Consortium HMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214
Article
CAS
Google Scholar
Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S et al (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32(8):834–841
CAS
PubMed
Article
Google Scholar
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. doi:10.1038/nature08821
CAS
PubMed
PubMed Central
Article
Google Scholar
Hoskins LC, Boulding ET (1976) Degradation of blood group antigens in human colon ecosystems I. In vitro production of ABO blood group-degrading enzymes by enteric bacteria. J Clinical Investig 57:63–73
CAS
Article
Google Scholar
Makivuokko H, Lahtinen S, Wacklin P, Tuovinen E, Tenkanen H, Nikkila J et al (2012) Association between the ABO blood group and the human intestinal microbiota composition. BMC Microbiol 12(1):94
PubMed
PubMed Central
Article
Google Scholar
Martin F-PJ, Wang Y, Sprenger N, Yap IKS, Lundstedt T, Lek P et al. (2008) Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 4. http://www.nature.com/msb/journal/v4/n1/suppinfo/msb4100190_S1.html
Thompson-Chagoyán O, Maldonado J, Gil A (2007) Colonization and impact of disease and other factors on intestinal microbiota. Dig Dis Sci 52(9):2069–2077. doi:10.1007/s10620-006-9285-z
PubMed
Article
Google Scholar
Lozupone C, Faust K, Raes J, Faith JJ, Frank DN, Zaneveld J et al (2012) Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Res 22(10):1974–1984. doi:10.1101/gr.138198.112
CAS
PubMed
PubMed Central
Article
Google Scholar
Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184. doi:10.1038/nature11319
CAS
PubMed
Article
Google Scholar
Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323
CAS
PubMed
PubMed Central
Article
Google Scholar
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS et al (2008) Evolution of mammals and their gut microbes. Science 320(5883):1647–1651. doi:10.1126/science.1155725
CAS
PubMed
PubMed Central
Article
Google Scholar
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6(10):776–788. doi:10.1038/nrmicro1978
CAS
PubMed
PubMed Central
Article
Google Scholar
Van den Bogert B, Leimena MM, De Vos WM, Zoetendal EG, Kleerebezem M (2011) Functional intestinal metagenomics. In: De Bruin FJ (ed) Handbook of molecular microbial ecology, vol II: metagenomics in different habitats. Wiley-Blackwell, New York
Google Scholar
Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359. doi:10.1126/science.1124234
CAS
PubMed
PubMed Central
Article
Google Scholar
Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ et al (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6(7):1415–1426. doi:10.1038/ismej.2011.212
CAS
PubMed
PubMed Central
Article
Google Scholar
Vandamme TF (2014) Use of rodents as models of human diseases. J Pharm Bioallied Sci 6(1):2
PubMed
PubMed Central
Article
CAS
Google Scholar
Zoetendal EG, Rajilic-Stojanovic M, de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57(11):1605–1615. doi:10.1136/gut.2007.133603
CAS
PubMed
Article
Google Scholar
Faith JJ, Rey FE, O’Donnell D, Karlsson M, McNulty NP, Kallstrom G et al (2010) Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J 4(9):1094
PubMed
PubMed Central
Article
Google Scholar
Steensma DP, Kyle RA, Shampo MA (2010) Abbie Lathrop, the “mouse woman of Granby”: rodent fancier and accidental genetics pioneer. Mayo Clin Proc 85(11):e83
PubMed
PubMed Central
Article
Google Scholar
Wade CM, Kulbokas EJ 3rd, Kirby AW, Zody MC, Mullikin JC, Lander ES et al (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420(6915):574–578. doi:10.1038/nature01252
CAS
PubMed
Article
Google Scholar
Morse HC III (1978) Origins of inbred mice. Academic Press, Bethesda
Google Scholar
Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, Fisher EM (2000) Genealogies of mouse inbred strains. Nat Genet 24(1):23–25
CAS
PubMed
Article
Google Scholar
Leiter EH (1993) The NOD mouse: a model for analyzing the interplay between heredity and environment in development of autoimmune disease. ILAR J 35(1):4–14
Article
Google Scholar
Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562. doi:10.1038/nature01262
Article
CAS
Google Scholar
Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X et al (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7(5):e1000112. doi:10.1371/journal.pbio.1000112
PubMed
PubMed Central
Article
CAS
Google Scholar
Cheng Y, Ma Z, Kim B-H, Wu W, Cayting P, Boyle AP et al (2014) Principles of regulatory information conservation between mouse and human. Nature 515(7527):371–375
CAS
PubMed
PubMed Central
Article
Google Scholar
Stergachis AB, Neph S, Sandstrom R, Haugen E, Reynolds AP, Zhang M et al (2014) Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515(7527):365–370
CAS
PubMed
PubMed Central
Article
Google Scholar
Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T et al (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515(7527):355–364
CAS
PubMed
PubMed Central
Article
Google Scholar
Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110(9):3507–3512
CAS
PubMed
PubMed Central
Article
Google Scholar
Ghoshal NG, Bal HS (1989) Comparative morphology of the stomach of some laboratory mammals. Lab Anim 23(1):21–29
CAS
PubMed
Article
Google Scholar
Tannock GW, Tangerman A, Van Schaik A, McConnell MA (1994) Deconjugation of bile acids by lactobacilli in the mouse small bowel. Appl Environ Microbiol 60(9):3419–3420
CAS
PubMed
PubMed Central
Google Scholar
Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 107(44):18933–18938. doi:10.1073/pnas.1007028107
CAS
PubMed
PubMed Central
Article
Google Scholar
Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74(16):4985–4996. doi:10.1128/AEM.00753-08
CAS
PubMed
PubMed Central
Article
Google Scholar
Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M et al (2011) The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 7(2):e1001314
CAS
PubMed
PubMed Central
Article
Google Scholar
Schwarz R, Kaspar A, Seelig J, Kunnecke B (2002) Gastrointestinal transit times in mice and humans measured with 27Al and 19F nuclear magnetic resonance. Magn Res Med 48(2):255–261. doi:10.1002/mrm.10207
Article
Google Scholar
Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F et al (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 103(3):732–737. doi:10.1073/pnas.0506655103
CAS
PubMed
PubMed Central
Article
Google Scholar
Treuting P, Valasek M, Dintzis S (2012) Upper gastrointestinal tract. In: Treuting PM, Dintzis S (eds) Comparative anatomy and histology, a mouse and human atlas. Academic Press, London
Google Scholar
Scholtens PA, Oozeer R, Martin R, Amor KB, Knol J (2012) The early settlers: intestinal microbiology in early life. Annu Rev Food Sci Technol 3:425–447
CAS
PubMed
Article
Google Scholar
Treuting P, Dintzis S (2012) Lower gastrointestinal tract. In: Treuting P, Dintzis S (eds) Comparative anatomy and histology, a mouse and human atlas. Academic Press, London
Google Scholar
Cummings JH, Beatty ER, Kingman SM, Bingham SA, Englyst HN (1996) Digestion and physiological properties of resistant starch in the human large bowel. Br J Nutr 75(05):733–747
CAS
PubMed
Article
Google Scholar
Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc Natl Acad Sci USA 108(Suppl 1):4659–4665. doi:10.1073/pnas.1006451107
CAS
PubMed
Article
Google Scholar
Johansson ME (2014) Mucus layers in inflammatory bowel disease. Inflamm Bowel Dis 20(11):2124–2131. doi:10.1097/MIB.0000000000000117
PubMed
Article
Google Scholar
Johansson ME, Gustafsson JK, Holmen-Larsson J, Jabbar KS, Xia L, Xu H et al (2014) Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63(2):281–291. doi:10.1136/gutjnl-2012-303207
CAS
PubMed
Article
Google Scholar
Sovran B, Loonen LM, Lu P, Hugenholtz F, Belzer C, Stolte EH et al (2015) IL-22-STAT3 pathway plays a key role in the maintenance of ileal homeostasis in mice lacking secreted mucus barrier. Inflamm Bowel Dis 21(3):531–542. doi:10.1097/MIB.0000000000000319
PubMed
Article
Google Scholar
Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI et al (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105(11):2420–2428
