Skip to main content
Log in

Transitional Progenitors during Vertebrate Retinogenesis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 08 August 2016

Abstract

The retina is a delicate neural tissue responsible for light signal capturing, modulating, and passing to mid-brain. The brain then translated the signals into three-dimensional vision. The mature retina is composed of more than 50 subtypes of cells, all of which are developed from a pool of early multipotent retinal progenitors, which pass through sequential statuses of oligopotent, bipotent, and unipotent progenitors, and finally become terminally differentiated retinal cells. A transitional progenitor model is proposed here to describe how intrinsic developmental programs, along with environmental cues, control the step-by-step differentiation during retinogenesis. The model could elegantly explain many current findings as well as predict roles of intrinsic factors during retinal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baden T, Berens P, Franke K, Roman Roson M, Bethge M, Euler T (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 529(7586):345–350. doi:10.1038/nature16468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Voinescu PE, Kay JN, Sanes JR (2009) Birthdays of retinal amacrine cell subtypes are systematically related to their molecular identity and soma position. J Comp Neurol 517(5):737–750. doi:10.1002/cne.22200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4(9):877–886. doi:10.1038/nn0901-877

    Article  CAS  PubMed  Google Scholar 

  4. Livesey FJ, Cepko CL (2001) Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci 2(2):109–118. doi:10.1038/35053522

    Article  CAS  PubMed  Google Scholar 

  5. Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 93(2):589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watanabe T, Raff MC (1990) Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron 4(3):461–467

    Article  CAS  PubMed  Google Scholar 

  7. Marquardt T (2003) Transcriptional control of neuronal diversification in the retina. Prog Retin Eye Res 22(5):567–577

    Article  CAS  PubMed  Google Scholar 

  8. Cayouette M, Barres BA, Raff M (2003) Importance of intrinsic mechanisms in cell fate decisions in the developing rat retina. Neuron 40(5):897–904

    Article  CAS  PubMed  Google Scholar 

  9. Zhang L, Mathers PH, Jamrich M (2000) Function of Rx, but not Pax6, is essential for the formation of retinal progenitor cells in mice. Genesis 28(3–4):135–142

    Article  CAS  PubMed  Google Scholar 

  10. Heine P, Dohle E, Bumsted-O’Brien K, Engelkamp D, Schulte D (2008) Evidence for an evolutionary conserved role of homothorax/Meis1/2 during vertebrate retina development. Development 135(5):805–811. doi:10.1242/dev.012088

    Article  CAS  PubMed  Google Scholar 

  11. Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, Kageyama R, Wallace VA (2009) Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol 184(1):101–112. doi:10.1083/jcb.200805155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Furukawa T, Kozak CA, Cepko CL (1997) rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci U S A 94(7):3088–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mathers PH, Grinberg A, Mahon KA, Jamrich M (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387(6633):603–607. doi:10.1038/42475

    Article  CAS  PubMed  Google Scholar 

  14. Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105(1):43–55

    Article  CAS  PubMed  Google Scholar 

  15. Poggi L, Vitorino M, Masai I, Harris WA (2005) Influences on neural lineage and mode of division in the zebrafish retina in vivo. J Cell Biol 171(6):991–999. doi:10.1083/jcb.200509098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cayouette M, Raff M (2003) The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 130(11):2329–2339

    Article  CAS  PubMed  Google Scholar 

  17. Cayouette M, Whitmore AV, Jeffery G, Raff M (2001) Asymmetric segregation of Numb in retinal development and the influence of the pigmented epithelium. J Neurosci 21(15):5643–5651

    CAS  PubMed  Google Scholar 

  18. Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82(4):631–641

    Article  CAS  PubMed  Google Scholar 

  19. Kosodo Y, Roper K, Haubensak W, Marzesco AM, Corbeil D, Huttner WB (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 23(11):2314–2324. doi:10.1038/sj.emboj.7600223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11(4):365–374. doi:10.1038/ncb0409-365

