Skip to main content

Advertisement

Log in

Transcription factor Ptf1a in development, diseases and reprogramming

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The transcription factor Ptf1a is a crucial helix–loop–helix (bHLH) protein selectively expressed in the pancreas, retina, spinal cord, brain, and enteric nervous system. Ptf1a is preferably assembled into a transcription trimeric complex PTF1 with an E protein and Rbpj (or Rbpjl). In pancreatic development, Ptf1a is indispensable in controlling the expansion of multipotent progenitor cells as well as the specification and maintenance of the acinar cells. In neural tissues, Ptf1a is transiently expressed in the post-mitotic cells and specifies the inhibitory neuronal cell fates, mostly mediated by downstream genes such as Tfap2a/b and Prdm13. Mutations in the coding and non-coding regulatory sequences resulting in Ptf1a gain- or loss-of-function are associated with genetic diseases such as pancreatic and cerebellar agenesis in the rodent and human. Surprisingly, Ptf1a alone is sufficient to reprogram mouse or human fibroblasts into tripotential neural stem cells. Its pleiotropic functions in many biological processes remain to be deciphered in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Image adapted from Fujiyama et al. [101]

Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murre C et al (1989) Interactions between heterologous helix–loop–helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58(3):537–544

    Article  PubMed  CAS  Google Scholar 

  2. Chaudhary J, Skinner MK (1999) Basic helix–loop–helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells. Mol Endocrinol 13(5):774–786

    Article  PubMed  CAS  Google Scholar 

  3. Grove CA et al (2009) A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138(2):314–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Murre C et al (1994) Structure and function of helix–loop–helix proteins. Biochim Biophys Acta 1218(2):129–135

    Article  PubMed  CAS  Google Scholar 

  5. Massari ME, Murre C (2000) Helix–loop–helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20(2):429–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Benezra R et al (1990) The protein Id: a negative regulator of helix–loop–helix DNA binding proteins. Cell 61(1):49–59

    Article  PubMed  CAS  Google Scholar 

  7. Wang LH, Baker NE (2015) E proteins and ID proteins: helix–loop–helix partners in development and disease. Dev Cell 35(3):269–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cockell M et al (1989) Identification of a cell-specific DNA-binding activity that interacts with a transcriptional activator of genes expressed in the acinar pancreas. Mol Cell Biol 9(6):2464–2476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rose SD et al (2001) The role of PTF1-P48 in pancreatic acinar gene expression. J Biol Chem 276(47):44018–44026

    Article  PubMed  CAS  Google Scholar 

  10. Beres TM et al (2006) PTF1 is an organ-specific and Notch-independent basic helix–loop–helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Mol Cell Biol 26(1):117–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rose SD, MacDonald RJ (1997) Evolutionary silencing of the human elastase I gene (ELA1). Hum Mol Genet 6(6):897–903

    Article  PubMed  CAS  Google Scholar 

  12. Masui T et al (2010) Replacement of Rbpj with Rbpjl in the PTF1 complex controls the final maturation of pancreatic acinar cells. Gastroenterology 139(1):270–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Masui T et al (2007) Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev 21(20):2629–2643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Perillo M et al (2016) A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva. BMC Evol Biol 16(1):117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Weedon MN et al (2014) Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet 46(1):61–64

    Article  PubMed  CAS  Google Scholar 

  16. Gonc EN et al (2015) Variable phenotype of diabetes mellitus in siblings with a homozygous PTF1A enhancer mutation. Horm Res Paediatr 84(3):206–211

    Article  PubMed  CAS  Google Scholar 

  17. Mona B et al (2016) Regulating the dorsal neural tube expression of Ptf1a through a distal 3′ enhancer. Dev Biol 418(1):216–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lu CK et al (2012) Rbms3, an RNA-binding protein, mediates the expression of Ptf1a by binding to its 3′UTR during mouse pancreas development. DNA Cell Biol 31(7):1245–1251

    Article  PubMed  CAS  Google Scholar 

  19. Hanoun N et al (2014) The E3 ubiquitin ligase thyroid hormone receptor-interacting protein 12 targets pancreas transcription factor 1a for proteasomal degradation. J Biol Chem 289(51):35593–35604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Driscoll CA, Macdonald DW, O’Brien SJ (2009) From wild animals to domestic pets, an evolutionary view of domestication. Proc Natl Acad Sci USA 106(Suppl 1):9971–9978