CAS
PubMed
Article
Google Scholar
Gustafsson JK, Ermund A, Johansson ME, Schutte A, Hansson GC, Sjovall H (2012) An ex vivo method for studying mucus formation, properties, and thickness in human colonic biopsies and mouse small and large intestinal explants. Am J Physiol Gastrointest Liver Physiol 302(4):G430–G438. doi:10.1152/ajpgi.00405.2011
CAS
PubMed
Article
Google Scholar
Belzer C, De Vos WM (2012) Microbes inside—from diversity to function: the case of Akkermansia. ISME J 6(8):1449–1458
CAS
PubMed
PubMed Central
Article
Google Scholar
Johansson ME, Ambort D, Pelaseyed T, Schutte A, Gustafsson JK, Ermund A et al (2011) Composition and functional role of the mucus layers in the intestine. CMLS 68(22):3635–3641. doi:10.1007/s00018-011-0822-3
CAS
PubMed
Article
Google Scholar
Sommer F, Adam N, Johansson ME, Xia L, Hansson GC, Backhed F (2014) Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS One 9(1):e85254. doi:10.1371/journal.pone.0085254
PubMed
PubMed Central
Article
CAS
Google Scholar
Larsson JM, Karlsson H, Sjovall H, Hansson GC (2009) A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 19(7):756–766. doi:10.1093/glycob/cwp048
PubMed
Article
CAS
Google Scholar
Hooper LV, Falk PG, Gordon JI (2000) Analyzing the molecular foundations of commensalism in the mouse intestine. Curr Opin Microbiol 3(1):79–85
CAS
PubMed
Article
Google Scholar
Nanthakumar NN, Dai D, Newburg DS, Walker WA (2003) The role of indigenous microflora in the development of murine intestinal fucosyl- and sialyltransferases. FASEB J 17(1):44–46. doi:10.1096/fj.02-0031fje
CAS
PubMed
Google Scholar
Wacklin P, Mäkivuokko H, Alakulppi N, Nikkilä J, Tenkanen H, Räbinä J et al (2011) Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One 6(5):e20113
CAS
PubMed
PubMed Central
Article
Google Scholar
Wacklin P, Tuimala J, Nikkilä J, Tims S, Mäkivuokko H, Alakulppi N et al (2014) Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One 9(4):e94863
PubMed
PubMed Central
Article
CAS
Google Scholar
Ouwerkerk JP (2016) Akkermansia species. Phylogeny, physiology and comparative genomics
Sheridan WG, Lowndes RH, Young HL (1990) Intraoperative tissue oximetry in the human gastrointestinal tract. Am J Surg 159(3):314–319
CAS
PubMed
Article
Google Scholar
McConnell EL, Basit AW, Murdan S (2008) Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in vivo experiments. J Pharm Pharmacol 60(1):63–70. doi:10.1211/jpp.60.1.0008
CAS
PubMed
Article
Google Scholar
Booijink CC, Zoetendal EG, Kleerebezem M, de Vos WM (2007) Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol 2(3):285–295. doi:10.2217/17460913.2.3.285
CAS
PubMed
Article
Google Scholar
Kleiber M (1975) Metabolic turnover rate: a physiological meaning of the metabolic rate per unit body weight. J Theor Biol 53(1):199–204
CAS
PubMed
Article
Google Scholar
Thaiss CA, Levy M, Korem T, Dohnalová L, Shapiro H, Jaitin DA et al (2016) Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167(6):1495–1510, e1412
CAS
PubMed
Article
Google Scholar
Jalanka-Tuovinen J, Salonen A, Nikkilä J, Immonen O, Kekkonen R, Lahti L et al (2011) Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One 6(7):e23035
CAS
PubMed
PubMed Central
Article
Google Scholar
Bjornhag G, Snipes RL (1999) Colonic separation mechanism in lagomorph and rodent species—a comparison. Mitt Mus Natkd Zool Reihe 75:275–281
Article
Google Scholar
Sakaguchi E (2003) Digestive strategies of small hindgut fermenters. Anim Sci J 74:327–337
Article
Google Scholar
Klaasen HLBM, Koopman JP, Scholten PM, Van Den Brink ME, Theeuwes AGM (1990) Effect of preventing coprophagy on colonisation by segmented filamentous bacteria in the small bowel of mice. Microb Ecol Health Dis 3(2):99–103
Article
Google Scholar
Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023
CAS
PubMed
Article
Google Scholar
Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127(2):423–433. doi:10.1016/j.cell.2006.08.043
CAS
PubMed
PubMed Central
Article
