Skip to main content

Advertisement

Log in

Exosomes: from carcinogenesis and metastasis to diagnosis and treatment of gastric cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Exosomes represent an important group of extracellular vesicles with a defined size between 40 and 150 nm and cup-shaped construction which have a pivotal role in elimination of intracellular debris and intercellular signaling networks. A line of evidence revealed the impact of different types of exosomes in initiation, progression, and metastasis of gastric cancer (GC). These bioactive vesicles mediate tumor and stromal communication network through modulation of cell signaling for carcinogenesis and pre-metastatic niche formation in distant organs. Exosomes contain various cargos including DNAs (mitochondrial and genomic), proteins, transposable elements, and RNAs (coding and noncoding) with different compositions related to functional status of origin cells. In this review, we summarize the main roles of key exosomal cargos in induction of exosome-mediated signaling in cancer cells. Body fluids are employed frequently as the source of exosomes released by tumor cells with a potential role in early diagnosis of GC and chemoresistance. These vesicles as non-toxic and non-immunogenic carriers are also found to be applied for novel drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sitarz R, Skierucha M, Mielko J et al (2018) Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 10:239–248. https://doi.org/10.2147/CMAR.S149619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jeddi F, Soozangar N, Sadeghi MR et al (2018) Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer. Biomed Pharmacother 97:286–292. https://doi.org/10.1016/J.BIOPHA.2017.10.129

    Article  CAS  PubMed  Google Scholar 

  3. Smyth EC, Verheij M, Allum W et al (2016) Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol 27:v38–v49. https://doi.org/10.1093/annonc/mdw350

    Article  CAS  PubMed  Google Scholar 

  4. Yan Y, Fu G, Ye Y, Ming L (2017) Exosomes participate in the carcinogenesis and the malignant behavior of gastric cancer. Scand J Gastroenterol 52:499–504. https://doi.org/10.1080/00365521.2016.1278458

    Article  CAS  PubMed  Google Scholar 

  5. Orditura M, Galizia G, Sforza V et al (2014) Treatment of gastric cancer. World J Gastroenterol 20:1635–1649. https://doi.org/10.3748/wjg.v20.i7.1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shimizu D, Kanda M, Kodera Y (2018) Emerging evidence of the molecular landscape specific for hematogenous metastasis from gastric cancer. World J Gastrointest Oncol 10:124–136. https://doi.org/10.4251/wjgo.v10.i6.124

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maia J, Caja S, Strano Moraes MC et al (2018) Exosome-based cell-cell communication in the tumor microenvironment. Front cell Dev Biol 6:18. https://doi.org/10.3389/fcell.2018.00018

    Article  PubMed  PubMed Central  Google Scholar 

  8. Harding CV, Heuser JE, Stahl PD (2013) Exosomes: looking back three decades and into the future. J Cell Biol 200:367–371. https://doi.org/10.1083/jcb.201212113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948. https://doi.org/10.1016/j.bbagen.2012.03.017

    Article  CAS  PubMed  Google Scholar 

  10. Rajagopal C, Harikumar KB (2018) The origin and functions of exosomes in cancer. Front Oncol 8:66. https://doi.org/10.3389/fonc.2018.00066

    Article  PubMed  PubMed Central  Google Scholar 

  11. Skotland T, Sandvig K, Llorente A (2017) Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res 66:30–41. https://doi.org/10.1016/J.PLIPRES.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  12. Kowal J, Arras G, Colombo M et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113:E968–E977. https://doi.org/10.1073/pnas.1521230113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruivo CF, Adem B, Silva M, Melo SA (2017) The biology of cancer exosomes: insights and new perspectives. Cancer Res 77:6480–6488. https://doi.org/10.1158/0008-5472.CAN-17-0994

    Article  CAS  PubMed  Google Scholar 

  14. Hessvik NP, Llorente A (2017) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. https://doi.org/10.1007/s00018-017-2595-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yuyama K, Sun H, Mitsutake S, Igarashi Y (2012) Sphingolipid-modulated Exosome secretion promotes clearance of amyloid-β by microglia. J Biol Chem 287:10977–10989. https://doi.org/10.1074/jbc.M111.324616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Villarroya-Beltri C, Baixauli F, Mittelbrunn M et al (2016) ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun 7:13588. https://doi.org/10.1038/ncomms13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McKelvey KJ, Powell KL, Ashton AW et al (2015) Exosomes: mechanisms of uptake. J Circ biomarkers 4:7. https://doi.org/10.5772/61186