    Article  CAS  PubMed  Google Scholar 

  21. Culurgioni S, Mapelli M (2013) Going vertical: functional role and working principles of the protein Inscuteable in asymmetric cell divisions. Cell Mol Life Sci 70(21):4039–4046. doi:10.1007/s00018-013-1319-z

    Article  CAS  PubMed  Google Scholar 

  22. Bhat KM (2014) Notch signaling acts before cell division to promote asymmetric cleavage and cell fate of neural precursor cells. Sci Signal 7(348):ra101. doi:10.1126/scisignal.2005317

    Article  PubMed  CAS  Google Scholar 

  23. El-Hashash AH, Turcatel G, Al Alam D, Buckley S, Tokumitsu H, Bellusci S, Warburton D (2011) Eya1 controls cell polarity, spindle orientation, cell fate and Notch signaling in distal embryonic lung epithelium. Development 138(7):1395–1407. doi:10.1242/dev.058479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu K, Lin Q, Wei Y, He R, Shao X, Ding Z, Zhang J, Zhu M et al (2015) Galphas regulates asymmetric cell division of cortical progenitors by controlling Numb mediated Notch signaling suppression. Neurosci Lett 597:97–103. doi:10.1016/j.neulet.2015.04.034

    Article  CAS  PubMed  Google Scholar 

  25. Dalton S (2015) Linking the cell cycle to cell fate decisions. Trends Cell Biol 25(10):592–600. doi:10.1016/j.tcb.2015.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bramblett DE, Pennesi ME, Wu SM, Tsai MJ (2004) The transcription factor Bhlhb4 is required for rod bipolar cell maturation. Neuron 43(6):779–793. doi:10.1016/j.neuron.2004.08.032

    Article  CAS  PubMed  Google Scholar 

  27. Qiu F, Jiang H, Xiang M (2008) A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors. J Neurosci 28(13):3392–3403. doi:10.1523/JNEUROSCI.0043-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li S, Mo Z, Yang X, Price SM, Shen MM, Xiang M (2004) Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 43(6):795–807. doi:10.1016/j.neuron.2004.08.041

    Article  CAS  PubMed  Google Scholar 

  29. Luo H, Jin K, Xie Z, Qiu F, Li S, Zou M, Cai L, Hozumi K et al (2012) Forkhead box N4 (Foxn4) activates Dll4-Notch signaling to suppress photoreceptor cell fates of early retinal progenitors. Proc Natl Acad Sci U S A 109(9):E553–E562. doi:10.1073/pnas.1115767109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gan L, Xiang M, Zhou L, Wagner DS, Klein WH, Nathans J (1996) POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci U S A 93(9):3920–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang Y, Ding Q, Xie X, Libby RT, Lefebvre V, Gan L (2013) Transcription factors SOX4 and SOX11 function redundantly to regulate the development of mouse retinal ganglion cells. J Biol Chem 288(25):18429–18438. doi:10.1074/jbc.M113.478503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan L, Deng M, Xie X, Gan L (2008) ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development 135(11):1981–1990. doi:10.1242/dev.010751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fujitani Y, Fujitani S, Luo H, Qiu F, Burlison J, Long Q, Kawaguchi Y, Edlund H et al (2006) Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development 133(22):4439–4450. doi:10.1242/dev.02598

    Article  CAS  PubMed  Google Scholar 

  34. Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M (2015) Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain 8(1):28. doi:10.1186/s13041-015-0118-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bassett EA, Korol A, Deschamps PA, Buettner R, Wallace VA, Williams T, West-Mays JA (2012) Overlapping expression patterns and redundant roles for AP-2 transcription factors in the developing mammalian retina. Dev Dyn 241(4):814–829. doi:10.1002/dvdy.23762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu H, Kim SY, Fu Y, Wu X, Ng L, Swaroop A, Forrest D (2013) An isoform of retinoid-related orphan receptor beta directs differentiation of retinal amacrine and horizontal interneurons. Nat Commun 4:1813. doi:10.1038/ncomms2793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shen Q, Wang Y, Dimos JT, Fasano CA, Phoenix TN, Lemischka IR, Ivanova NB, Stifani S et al (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9(6):743–751. doi:10.1038/nn1694