Google Scholar
Robertson BR, O’Rourke JL, Neilan BA, Vandamme P, On SL, Fox JG, Lee A (2005) Mucispirillum schaedleri gen. nov., sp. nov., a spiral-shaped bacterium colonizing the mucus layer of the gastrointestinal tract of laboratory rodents. Int J Syst Evol Microbiol 55(3):1199–1204
CAS
PubMed
Article
Google Scholar
Snel J, Heinen P, Blok H, Carman R, Duncan A, Allen P, Collins M (1995) Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of “Candidatus Arthromitus”. Int J Syst Evol Microbiol 45(4):780–782
CAS
Google Scholar
Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, Fagarasan S (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Nat Acad Sci USA 101(7):1981–1986
CAS
PubMed
PubMed Central
Article
Google Scholar
Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C et al (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31(4):677–689. doi:10.1016/j.immuni.2009.08.020
CAS
PubMed
Article
Google Scholar
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498. doi:10.1016/j.cell.2009.09.033
CAS
PubMed
PubMed Central
Article
Google Scholar
Yin Y, Wang Y, Zhu L, Liu W, Liao N, Jiang M et al (2013) Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME J 7(3):615–621. doi:10.1038/ismej.2012.128
CAS
PubMed
Article
Google Scholar
Krych L, Hansen CH, Hansen AK, van den Berg FW, Nielsen DS (2013) Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS One 8(5):e62578. doi:10.1371/journal.pone.0062578
CAS
PubMed
PubMed Central
Article
Google Scholar
Nguyen TL, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Models Mech 8(1):1–16. doi:10.1242/dmm.017400
CAS
Article
Google Scholar
Hildebrand F, Nguyen TL, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P et al (2013) Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14(1):R4. doi:10.1186/gb-2013-14-1-r4
PubMed
PubMed Central
Article
Google Scholar
Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X et al (2015) A catalog of the mouse gut metagenome. Nat Biotechnol 33(10):1103–1108. doi:10.1038/nbt.3353
CAS
PubMed
Article
Google Scholar
Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P et al (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203
CAS
PubMed
Article
Google Scholar
Rajilic-Stojanovic M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. doi:10.1111/1574-6976.12075
PubMed
PubMed Central
Google Scholar
Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N et al (2016) The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 1:16131
CAS
PubMed
Article
Google Scholar
Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9(10):577–589. doi:10.1038/nrgastro.2012.156
CAS
PubMed
Article
Google Scholar
Maurice CF, Knowles SC, Ladau J, Pollard KS, Fenton A, Pedersen AB, Turnbaugh PJ (2015) Marked seasonal variation in the wild mouse gut microbiota. ISME J 9(11):2423–2434
CAS
PubMed
PubMed Central
Article
Google Scholar
Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C et al (2011) Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 2:149. doi:10.3389/fmicb.2011.00149
CAS
PubMed
PubMed Central
Article
Google Scholar
Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075
CAS
PubMed
PubMed Central
Article
Google Scholar
Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223
CAS
PubMed
PubMed Central
Article
Google Scholar
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1(6):6ra14
PubMed
PubMed Central
Article
CAS
Google Scholar
Collins J, Auchtung JM, Schaefer L, Eaton KA, Britton RA (2015) Humanized microbiota mice as a model of recurrent Clostridium difficile disease. Microbiome 3:35. doi:10.1186/s40168-015-0097-2
PubMed
PubMed Central
Article
Google Scholar
Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C et al (2013) Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62(12):1787–1794. doi:10.1136/gutjnl-2012-303816
PubMed
Article
CAS
Google Scholar
Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141(2):599–609, 609 e591–593. doi:10.1053/j.gastro.2011.04.052
CAS
PubMed
Article
Google Scholar