    Article  PubMed  Google Scholar 

  21. Masui T et al (2008) Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Mol Cell Biol 28(17):5458–5468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Meredith DM et al (2009) Multiple transcriptional mechanisms control Ptf1a levels during neural development including autoregulation by the PTF1-J complex. J Neurosci 29(36):11139–11148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Meredith DM et al (2013) Program specificity for Ptf1a in pancreas versus neural tube development correlates with distinct collaborating cofactors and chromatin accessibility. Mol Cell Biol 33(16):3166–3179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Thompson N et al (2012) RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors. Mol Cell Biol 32(6):1189–1199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Obata J et al (2001) p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes Cells 6(4):345–360

    Article  PubMed  CAS  Google Scholar 

  26. Petcherski AG, Kimble J (2000) LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 405(6784):364–368

    Article  PubMed  CAS  Google Scholar 

  27. Kovall RA (2008) More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene 27(38):5099–5109

    Article  PubMed  CAS  Google Scholar 

  28. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kovall RA, Hendrickson WA (2004) Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J 23(17):3441–3451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Krapp A et al (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12(23):3752–3763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Krapp A et al (1996) The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix–loop–helix protein. EMBO J 15(16):4317–4329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kawaguchi Y et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134

    Article  PubMed  CAS  Google Scholar 

  33. Pan FC et al (2013) Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 140(4):751–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kim DY et al (2015) Functional regulation of FoxO1 in neural stem cell differentiation. Cell Death Differ 22(12):2034–2045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Willet SG et al (2014) Dominant and context-specific control of endodermal organ allocation by Ptf1a. Development 141(22):4385–4394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dong PD et al (2008) Graded levels of Ptf1a differentially regulate endocrine and exocrine fates in the developing pancreas. Genes Dev 22(11):1445–1450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hesselson D, Anderson RM, Stainier DY (2011) Suppression of Ptf1a activity induces acinar-to-endocrine conversion. Curr Biol 21(8):712–717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ahnfelt-Ronne J et al (2012) Ptf1a-mediated control of Dll1 reveals an alternative to the lateral inhibition mechanism. Development 139(1):33–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ghosh B, Leach SD (2006) Interactions between hairy/enhancer of split-related proteins and the pancreatic transcription factor Ptf1-p48 modulate function of the PTF1 transcriptional complex. Biochem J 393(Pt 3):679–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wiebe PO et al (2007) Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Mol Cell Biol 27(11):4093–4104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Miyatsuka T et al (2007) Ptf1a and RBP-J cooperate in activating Pdx1 gene expression through binding to Area III. Biochem Biophys Res Commun 362(4):905–909

    Article  PubMed  CAS  Google Scholar 

  42. Gao N et al (2008) Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev 22(24):3435–3448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Holmstrom SR et al (2011) LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function. Genes Dev 25(16):1674–1679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rodolosse A et al (2009) p/CAF modulates the activity of the transcription factor p48/Ptf1a involved in pancreatic acinar differentiation. Biochem J 418(2):463–473

    Article  PubMed  CAS  Google Scholar 

  45. Jiang Z et al (2008) Exdpf is a key regulator of exocrine pancreas development controlled by retinoic acid and ptf1a in zebrafish. PLoS Biol 6(11):e293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hoang CQ et al (2016) Transcriptional maintenance of pancreatic acinar identity, differentiation, and homeostasis by PTF1A. Mol Cell Biol 36(24):3033–3047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hale MA et al (2014) The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis. Development 141(16):3123–3133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Qu X et al (2015) Growth factor independence-1 (Gfi1) is required for pancreatic acinar unit formation and centroacinar cell differentiation. Cell Mol Gastroenterol Hepatol 1(2):233–247.e1

    Article  PubMed  Google Scholar 

  49. Gao T et al (2013) Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology 144(7):1543–1553.e9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bonal C et al (2009) Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 136(1):309–319.e9

    Article  PubMed  CAS  Google Scholar 

  51. Chen NM et al (2015) NFATc1 links EGFR signaling to induction of Sox9 transcription and acinar-ductal transdifferentiation in the pancreas. Gastroenterology 148(5):pp. 1024–1034 e9

