google Scholar
Janatpour MJ, McMaster MT, Genbacev O, Zhou Y, Dong J, Cross JC, Israel MA, Fisher SJ (2000) Id-2 regulates critical aspects of human cytotrophoblast differentiation, invasion and migration. Development 127:549–558
CAS
PubMed
Google Scholar
Kuckenberg P, Kubaczka C, Schorle H (2012) The role of transcription factor Tcfap2c/TFAP2C in trophectoderm development. Reprod Biomed Online 25:12–20
Article
CAS
PubMed
Google Scholar
Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner AL (1994) Essential role of Mash-2 in extraembryonic development. Nature 371:333–336
Article
CAS
PubMed
Google Scholar
Alders M et al (1997) The human Achaete-Scute homologue 2 (ASCL2, HASH2) maps to chromosome 11p15.5, close to IGF2 and is expressed in extravillus trophoblasts. Hum Mol Genet 6:859–867
Article
CAS
PubMed
Google Scholar
Meinhardt G, Husslein P, Knöfler M (2005) Tissue-specific and ubiquitous basic helix-loop-helix transcription factors in human placental trophoblasts. Placenta 26:527–539
Article
CAS
PubMed
Google Scholar
Knöfler M, Meinhardt G, Vasicek R, Husslein P, Egarter C (1998) Molecular cloning of the human Hand1 gene/cDNA and its tissue-restricted expression in cytotrophoblastic cells and heart. Gene 224:77–86
Article
PubMed
Google Scholar
Riley P, Anson-Cartwright L, Cross JC (1998) The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat Genet 18:271–275
Article
CAS
PubMed
Google Scholar
Knöfler M, Meinhardt G, Bauer S, Loregger T, Vasicek R, Bloor DJ, Kimber SJ, Husslein P (2002) Human Hand1 basic helix-loop-helix (bHLH) protein: extra-embryonic expression pattern, interaction partners and identification of its transcriptional repressor domains. Biochem J 361:641–651
Article
PubMed
PubMed Central
Google Scholar
Roberts RM et al (2014) Differentiation of trophoblast cells from human embryonic stem cells: to be or not to be? Reproduction 147:D1–D12
Article
CAS
PubMed
Google Scholar
Soncin F, Khater M, To C, Pizzo D, Farah O, Wakeland A, Arul Nambi Rajan K, Nelson KK, Chang CW, Moretto-Zita M, Natale DR, Laurent LC, Parast MM (2018) Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development. https://doi.org/10.1242/dev.156273
Article
PubMed
PubMed Central
Google Scholar
Paul S, Home P, Bhattacharya B, Ray S (2017) GATA factors: master regulators of gene expression in trophoblast progenitors. Placenta 60(Suppl 1):S61–S66
Article
CAS
PubMed
PubMed Central
Google Scholar
Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH (2016) Self-organization of the in vitro attached human embryo. Nature 533:251–254
Article
CAS
PubMed
Google Scholar
Niakan KK, Eggan K (2013) Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol 375:54–64
Article
CAS
PubMed
Google Scholar
Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929
Article
CAS
PubMed
Google Scholar
Chen AE et al (2009) Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4:103–106
Article
CAS
PubMed
PubMed Central
Google Scholar
Donnison M, Beaton A, Davey HW, Broadhurst R, L’Huillier P, Pfeffer PL (2005) Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 132:2299–2308
Article
CAS
PubMed
Google Scholar
Russ AP et al (2000) Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404:95–99
Article
CAS
PubMed
Google Scholar
Hemberger M, Udayashankar R, Tesar P, Moore H, Burton GJ (2010) ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Hum Mol Genet 19:2456–2467
Article
CAS
PubMed
Google Scholar
Krendl C et al (2017) GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc Natl Acad Sci USA 114:E9579–E9588
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishioka N et al (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410
Article
CAS
PubMed
Google Scholar
Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–3836
Article
CAS
PubMed
Google Scholar
DaSilva-Arnold S, James JL, Al-Khan A, Zamudio S, Illsley NP (2015) Differentiation of first trimester cytotrophoblast to extravillous trophoblast involves an epithelial–mesenchymal transition. Placenta 36:1412–1418
Article
CAS
PubMed
Google Scholar
Davies EJ, Pollheimer J, Yong HE, Kokkinos MI, Kalionis B, Knöfler M, Murthi P (2016) Epithelial-mesenchymal transition during extravillous trophoblast differentiation. Cell Adhes Migr 10:310–321
Article
Google Scholar
Yi F, Pereira L, Hoffman JA, Shy BR, Yuen CM, Liu DR, Merrill BJ (2011) Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat Cell Biol 13:762–770
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunkapiller NM, Gasperowicz M, Kapidzic M, Plaks V, Maltepe E, Kitajewski J, Cross JC, Fisher SJ (2011) A role for Notch signaling in trophoblast endovascular invasion and in the pathogenesis of pre-eclampsia. Development 138:2987–2998
Article
CAS
PubMed
PubMed Central
Google Scholar
Plessl K, Haider S, Fiala C, Pollheimer J, Knöfler M (2015) Expression pattern and function of Notch2 in different subtypes of first trimester cytotrophoblast. Placenta 36:365–371
Article
CAS
PubMed
PubMed Central
Google Scholar
van Dijk M, Mulders J, Poutsma A, Konst AA, Lachmeijer AM, Dekker GA, Blankenstein MA, Oudejans CB (2005) Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 37:514–519
Article
CAS
PubMed
Google Scholar
van Dijk M, van Bezu J, van Abel D, Dunk C, Blankenstein MA, Oudejans CB, Lye SJ (2010) The STOX1 genotype associated with pre-eclampsia leads to a reduction of trophoblast invasion by alpha-T-catenin upregulation. Hum Mol Genet 19:2658–2667
Article
CAS
PubMed
Google Scholar
Renaud SJ, Chakraborty D, Mason CW, Rumi MA, Vivian JL, Soares MJ (2015) OVO-like 1 regulates progenitor cell fate in human trophoblast development. Proc Natl Acad Sci USA 112:E6175–E6184
Article
CAS
PubMed
PubMed Central
Google Scholar