    Article  CAS  PubMed  Google Scholar 

  38. Kao CF, Lee T (2010) Birth time/order-dependent neuron type specification. Curr Opin Neurobiol 20(1):14–21. doi:10.1016/j.conb.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  39. Slater JL, Landman KA, Hughes BD, Shen Q, Temple S (2009) Cell lineage tree models of neurogenesis. J Theor Biol 256(2):164–179. doi:10.1016/j.jtbi.2008.09.034

    Article  PubMed  Google Scholar 

  40. Gomes FL, Zhang G, Carbonell F, Correa JA, Harris WA, Simons BD, Cayouette M (2011) Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 138(2):227–235. doi:10.1242/dev.059683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brzezinski JA, Lamba DA, Reh TA (2010) Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development 137(4):619–629. doi:10.1242/dev.043968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katoh K, Omori Y, Onishi A, Sato S, Kondo M, Furukawa T (2010) Blimp1 suppresses Chx10 expression in differentiating retinal photoreceptor precursors to ensure proper photoreceptor development. J Neurosci 30(19):6515–6526. doi:10.1523/JNEUROSCI.0771-10.2010

    Article  CAS  PubMed  Google Scholar 

  43. Cepko C (2014) Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci 15(9):615–627. doi:10.1038/nrn3767

    Article  CAS  PubMed  Google Scholar 

  44. Jensen AM, Raff MC (1997) Continuous observation of multipotential retinal progenitor cells in clonal density culture. Dev Biol 188(2):267–279. doi:10.1006/dbio.1997.8645

    Article  CAS  PubMed  Google Scholar 

  45. Turner DL, Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328(6126):131–136. doi:10.1038/328131a0

    Article  CAS  PubMed  Google Scholar 

  46. Hsieh YW, Yang XJ (2009) Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors. Neural Dev 4:32. doi:10.1186/1749-8104-4-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Riesenberg AN, Le TT, Willardsen MI, Blackburn DC, Vetter ML, Brown NL (2009) Pax6 regulation of Math5 during mouse retinal neurogenesis. Genesis 47(3):175–187. doi:10.1002/dvg.20479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15(1):24–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oron-Karni V, Farhy C, Elgart M, Marquardt T, Remizova L, Yaron O, Xie Q, Cvekl A et al (2008) Dual requirement for Pax6 in retinal progenitor cells. Development 135(24):4037–4047. doi:10.1242/dev.028308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu F, Sapkota D, Li R, Mu X (2012) Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol 520(5):952–969. doi:10.1002/cne.22741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sapkota D, Chintala H, Wu F, Fliesler SJ, Hu Z, Mu X (2014) Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development. Proc Natl Acad Sci U S A 111(39):E4086–E4095. doi:10.1073/pnas.1405354111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mu X, Fu X, Beremand PD, Thomas TL, Klein WH (2008) Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2. Proc Natl Acad Sci U S A 105(19):6942–6947. doi:10.1073/pnas.0802627105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Melo J, Du G, Fonseca M, Gillespie LA, Turk WJ, Rubenstein JL, Eisenstat DD (2005) Dlx1 and Dlx2 function is necessary for terminal differentiation and survival of late-born retinal ganglion cells in the developing mouse retina. Development 132(2):311–322. doi:10.1242/dev.01560

    Article  PubMed  CAS  Google Scholar 

  54. Xiang M, Li S (2013) Foxn4: a multi-faceted transcriptional regulator of cell fates in vertebrate development. Sci China Life Sci 56(11):985–993. doi:10.1007/s11427-013-4543-8

    Article  CAS  PubMed  Google Scholar 

  55. Nakhai H, Sel S, Favor J, Mendoza-Torres L, Paulsen F, Duncker GI, Schmid RM (2007) Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134(6):1151–1160. doi:10.1242/dev.02781