    Article  CAS  Google Scholar 

  18. Zhang H-G, Grizzle WE (2014) Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol 184:28–41. https://doi.org/10.1016/j.ajpath.2013.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li X, Wang Y, Wang Q et al (2018) Exosomes in cancer: small transporters with big functions. Cancer Lett 435:55–65. https://doi.org/10.1016/j.canlet.2018.07.037

    Article  CAS  PubMed  Google Scholar 

  20. Ludwig A-K, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44:11–15. https://doi.org/10.1016/j.biocel.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  21. De Toro J, Herschlik L, Waldner C, Mongini C (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 6:203. https://doi.org/10.3389/fimmu.2015.00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rana S, Malinowska K, Zöller M (2013) Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 15:281–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eyvazi S, Hejazi MS, Kahroba H et al (2018) Cdk9 as an appealing target for therapeutic interventions. Curr Drug Targets. https://doi.org/10.2174/1389450119666181026152221

    Article  Google Scholar 

  24. Seo N, Shirakura Y, Tahara Y et al (2018) Activated CD8 + T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nat Commun 9:435. https://doi.org/10.1038/s41467-018-02865-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Brinton L, Sloane H, Kester M, Kelly K (2015) Formation and role of exosomes in cancer. Cell Mol Life 72:659–671

    Article  CAS  Google Scholar 

  26. Imamura T, Komatsu S, Ichikawa D et al (2017) Low plasma levels of miR-101 are associated with tumor progression in gastric cancer. Oncotarget 8:106538–106550. https://doi.org/10.18632/oncotarget.20860

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang M, Zhao C, Shi H et al (2014) Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer 110:1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li W, Gao Y-Q (2018) MiR-217 is involved in the carcinogenesis of gastric cancer by down-regulating CDH1 expression. Kaohsiung J Med Sci 34:377–384. https://doi.org/10.1016/J.KJMS.2018.02.003

    Article  PubMed  Google Scholar 

  29. Ohshima K, Inoue K, Fujiwara A et al (2010) Let-7 MicroRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5:e13247. https://doi.org/10.1371/journal.pone.0013247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ke X, Yan R, Sun Z et al (2017) Esophageal adenocarcinoma-derived extracellular vesicle microRNAs induce a neoplastic phenotype in gastric organoids. Neoplasia 19:941–949. https://doi.org/10.1016/j.neo.2017.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qu J-L, Qu X-J, Zhao M-F et al (2009) Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis 41:875–880. https://doi.org/10.1016/j.dld.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  32. Li C, Liu D, Li G et al (2015) CD97 promotes gastric cancer cell proliferation and invasion through exosome-mediated MAPK signaling pathway. World J Gastroentrol 21:6215

    Article  CAS  Google Scholar 

  33. Qi J, Zhou Y, Jiao Z et al (2017) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cell Physiol Biochem 42:2242–2254. https://doi.org/10.1159/000479998

    Article  CAS  PubMed  Google Scholar 

  34. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292. https://doi.org/10.1016/j.cell.2011.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sawayama H, Ishimoto T, Baba H (2018) Microenvironment in the pathogenesis of gastric cancer metastasis. J Cancer Metastasis Treat 4:10. https://doi.org/10.20517/2394-4722.2017.79

    Article  CAS  Google Scholar 

  36. Arita T, Ichikawa D, Konishi H et al (2016) Tumor exosome-mediated promotion of adhesion to mesothelial cells in gastric cancer cells. Oncotarget 7:56855–56863. https://doi.org/10.18632/oncotarget.10869

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen K-B, Chen J, Jin X-L et al (2018) Exosome-mediated peritoneal dissemination in gastric cancer and its clinical applications. Biomed Rep 8:503–509. https://doi.org/10.3892/br.2018.1088

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tokuhisa M, Ichikawa Y, Kosaka N et al (2015) Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One 10:e0130472. https://doi.org/10.1371/journal.pone.0130472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Shi H, Yuan X et al (2018) Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol Cancer 17:146. https://doi.org/10.1186/s12943-018-0898-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang H, Zhang H, Ge S et al (2018) Exosome-derived miR-130a activates angiogenesis in gastric cancer by targeting C-MYB in vascular endothelial cells. Mol Ther 26:2466–2475. https://doi.org/10.1016/j.ymthe.2018.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fallah A, Sadeghinia A, Kahroba H et al (2019) Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother 110:775–785. https://doi.org/10.1016/j.biopha.2018.12.022