    Article  CAS  Google Scholar 

  52. Haumaitre C et al (2005) Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci USA 102(5):1490–1495

    Article  PubMed  CAS  Google Scholar 

  53. Zaret KS (2008) Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet 9(5):329–340

    Article  PubMed  CAS  Google Scholar 

  54. Bhushan A et al (2001) Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128(24):5109–5117

    PubMed  CAS  Google Scholar 

  55. Ye F, Duvillie B, Scharfmann R (2005) Fibroblast growth factors 7 and 10 are expressed in the human embryonic pancreatic mesenchyme and promote the proliferation of embryonic pancreatic epithelial cells. Diabetologia 48(2):277–281

    Article  PubMed  CAS  Google Scholar 

  56. Jacquemin P et al (2006) An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol 290(1):189–199

    Article  PubMed  CAS  Google Scholar 

  57. Yoshitomi H, Zaret KS (2004) Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131(4):807–817

    Article  PubMed  CAS  Google Scholar 

  58. Campos ML et al (2013) ICAT is a novel Ptf1a interactor that regulates pancreatic acinar differentiation and displays altered expression in tumours. Biochem J 451(3):395–405

    Article  PubMed  CAS  Google Scholar 

  59. Fujitani Y et al (2006) Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development 133(22):4439–4450

    Article  PubMed  CAS  Google Scholar 

  60. Nakhai H et al (2007) Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134(6):1151–1160

    Article  PubMed  CAS  Google Scholar 

  61. Dullin JP et al (2007) Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC Dev Biol 7:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Jin K et al (2015) Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain 8:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Li S et al (2004) Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 43(6):795–807

    Article  PubMed  CAS  Google Scholar 

  64. Luo H et al (2012) Forkhead box N4 (Foxn4) activates Dll4-Notch signaling to suppress photoreceptor cell fates of early retinal progenitors. Proc Natl Acad Sci USA 109(9):E553–E562

    Article  PubMed  Google Scholar 

  65. Xiang M, Li S (2013) Foxn4: a multi-faceted transcriptional regulator of cell fates in vertebrate development. Sci China Life Sci 56(11):985–993

    Article  PubMed  CAS  Google Scholar 

  66. Lelievre EC et al (2011) Ptf1a/Rbpj complex inhibits ganglion cell fate and drives the specification of all horizontal cell subtypes in the chick retina. Dev Biol 358(2):296–308

    Article  PubMed  CAS  Google Scholar 

  67. Liu H et al (2013) An isoform of retinoid-related orphan receptor beta directs differentiation of retinal amacrine and horizontal interneurons. Nat Commun 4:1813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Menuchin-Lasowski Y et al (2016) Sip1 regulates the generation of the inner nuclear layer retinal cell lineages in mammals. Development 143(15):2829–2841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Wei W et al (2018) Requirement of the Mowat-Wilson syndrome gene Zeb2 in the differentiation and maintenance of non-photoreceptor cell types during retinal development. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1186-6

  70. Xiao D, Jin K, Xiang M (2018) Necessity and sufficiency of Ldb1 in the generation, differentiation and maintenance of non-photoreceptor cell types during retinal development. Front Mol Neurosci 11:271

  71. Jin K (2017) Transitional progenitors during vertebrate retinogenesis. Mol Neurobiol 54(5):3565–3576

    Article  PubMed  CAS  Google Scholar 

  72. Bassett EA et al (2012) Overlapping expression patterns and redundant roles for AP-2 transcription factors in the developing mammalian retina. Dev Dyn 241(4):814–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Watanabe S et al (2015) Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. J Neurosci 35(20):8004–8020

    Article  PubMed  CAS  Google Scholar 

  74. Goodson NB et al (2018) Prdm13 is required for Ebf3+ amacrine cell formation in the retina. Dev Biol 434(1):149–163

    Article  PubMed  CAS  Google Scholar 

  75. Sapkota D et al (2014) Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development. Proc Natl Acad Sci USA 111(39):E4086–E4095

    Article  PubMed  CAS  Google Scholar 

  76. Wu F et al (2013) Onecut1 is essential for horizontal cell genesis and retinal integrity. J Neurosci 33(32):13053–13065, 13065a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Poche RA et al (2007) Lim1 is essential for the correct laminar positioning of retinal horizontal cells. J Neurosci 27(51):14099–14107