    Article  CAS  PubMed  Google Scholar 

  56. Poche RA, Kwan KM, Raven MA, Furuta Y, Reese BE, Behringer RR (2007) Lim1 is essential for the correct laminar positioning of retinal horizontal cells. J Neurosci 27(51):14099–14107. doi:10.1523/JNEUROSCI.4046-07.2007

    Article  CAS  PubMed  Google Scholar 

  57. Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R (2002) Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129(4):831–842

    CAS  PubMed  Google Scholar 

  58. Morrow EM, Furukawa T, Lee JE, Cepko CL (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126(1):23–36

    CAS  PubMed  Google Scholar 

  59. Ahmad I, Acharya HR, Rogers JA, Shibata A, Smithgall TE, Dooley CM (1998) The role of NeuroD as a differentiation factor in the mammalian retina. J Mol Neurosci 11(2):165–178

    Article  CAS  PubMed  Google Scholar 

  60. Tomita K, Moriyoshi K, Nakanishi S, Guillemot F, Kageyama R (2000) Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J 19(20):5460–5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Watanabe S, Sanuki R, Sugita Y, Imai W, Yamazaki R, Kozuka T, Ohsuga M, Furukawa T (2015) Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. J Neurosci 35(20):8004–8020. doi:10.1523/JNEUROSCI.0089-15.2015

    Article  CAS  PubMed  Google Scholar 

  62. Jiang H, Xiang M (2009) Subtype specification of GABAergic amacrine cells by the orphan nuclear receptor Nr4a2/Nurr1. J Neurosci 29(33):10449–10459. doi:10.1523/JNEUROSCI.3048-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Elshatory Y, Everhart D, Deng M, Xie X, Barlow RB, Gan L (2007) Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J Neurosci 27(46):12707–12720. doi:10.1523/JNEUROSCI.3951-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mizeracka K, DeMaso CR, Cepko CL (2013) Notch1 is required in newly postmitotic cells to inhibit the rod photoreceptor fate. Development 140(15):3188–3197. doi:10.1242/dev.090696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dvoriantchikova G, Perea-Martinez I, Pappas S, Barry AF, Danek D, Dvoriantchikova X, Pelaez D, Ivanov D (2015) Molecular characterization of notch1 positive progenitor cells in the developing retina. PLoS One 10(6):e0131054. doi:10.1371/journal.pone.0131054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Burmeister M, Novak J, Liang MY, Basu S, Ploder L, Hawes NL, Vidgen D, Hoover F et al (1996) Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 12(4):376–384. doi:10.1038/ng0496-376

    Article  CAS  PubMed  Google Scholar 

  67. Chen CM, Cepko CL (2000) Expression of Chx10 and Chx10-1 in the developing chicken retina. Mech Dev 90(2):293–297

    Article  CAS  PubMed  Google Scholar 

  68. Livne-Bar I, Pacal M, Cheung MC, Hankin M, Trogadis J, Chen D, Dorval KM, Bremner R (2006) Chx10 is required to block photoreceptor differentiation but is dispensable for progenitor proliferation in the postnatal retina. Proc Natl Acad Sci U S A 103(13):4988–4993. doi:10.1073/pnas.0600083103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang S, Sengel C, Emerson MM, Cepko CL (2014) A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Dev Cell 30(5):513–527. doi:10.1016/j.devcel.2014.07.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, Furukawa T (2003) Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 6(12):1255–1263. doi:10.1038/nn1155

    Article  CAS  PubMed  Google Scholar 

  71. Ng L, Hurley JB, Dierks B, Srinivas M, Salto C, Vennstrom B, Reh TA, Forrest D (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27(1):94–98

    Article  CAS  PubMed  Google Scholar 

  72. Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streb LM, Searby C, Beck G, Hockey R et al (2000) Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet 24(2):127–131. doi:10.1038/72777

    Article  CAS  PubMed  Google Scholar 

  73. Sato S, Inoue T, Terada K, Matsuo I, Aizawa S, Tano Y, Fujikado T, Furukawa T (2007) Dkk3-Cre BAC transgenic mouse line: a tool for highly efficient gene deletion in retinal progenitor cells. Genesis 45(8):502–507. doi:10.1002/dvg.20318