    Article  CAS  PubMed  Google Scholar 

  42. Tsai JH, Yang J (2013) Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27:2192–2206. https://doi.org/10.1101/gad.225334.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diepenbruck M, Christofori G (2016) Epithelial–mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol 43:7–13. https://doi.org/10.1016/j.ceb.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  44. Yang H, Fu H, Wang B et al (2018) Exosomal miR-423-5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol Carcinog. https://doi.org/10.1002/mc.22838

    Article  PubMed  PubMed Central  Google Scholar 

  45. Steinbichler TB, Dudás J, Riechelmann H, Skvortsova I-I (2017) The role of exosomes in cancer metastasis. Semin Cancer Biol 44:170–181. https://doi.org/10.1016/j.semcancer.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  46. Gu H, Ji R, Zhang X, Wang M (2016) Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway. Mol Med Rep 14:3452–3458

    Article  CAS  PubMed  Google Scholar 

  47. Tao L, Huang G, Song H et al (2017) Cancer associated fibroblasts: an essential role in the tumor microenvironment. Oncol Lett 14:2611–2620. https://doi.org/10.3892/ol.2017.6497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Guan X, Zhang Y et al (2018) Exosomal miR-27a derived from gastric cancer cells regulates the transformation of fibroblasts into cancer-associated fibroblasts. Cell Physiol Biochem 49:I. https://doi.org/10.1159/000493218

    Article  CAS  Google Scholar 

  49. Gu J, Qian H, Shen L et al (2012) Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PLoS One 7:e52465. https://doi.org/10.1371/journal.pone.0052465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ning X, Zhang H, Wang C, Song X (2018) Exosomes released by gastric cancer cells induce transition of pericytes into cancer-associated fibroblasts. Med Sci Monit 24:2350–2359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ma M, Chen S, Liu Z et al (2017) miRNA-221 of exosomes originating from bone marrow mesenchymal stem cells promotes oncogenic activity in gastric cancer. Onco Targets Ther 10:4161–4171. https://doi.org/10.2147/OTT.S143315

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhu W, Huang L, Li Y et al (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315:28–37

    Article  CAS  PubMed  Google Scholar 

  53. Zheng X, Turkowski K, Mora J et al (2017) Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget 8:4843–48452. https://doi.org/10.18632/oncotarget.17061

    Article  Google Scholar 

  54. Wu L, Zhang X, Zhang B et al (2016) Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumor Biol 37:12169–12180

    Article  CAS  Google Scholar 

  55. Wang F, Li B, Wei Y et al (2018) Tumor-derived exosomes induce PD1 + macrophage population in human gastric cancer that promotes disease progression. Oncogenesis 7:41. https://doi.org/10.1038/s41389-018-0049-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng P, Luo Q, Wang W et al (2018) Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E. Cell Death Dis 94(9):434. https://doi.org/10.1038/s41419-018-0465-5

    Article  CAS  Google Scholar 

  57. Yamamoto H (2014) Detection of DNA methylation of gastric juice-derived exosomes in gastric cancer. Integr Mol Med 1:17–21. https://doi.org/10.15761/IMM.1000105

    Article  Google Scholar 

  58. Yamamoto H, Watanabe Y, Oikawa R et al (2016) BARHL2 methylation using gastric wash DNA or gastric juice exosomal DNA is a useful marker for early detection of gastric cancer in an H. pylori-independent manner. Clin Transl Gastroenterol 7:e184. https://doi.org/10.1038/ctg.2016.40

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen Y, Xie Y, Xu L et al (2017) Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics. Int J Cancer 140:900–913. https://doi.org/10.1002/ijc.30496

    Article  CAS  PubMed  Google Scholar 

  60. Miki Y, Yashiro M, Okuno T et al (2018) CD9-positive exosomes from cancer-associated fibroblasts stimulate the migration ability of scirrhous-type gastric cancer cells. Br J Cancer 118:867–877. https://doi.org/10.1038/bjc.2017.487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoon JH, Ham I-H, Kim O et al (2018) Gastrokine 1 protein is a potential theragnostic target for gastric cancer. Gastric Cancer. https://doi.org/10.1007/s10120-018-0828-8