    Article  PubMed  CAS  Google Scholar 

  78. Margeta MA (2008) Transcription factor Lim1 specifies horizontal cell laminar position in the retina. J Neurosci 28(15):3835–3836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Jin K et al (2010) Early B-cell factors are required for specifying multiple retinal cell types and subtypes from postmitotic precursors. J Neurosci 30(36):11902–11916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Jiang H, Xiang M (2009) Subtype specification of GABAergic amacrine cells by the orphan nuclear receptor Nr4a2/Nurr1. J Neurosci 29(33):10449–10459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Riesenberg AN et al (2009) Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina. J Neurosci 29(41):12865–12877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Zheng MH et al (2009) The transcription factor RBP-J is essential for retinal cell differentiation and lamination. Mol Brain 2:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Glasgow SM et al (2005) Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 132(24):5461–5469

    Article  PubMed  CAS  Google Scholar 

  84. Huang M et al (2008) Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev Biol 322(2):394–405

    Article  PubMed  CAS  Google Scholar 

  85. Todd AJ (1996) GABA and glycine in synaptic glomeruli of the rat spinal dorsal horn. Eur J Neurosci 8(12):2492–2498

    Article  PubMed  CAS  Google Scholar 

  86. Todd AJ, Sullivan AC (1990) Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 296(3):496–505

    Article  PubMed  CAS  Google Scholar 

  87. Wapinski OL et al (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155(3):621–635

    Article  PubMed  CAS  Google Scholar 

  88. Hanotel J et al (2014) The Prdm13 histone methyltransferase encoding gene is a Ptf1a–Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Dev Biol 386(2):340–357

    Article  PubMed  CAS  Google Scholar 

  89. Wildner H et al (2013) Genome-wide expression analysis of Ptf1a- and Ascl1-deficient mice reveals new markers for distinct dorsal horn interneuron populations contributing to nociceptive reflex plasticity. J Neurosci 33(17):7299–7307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Borromeo MD et al (2014) A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development 141(14):2803–2812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zainolabidin N et al (2017) Distinct Activities of Tfap2A and Tfap2B in the Specification of GABAergic Interneurons in the Developing Cerebellum. Front Mol Neurosci 10(281):281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Li S et al (2005) Foxn4 acts synergistically with Mash1 to specify subtype identity of V2 interneurons in the spinal cord. Proc Natl Acad Sci USA 102(30):10688–10693

    Article  PubMed  CAS  Google Scholar 

  93. Hoshino M et al (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47(2):201–213

    Article  PubMed  CAS  Google Scholar 

  94. Pascual M et al (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104(12):5193–5198

    Article  PubMed  CAS  Google Scholar 

  95. Yamada M et al (2014) Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci 34(14):4786–4800

    Article  PubMed  CAS  Google Scholar 

  96. Millen KJ et al (2014) Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proc Natl Acad Sci USA 111(17):E1777–E1786

    Article  PubMed  CAS  Google Scholar 

  97. Sellick GS et al (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36(12):1301–1305

    Article  PubMed  CAS  Google Scholar 

  98. Iskusnykh IY, Steshina EY, Chizhikov VV (2016) Loss of Ptf1a leads to a widespread cell-fate misspecification in the brainstem, affecting the development of somatosensory and viscerosensory nuclei. J Neurosci 36(9):2691–2710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Yamada M et al (2007) Origin of climbing fiber neurons and their developmental dependence on Ptf1a. J Neurosci 27(41):10924–10934

    Article  PubMed  CAS  Google Scholar 

  100. Fujiyama T et al (2009) Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development 136(12):2049–2058

    Article  PubMed  CAS  Google Scholar 

  101. Fujiyama T et al (2018) Forebrain Ptf1a is required for sexual differentiation of the brain. Cell Rep 24(1):79–94

    Article  PubMed  CAS  Google Scholar 

  102. Nakamura N et al (2016) Neonatal kisspeptin is steroid-independently required for defeminisation and peripubertal kisspeptin-induced testosterone is required for masculinisation of the brain: a behavioural study using Kiss1 knockout rats. J Neuroendocrinol 28. https://doi.org/10.1111/jne.12409

  103. Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366(1):64–73

    Article  PubMed  CAS  Google Scholar 

  104. Wakayama K et al (2002) Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells. Neurosci Res 44(2):173–180

    Article  PubMed  CAS  Google Scholar 

  105. Takanaga H et al (2001) GAT2/BGT-1 as a system responsible for the transport of γ-aminobutyric acid at the mouse blood–brain barrier. J Cereb Blood Flow Metab 21(10):1232–1239