    Article  CAS  PubMed  Google Scholar 

  74. Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL (1999) Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet 23(4):466–470. doi:10.1038/70591

    Article  CAS  PubMed  Google Scholar 

  75. Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG, Gilbert DJ, Jenkins NA et al (1997) Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19(5):1017–1030

    Article  CAS  PubMed  Google Scholar 

  76. Andzelm MM, Cherry TJ, Harmin DA, Boeke AC, Lee C, Hemberg M, Pawlyk B, Malik AN et al (2015) MEF2D drives photoreceptor development through a genome-wide competition for tissue-specific enhancers. Neuron 86(1):247–263. doi:10.1016/j.neuron.2015.02.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Omori Y, Kitamura T, Yoshida S, Kuwahara R, Chaya T, Irie S, Furukawa T (2015) Mef2d is essential for the maturation and integrity of retinal photoreceptor and bipolar cells. Genes Cells 20(5):408–426. doi:10.1111/gtc.12233

    Article  CAS  PubMed  Google Scholar 

  78. Furukawa T, Mukherjee S, Bao ZZ, Morrow EM, Cepko CL (2000) rax, Hes1, and notch1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron 26(2):383–394

    Article  CAS  PubMed  Google Scholar 

  79. Satow T, Bae SK, Inoue T, Inoue C, Miyoshi G, Tomita K, Bessho Y, Hashimoto N et al (2001) The basic helix-loop-helix gene hesr2 promotes gliogenesis in mouse retina. J Neurosci 21(4):1265–1273

    CAS  PubMed  Google Scholar 

  80. Jadhav AP, Mason HA, Cepko CL (2006) Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 133(5):913–923. doi:10.1242/dev.02245

    Article  CAS  PubMed  Google Scholar 

  81. Poche RA, Furuta Y, Chaboissier MC, Schedl A, Behringer RR (2008) Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Muller glial cell development. J Comp Neurol 510(3):237–250. doi:10.1002/cne.21746

    Article  PubMed  PubMed Central  Google Scholar 

  82. Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH (2006) SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 20(9):1187–1202. doi:10.1101/gad.1407906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin YP, Ouchi Y, Satoh S, Watanabe S (2009) Sox2 plays a role in the induction of amacrine and Muller glial cells in mouse retinal progenitor cells. Invest Ophthalmol Vis Sci 50(1):68–74. doi:10.1167/iovs.07-1619

    Article  PubMed  Google Scholar 

  84. Muto A, Iida A, Satoh S, Watanabe S (2009) The group E Sox genes Sox8 and Sox9 are regulated by notch signaling and are required for Muller glial cell development in mouse retina. Exp Eye Res 89(4):549–558. doi:10.1016/j.exer.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  85. Chow RL, Volgyi B, Szilard RK, Ng D, McKerlie C, Bloomfield SA, Birch DG, McInnes RR (2004) Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. Proc Natl Acad Sci U S A 101(6):1754–1759. doi:10.1073/pnas.0306520101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cheng CW, Chow RL, Lebel M, Sakuma R, Cheung HO, Thanabalasingham V, Zhang X, Bruneau BG et al (2005) The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Dev Biol 287(1):48–60. doi:10.1016/j.ydbio.2005.08.029

    Article  CAS  PubMed  Google Scholar 

  87. Huang L, Hu F, Feng L, Luo XJ, Liang G, Zeng XY, Yi JL, Gan L (2014) Bhlhb5 is required for the subtype development of retinal amacrine and bipolar cells in mice. Dev Dyn 243(2):279–289. doi:10.1002/dvdy.24067

    Article  CAS  PubMed  Google Scholar 

  88. Jo HS, Kang KH, Joe CO, Kim JW (2012) Pten coordinates retinal neurogenesis by regulating notch signalling. EMBO J 31(4):817–828. doi:10.1038/emboj.2011.443