    Article  PubMed  Google Scholar 

  62. Fu H, Yang H, Zhang X et al (2018) Exosomal TRIM3 is a novel marker and therapy target for gastric cancer. J Exp Clin Cancer Res 37:162. https://doi.org/10.1186/s13046-018-0825-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yen E-Y, Miaw S-C, Yu J-S, Lai I-R (2017) Exosomal TGF-β1 is correlated with lymphatic metastasis of gastric cancers. Am J Cancer Res 7:2199–2208

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Anami K, Oue N, Noguchi T et al (2016) TSPAN8, identified by Escherichia coli ampicillin secretion trap, is associated with cell growth and invasion in gastric cancer. Gastric Cancer 19:370–380. https://doi.org/10.1007/s10120-015-0478-z

    Article  CAS  PubMed  Google Scholar 

  65. Zhang H, Deng T, Liu R et al (2017) Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun 8:15016. https://doi.org/10.1038/ncomms15016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen K-B, Chen J, Jin X-L et al (2018) Exosome-mediated peritoneal dissemination in gastric cancer and its clinical applications. Biomed reports 8:503–509. https://doi.org/10.3892/br.2018.1088

    Article  Google Scholar 

  67. Wang J-P, Tang Y-Y, Fan C-M et al (2018) The role of exosomal non-coding RNAs in cancer metastasis. Oncotarget 9:12487–12502. https://doi.org/10.18632/oncotarget.23552

    Article  PubMed  Google Scholar 

  68. Majidinia M, Yousefi B (2016) Long non-coding RNAs in cancer drug resistance development. DNA Repair (Amst) 45:25–33. https://doi.org/10.1016/J.DNAREP.2016.06.003

    Article  CAS  Google Scholar 

  69. Zhao R, Zhang Y, Zhang X et al (2018) Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer 17:68. https://doi.org/10.1186/s12943-018-0817-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu X, Sun M, Nie F et al (2014) Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer 13:92. https://doi.org/10.1186/1476-4598-13-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li Q, Shao Y, Zhang X et al (2015) Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumor Biol 36:2007–2012

    Article  CAS  Google Scholar 

  72. Pan L, Liang W, Fu M et al (2017) Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol 143:991–1004. https://doi.org/10.1007/s00432-017-2361-2

    Article  CAS  PubMed  Google Scholar 

  73. Huang Y, Luo H, Li F et al (2018) LINC00152 down-regulated miR-193a-3p to enhance MCL1 expression and promote gastric cancer cells proliferation. Biosci Rep 38:BSR20171607. https://doi.org/10.1042/BSR20171607

  74. Huang Y, Zhang J, Hou L et al (2017) LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. J Exp Clin Cancer Res 36:194. https://doi.org/10.1186/s13046-017-0666-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dong D, Mu Z, Zhao C, Sun M (2018) ZFAS1: a novel tumor-related long non-coding RNA. Cancer Cell Int 18:125. https://doi.org/10.1186/s12935-018-0623-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Majidinia M, Darband SG, Kaviani M et al (2018) Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair (Amst) 66–67:30–41. https://doi.org/10.1016/J.DNAREP.2018.04.002

    Article  Google Scholar 

  77. Zhang X, Liang W, Liu J et al (2018) Long non-coding RNA UFC1 promotes gastric cancer progression by regulating miR-498/Lin28b. J Exp Clin Cancer Res 37:134. https://doi.org/10.1186/s13046-018-0803-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shimoda A, Ueda K, Nishiumi S (2016) Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci Rep 6:18346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang W, Jiang X, Bao J et al (2018) Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front Immunol 9:90. https://doi.org/10.3389/fimmu.2018.00090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Che Y, Geng B, Xu Y et al (2018) Helicobacter pylori-induced exosomal MET educates tumour-associated macrophages to promote gastric cancer progression. J Cell Mol Med 22:5708–5719. https://doi.org/10.1111/jcmm.13847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Polakovicova I, Jerez S, Wichmann IA et al (2018) Role of microRNAs and exosomes in Helicobacter pylori and Epstein-barr virus associated gastric cancers. Front Microbiol 9:636. https://doi.org/10.3389/fmicb.2018.00636

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang J, Wang Q, Liu H et al (2010) MicroRNA expression and its implication for the diagnosis and therapeutic strategies of gastric cancer. Cancer Lett 29:7137–7143

    Google Scholar 

  83. Jarry J, Schadendorf D, Greenwood C et al (2014) The validity of circulating microRNAs in oncology: five years of challenges and contradictions. Mol Oncol 8:819–829. https://doi.org/10.1016/j.molonc.2014.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ueda T, Volinia S, Okumura H et al (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 11:136–146. https://doi.org/10.1016/S1470-2045(09)70343-2