    Article  PubMed  CAS  Google Scholar 

  106. Pattyn A et al (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399(6734):366–370

    Article  PubMed  CAS  Google Scholar 

  107. Watanabe Y et al (2013) Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol 379(1):92–106

    Article  PubMed  CAS  Google Scholar 

  108. Memic F et al (2016) Ascl1 is required for the development of specific neuronal subtypes in the enteric nervous system. J Neurosci 36(15):4339–4350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. Lei J, Howard MJ (2011) Targeted deletion of Hand2 in enteric neural precursor cells affects its functions in neurogenesis, neurotransmitter specification and gangliogenesis, causing functional aganglionosis. Development 138(21):4789–4800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Uribe RA, Gu T, Bronner ME (2016) A novel subset of enteric neurons revealed by ptf1a:GFP in the developing zebrafish enteric nervous system. Genesis 54(3):123–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Vlangos CN et al (2013) Next-generation sequencing identifies the Danforth’s short tail mouse mutation as a retrotransposon insertion affecting Ptf1a expression. PLoS Genet 9(2):e1003205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Semba K et al (2013) Ectopic expression of Ptf1a induces spinal defects, urogenital defects, and anorectal malformations in Danforth’s short tail mice. PLoS Genet 9(2):e1003204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lugani F et al (2013) A retrotransposon insertion in the 5′ regulatory domain of Ptf1a results in ectopic gene expression and multiple congenital defects in Danforth’s short tail mouse. PLoS Genet 9(2):e1003206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Tutak E et al (2009) A Turkish newborn infant with cerebellar agenesis/neonatal diabetes mellitus and PTF1A mutation. Genet Couns 20(2):147–152

    PubMed  CAS  Google Scholar 

  115. Al-Shammari M et al (2011) A novel PTF1A mutation in a patient with severe pancreatic and cerebellar involvement. Clin Genet 80(2):196–198

    Article  PubMed  CAS  Google Scholar 

  116. Houghton JA et al (2016) Isolated pancreatic aplasia due to a hypomorphic PTF1A mutation. Diabetes 65(9):2810–2815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Gabbay M et al (2017) Pancreatic agenesis due to compound heterozygosity for a novel enhancer and truncating mutation in the PTF1A gene. J Clin Res Pediatr Endocrinol 9(3):274–277

    Article  PubMed  PubMed Central  Google Scholar 

  118. Krah NM et al (2015) The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. Elife 4:e07125

    Article  PubMed Central  Google Scholar 

  119. Aichler M et al (2012) Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol 226(5):723–734

    Article  PubMed  CAS  Google Scholar 

  120. Naqvi AAT, Hasan GM, Hassan MI (2018) Investigating the role of transcription factors of pancreas development in pancreatic cancer. Pancreatology 18(2):184–190

    Article  PubMed  CAS  Google Scholar 

  121. Nair GG, Vincent RK, Odorico JS (2014) Ectopic Ptf1a expression in murine ESCs potentiates endocrine differentiation and models pancreas development in vitro. Stem Cells 32(5):1195–1207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Xiao D et al (2018) Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun 9(1):2865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Ring KL et al (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Zhang J et al (2017) A role for dystonia-associated genes in spinal GABAergic interneuron circuitry. Cell Rep 21(3):666–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Seto Y et al (2014) Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun 5:3337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Hamilton BA (2013) Retrotransposon activates ectopic Ptf1 expression: a short tail. PLoS Genet 9(2):e1003331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Evelyn Shiang for help with the artwork and many online databases and resources for providing useful data and tools. Some of them are listed in the context. We thank all the colleagues working on related subjects and apologize for unintentional omission of many important findings. This work is supported in part by the National Key R&D Program of China (2017YFA0104100), National Basic Research Program (973 Program) of China (2015CB964600), National Natural Science Foundation of China (81670862 and 81721003), Science and Technology Planning Projects of Guangdong Province (2017B030314025), and the Fundamental Research Funds of the State Key Laboratory of Ophthalmology, Sun Yat-sen University to MX, and the National Natural Science Foundation of China (31871497) to KJ.

Funding

The authors declare no financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kangxin Jin or Mengqing Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, K., Xiang, M. Transcription factor Ptf1a in development, diseases and reprogramming. Cell. Mol. Life Sci. 76, 921–940 (2019). https://doi.org/10.1007/s00018-018-2972-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2972-z

Keywords

Navigation