Dingemanse C, Belzer C, van Hijum SA, Günthel M, Salvatori D, den Dunnen JT et al (2015) Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis 36(11):1388–1396
CAS
PubMed
Article
Google Scholar
Friswell MK, Gika H, Stratford IJ, Theodoridis G, Telfer B, Wilson ID, McBain AJ (2010) Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS One 5(1):e8584. doi:10.1371/journal.pone.0008584
PubMed
PubMed Central
Article
CAS
Google Scholar
Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M et al (2015) Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev 28(01):42–66
CAS
PubMed
PubMed Central
Article
Google Scholar
Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi FA, Gophna U (2011) Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol 61(2):423–428. doi:10.1007/s00248-010-9787-2
PubMed
Article
Google Scholar
Leamy LJ, Kelly SA, Nietfeldt J, Legge RM, Ma F, Hua K et al (2014) Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice. Genome Biol 15(12):552. doi:10.1186/s13059-014-0552-6
PubMed
PubMed Central
Article
CAS
Google Scholar
Kiilerich P, Myrmel LS, Fjaere E, Hao Q, Hugenholtz F, Sonne SB et al (2016) Effect of a long-term high-protein diet on survival, obesity development, and gut microbiota in mice. Am J Physiol Endocrinol Metabol 310(11):E886–E899. doi:10.1152/ajpendo.00363.2015
Article
Google Scholar
Lange K, Hugenholtz F, Jonathan MC, Schols HA, Kleerebezem M, Smidt H et al (2015) Comparison of the effects of five dietary fibers on mucosal transcriptional profiles, and luminal microbiota composition and SCFA concentrations in murine colon. Mol Nutr Food Res 59(8):1590–1602. doi:10.1002/mnfr.201400597
CAS
PubMed
Article
Google Scholar
Sovran B, Lu P, Loonen LM, Hugenholtz F, Belzer C, Stolte EH et al (2016) Identification of commensal species positively correlated with early stress responses to a compromised mucus barrier. Inflam Bowel Dis 22(4):826–840. doi:10.1097/MIB.0000000000000688
Article
Google Scholar
van Beek AA, Hugenholtz F, Meijer B, Sovran B, Perdijk O, Vermeij WP et al (2016) Tryptophan restriction arrests B cell development and enhances microbial diversity in WT and prematurely aging Ercc1-/Delta7 mice. J Leuk Biol. doi:10.1189/jlb.1HI0216-062RR
Google Scholar
van Beek AA, Sovran B, Hugenholtz F, Meijer B, Hoogerland JA, Mihailova V et al (2016) Supplementation with Lactobacillus plantarum WCFS1 prevents decline of mucus barrier in colon of accelerated aging Ercc1-/Delta7 mice. Front Immunol 7:408. doi:10.3389/fimmu.2016.00408
PubMed
PubMed Central
Google Scholar
Hugenholtz F, Davids M, Schwarz J, Muller M, Tomé D, Schaap PJ et al (2017) Metatranscriptome analysis of the microbial fermentation of dietary milk proteins in the murine gut (in submission)
Hugenholtz F, Lange K, Davids M, Schaap PJ, Muller M, Hooiveld GJ et al (2017) Linking the fate of dietary fibres in the murine caecum to microbial transcriptome patterns (in submission)
Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110(22):9066–9071. doi:10.1073/pnas.1219451110
CAS
PubMed
PubMed Central
Article
Google Scholar
ter Braak CJF, P S (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power
Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290. doi:10.1038/nrmicro2540
CAS
PubMed
Article
Google Scholar
El Aidy S, Derrien M, Merrifield CA, Levenez F, Dore J, Boekschoten MV et al (2013) Gut bacteria–host metabolic interplay during conventionalisation of the mouse germfree colon. ISME J 7(4):743–755. doi:10.1038/ismej.2012.142
PubMed
Article
CAS
Google Scholar
Ijssennagger N, Derrien M, van Doorn GM, Rijnierse A, van den Bogert B, Muller M et al (2012) Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host–microbe cross-talk. PLoS One 7(12):e49868. doi:10.1371/journal.pone.0049868
CAS
PubMed
PubMed Central
Article
Google Scholar
Rajilic-Stojanovic M, Heilig HG, Molenaar D, Kajander K, Surakka A, Smidt H, de Vos WM (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11(7):1736–1751. doi:10.1111/j.1462-2920.2009.01900.x
CAS
PubMed
PubMed Central
Article
Google Scholar