    Article  CAS  PubMed  Google Scholar 

  85. Rosenfeld N, Aharonov R, Meiri E et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26:462–469. https://doi.org/10.1038/nbt1392

    Article  CAS  PubMed  Google Scholar 

  86. Huang Z, Zhu D, Wu L et al (2017) Six serum-based miRNAs as potential diagnostic biomarkers for gastric cancer. Cancer Epidemiol Biomarkers Prev 26:188–196. https://doi.org/10.1158/1055-9965.EPI-16-0607

    Article  CAS  PubMed  Google Scholar 

  87. Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya T (2015) Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One 10:e130472

    Article  CAS  Google Scholar 

  88. Kumata Y, Iinuma H, Suzuki Y et al (2018) Exosome-encapsulated microRNA-23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage. Oncol Rep 40:319–330. https://doi.org/10.3892/or.2018.6418

    Article  CAS  PubMed  Google Scholar 

  89. Lin L-Y, Yang L, Zeng Q et al (2018) Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol Cancer 17:84. https://doi.org/10.1186/s12943-018-0834-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Berrondo C, Flax J, Kucherov V et al (2016) Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS One 11:e0147236. https://doi.org/10.1371/journal.pone.0147236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li W, Li C, Zhou T et al (2017) Role of exosomal proteins in cancer diagnosis. Mol Cancer 16:145. https://doi.org/10.1186/s12943-017-0706-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Abak A, Abhari A, Rahimzadeh S (2018) Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. Peer J 6:e4763. https://doi.org/10.7717/peerj.4763

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Rocha CRR, Silva MM, Quinet A et al (2018) DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo) 73:e478s. https://doi.org/10.6061/clinics/2018/e478s

    Article  Google Scholar 

  94. Jeddi F, Soozangar N, Sadeghi MR et al (2017) Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and chemoresistance. DNA Repair (Amst) 54:13–21. https://doi.org/10.1016/J.DNAREP.2017.03.008

    Article  CAS  Google Scholar 

  95. Ratti M, Lampis A, Hahne JC et al (2018) Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci 75:4151–4162. https://doi.org/10.1007/s00018-018-2906-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhou J, Tan X, Tan Y et al (2018) Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review. J Cancer 9:3129–3137. https://doi.org/10.7150/jca.25376

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hu Y, Yan C, Mu L et al (2015) Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One 10:e0125625. https://doi.org/10.1371/journal.pone.0125625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dianat-Moghadam H, Heydarifard M, Jahanban-Esfahlan R et al (2018) Cancer stem cells-emanated therapy resistance: implications for liposomal drug delivery systems. J Control Release 288:62–83. https://doi.org/10.1016/j.jconrel.2018.08.043

    Article  CAS  PubMed  Google Scholar 

  99. Zheng P, Chen L, Yuan X et al (2017) Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res 36:53. https://doi.org/10.1186/s13046-017-0528-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang X, Zhang H, Bai M et al (2018) Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 26:774–783. https://doi.org/10.1016/j.ymthe.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang J-J, Wang Z-Y, Chen R et al (2015) Macrophage-secreted Exosomes delivering miRNA-21 inhibitor can regulate BGC-823 cell proliferation. Asian Pac J Cancer Prev 16:4203–4209

    Article  PubMed  Google Scholar 

  102. Barok M, Puhka M, Vereb G et al (2018) Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation. BMC Cancer 18:504. https://doi.org/10.1186/s12885-018-4418-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang H, Wang Y, Bai M et al (2018) Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Sci 109:629–641. https://doi.org/10.1111/cas.13488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kahn S, Liao Y, Du X et al (2018) Exosomal MicroRNAs in milk from mothers delivering preterm infants survive in vitro digestion and are taken up by human intestinal cells. Mol Nutr Food Res 62:1701050. https://doi.org/10.1002/mnfr.201701050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Tabriz university of medical sciences under Grant no. IR.TBZMED.REC.1396.910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Samadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahroba, H., Hejazi, M.S. & Samadi, N. Exosomes: from carcinogenesis and metastasis to diagnosis and treatment of gastric cancer. Cell. Mol. Life Sci. 76, 1747–1758 (2019). https://doi.org/10.1007/s00018-019-03035-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03035-2

Keywords

Navigation