    Article  CAS  PubMed  Google Scholar 

  89. Rocha SF, Lopes SS, Gossler A, Henrique D (2009) Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Dev Biol 328(1):54–65. doi:10.1016/j.ydbio.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  90. Jadhav AP, Cho SH, Cepko CL (2006) Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci U S A 103(50):18998–19003. doi:10.1073/pnas.0608155103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yaron O, Farhy C, Marquardt T, Applebury M, Ashery-Padan R (2006) Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina. Development 133(7):1367–1378. doi:10.1242/dev.02311

    Article  CAS  PubMed  Google Scholar 

  92. Belecky-Adams T, Adler R (2001) Developmental expression patterns of bone morphogenetic proteins, receptors, and binding proteins in the chick retina. J Comp Neurol 430(4):562–572

    Article  CAS  PubMed  Google Scholar 

  93. Sakuta H, Takahashi H, Shintani T, Etani K, Aoshima A, Noda M (2006) Role of bone morphogenic protein 2 in retinal patterning and retinotectal projection. J Neurosci 26(42):10868–10878. doi:10.1523/JNEUROSCI.3027-06.2006

    Article  CAS  PubMed  Google Scholar 

  94. Liu J, Wilson S, Reh T (2003) BMP receptor 1b is required for axon guidance and cell survival in the developing retina. Dev Biol 256(1):34–48

    Article  CAS  PubMed  Google Scholar 

  95. Sakuta H, Suzuki R, Takahashi H, Kato A, Shintani T, Iemura S, Yamamoto TS, Ueno N et al (2001) Ventroptin: a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 293(5527):111–115. doi:10.1126/science.1058379

    Article  CAS  PubMed  Google Scholar 

  96. Harpavat S, Cepko CL (2003) Thyroid hormone and retinal development: an emerging field. Thyroid 13(11):1013–1019. doi:10.1089/105072503770867183

    Article  CAS  PubMed  Google Scholar 

  97. Martinez-Morales JR, Del Bene F, Nica G, Hammerschmidt M, Bovolenta P, Wittbrodt J (2005) Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev Cell 8(4):565–574. doi:10.1016/j.devcel.2005.01.022

    Article  CAS  PubMed  Google Scholar 

  98. Chen S, Li H, Gaudenz K, Paulson A, Guo F, Trimble R, Peak A, Seidel C et al (2013) Defective FGF signaling causes coloboma formation and disrupts retinal neurogenesis. Cell Res 23(2):254–273. doi:10.1038/cr.2012.150

    Article  CAS  PubMed  Google Scholar 

  99. Fang Y, Cho KS, Tchedre K, Lee SW, Guo C, Kinouchi H, Fried S, Sun X et al (2013) Ephrin-A3 suppresses Wnt signaling to control retinal stem cell potency. Stem Cells 31(2):349–359. doi:10.1002/stem.1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wilkinson DG (2014) Regulation of cell differentiation by Eph receptor and ephrin signaling. Cell Adhes Migr 8(4):339–348. doi:10.4161/19336918.2014.970007

    Article  Google Scholar 

  101. Young RW (1985) Cell differentiation in the retina of the mouse. Anat Rec 212(2):199–205. doi:10.1002/ar.1092120215

    Article  CAS  PubMed  Google Scholar 

  102. Dyer MA, Cepko CL (2000) Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci 3(9):873–880. doi:10.1038/78774

    Article  CAS  PubMed  Google Scholar 

  103. Fischer AJ, Reh TA (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4(3):247–252. doi:10.1038/85090

    Article  CAS  PubMed  Google Scholar 

  104. Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci U S A 101(37):13654–13659. doi:10.1073/pnas.0402129101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci U S A 105(49):19508–19513. doi:10.1073/pnas.0807453105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen M, Tian S, Glasgow NG, Gibson G, Yang X, Shiber CE, Funderburgh J, Watkins S et al (2015) Lgr5 amacrine cells possess regenerative potential in the retina of adult mice. Aging Cell. doi:10.1111/acel.12346

    Google Scholar 

  107. Reh TA, Levine EM (1998) Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol 36(2):206–220. doi:10.1002/(SICI)1097-4695(199808)36:2<206::AID-NEU8>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  108. Perron M, Harris WA (2000) Retinal stem cells in vertebrates. Bioessays 22(8):685–688. doi:10.1002/1521-1878(200008)22:8<685::AID-BIES1>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  109. Cicero SA, Johnson D, Reyntjens S, Frase S, Connell S, Chow LM, Baker SJ, Sorrentino BP et al (2009) Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci U S A 106(16):6685–6690. doi:10.1073/pnas.0901596106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gualdoni S, Baron M, Lakowski J, Decembrini S, Smith AJ, Pearson RA, Ali RR, Sowden JC (2010) Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells 28(6):1048–1059. doi:10.1002/stem.423

    Article  CAS  PubMed  Google Scholar 

  111. Krol J, Krol I, Alvarez CP, Fiscella M, Hierlemann A, Roska B, Filipowicz W (2015) A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Nat Commun 6:7305. doi:10.1038/ncomms8305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Karali M, Persico M, Mutarelli M, Carissimo A, Pizzo M, Singh Marwah V, Ambrosio C, Pinelli M et al (2016) High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs. Nucleic Acids Res. doi:10.1093/nar/gkw039

    Google Scholar 

  113. Wride MA, Geatrell J, Guggenheim JA (2006) Proteases in eye development and disease. Birth Defects Res C Embryo Today 78(1):90–105. doi:10.1002/bdrc.20063

    Article  CAS  PubMed  Google Scholar 

  114. Gong L, Li DW (2010) SUMOylation in ocular development and pathology. Curr Mol Med 10(9):794–801

    Article  CAS  PubMed  Google Scholar 

  115. Iida A, Iwagawa T, Kuribayashi H, Satoh S, Mochizuki Y, Baba Y, Nakauchi H, Furukawa T et al (2014) Histone demethylase Jmjd3 is required for the development of subsets of retinal bipolar cells. Proc Natl Acad Sci U S A 111(10):3751–3756. doi:10.1073/pnas.1311480111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Iida A, Iwagawa T, Baba Y, Satoh S, Mochizuki Y, Nakauchi H, Furukawa T, Koseki H et al (2015) Roles of histone H3K27 trimethylase Ezh2 in retinal proliferation and differentiation. Dev Neurobiol 75(9):947–960. doi:10.1002/dneu.22261

    Article  CAS  PubMed  Google Scholar 

  117. Arya R, White K (2015) Cell death in development: signaling pathways and core mechanisms. Semin Cell Dev Biol 39:12–19. doi:10.1016/j.semcdb.2015.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fan Y, Bergmann A (2014) Multiple mechanisms modulate distinct cellular susceptibilities toward apoptosis in the developing Drosophila eye. Dev Cell 30(1):48–60. doi:10.1016/j.devcel.2014.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Al-Shamekh S, Goldberg JL (2014) Retinal repair with induced pluripotent stem cells. Transl Res 163(4):377–386. doi:10.1016/j.trsl.2013.11.002

    Article  PubMed  Google Scholar 

  120. Gill KP, Hewitt AW, Davidson KC, Pebay A, Wong RC (2014) Methods of retinal ganglion cell differentiation from pluripotent stem cells. Translat Vis Sci Technol 3(4):7. doi:10.1167/tvst.3.3.7

    Article  Google Scholar 

  121. Wu F, Kaczynski TJ, Sethuramanujam S, Li R, Jain V, Slaughter M, Mu X (2015) Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate. Proc Natl Acad Sci U S A 112(13):E1559–E1568. doi:10.1073/pnas.1421535112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Drs. Courtni Newsome, Min Zou, Shengguo Li, and Rashade A. H. Haynes II for critical readings and helpful comments on the manuscript. The author apologizes that so many great works in the field are not cited due to space limit and accessibility of full articles. This work is partially supported by funding from the Zhongshan Ophthalmic Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangxin Jin.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12035-016-0037-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, K. Transitional Progenitors during Vertebrate Retinogenesis. Mol Neurobiol 54, 3565–3576 (2017). https://doi.org/10.1007/s12035-016-9899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9899-x

Keywords

Navigation