Skip to main content
Log in

Mechanisms of ciliary targeting: entering importins and Rabs

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Primary cilium is a rod-like plasma membrane protrusion that plays important roles in sensing the cellular environment and initiating corresponding signaling pathways. The sensory functions of the cilium critically depend on the unique enrichment of ciliary residents, which is maintained by the ciliary diffusion barrier. It is still unclear how ciliary cargoes specifically enter the diffusion barrier and accumulate within the cilium. In this review, the organization and trafficking mechanism of the cilium are compared to those of the nucleus, which are much better understood at the moment. Though the cilium differs significantly from the nucleus in terms of molecular and cellular functions, analogous themes and principles in the membrane organization and cargo trafficking are notable between them. Therefore, knowledge in the nuclear trafficking can likely shed light on our understanding of the ciliary trafficking. Here, with a focus on membrane cargoes in mammalian cells, we briefly review various ciliary trafficking pathways from the Golgi to the periciliary membrane. Models for the subsequent import translocation across the diffusion barrier and the enrichment of cargoes within the ciliary membrane are discussed in detail. Based on recent discoveries, we propose a Rab–importin-based model in an attempt to accommodate various observations on ciliary targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ishikawa H, Marshall WF (2017) Intraflagellar transport and ciliary dynamics. Cold Spring Harb Perspect Biol 9(3):a021998

    Article  PubMed  Google Scholar 

  2. Nachury MV et al (2010) Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol 26:59–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Basten SG, Giles RH (2013) Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11(5):331–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Gonzalo FR, Reiter JF (2012) Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197(6):697–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vorobjev IA, Chentsov Yu S (1982) Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol 93(3):938–949

    Article  CAS  PubMed  Google Scholar 

  7. Reiter JF et al (2012) The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 13(7):608–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anderson RG (1972) The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol 54(2):246–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gilula NB, Satir P (1972) The ciliary necklace. A ciliary membrane specialization. J Cell Biol 53(2):494–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ounjai P et al (2013) Architectural insights into a ciliary partition. Curr Biol 23(4):339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu Q et al (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329(5990):436–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chih B et al (2012) A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol 14(1):61–72

    Article  CAS  Google Scholar 

  13. Leaf A, Von Zastrow M (2015) Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia. Elife 4:e06996

    Article  PubMed Central  Google Scholar 

  14. Ye F et al (2013) Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. Elife 2:e00654

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lin YC et al (2013) Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat Chem Biol 9(7):437–443

    Article  CAS  PubMed  Google Scholar 

  16. Breslow DK et al (2013) An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J Cell Biol 203(1):129–147

    Article  PubMed  PubMed Central  Google Scholar 

  17. Williams CL et al (2011) MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 192(6):1023–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lambacher NJ et al (2016) TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat Cell Biol 18(1):122–131

    Article  CAS  PubMed  Google Scholar 

  19. Kee HL et al (2012) A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat Cell Biol 14(4):431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takao D et al (2014) An assay for clogging the ciliary pore complex distinguishes mechanisms of cytosolic and membrane protein entry. Curr Biol 24(19):2288–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takao D, Verhey KJ (2016) Gated entry into the ciliary compartment. Cell Mol Life Sci 73(1):119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vieira OV et al (2006) FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin–Darby canine kidney (MDCK) cells. Proc Natl Acad Sci USA 103(49):18556–18561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Del Viso F et al (2016) Congenital heart disease genetics uncovers context-dependent organization and function of nucleoporins at cilia. Dev Cell 38(5):478–492

    Article  PubMed  PubMed Central  Google Scholar 

  24. Madugula V, Lu L (2016) A ternary complex comprising transportin1, Rab8 and the ciliary targeting signal directs proteins to ciliary membranes. J Cell Sci 129(20):3922–3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Najafi M et al (2012) Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc Natl Acad Sci USA 109(1):203–208

    Article  CAS  PubMed  Google Scholar 

  26. Alberts B et al (eds) (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  27. Hetzer MW (2010) The nuclear envelope. Cold Spring Harb Perspect Biol 2(3):a000539

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8(3):195–208

    Article  CAS  PubMed  Google Scholar 

  29. Crisp M, Burke B (2008) The nuclear envelope as an integrator of nuclear and cytoplasmic architecture. FEBS Lett 582(14):2023–2032

    Article  CAS  PubMed  Google Scholar 

  30. Terry LJ et al (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318(5855):1412–1416

    Article  CAS  PubMed  Google Scholar 

  31. Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14(1):13–24

    Article  CAS  PubMed  Google Scholar 

  32. Hetzer MW et al (2005) Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol 21:347–380

    Article  CAS  PubMed  Google Scholar 

  33. Yang W et al (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci USA 101(35):12887–12892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antonin W et al (2011) Traversing the NPC along the pore membrane: targeting of membrane proteins to the INM. Nucleus 2(2):87–91

    Article  PubMed  PubMed Central  Google Scholar 

  35. Katta SS et al (2014) Destination: inner nuclear membrane. Trends Cell Biol 24(4):221–229

    Article  CAS  PubMed  Google Scholar 

  36. Zuleger N et al (2011) System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. J Cell Biol 193(1):109–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soullam B, Worman HJ (1995) Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane. J Cell Biol 130(1):15–27

    Article  CAS  PubMed  Google Scholar 

  38. Boni A et al (2015) Live imaging and modeling of inner nuclear membrane targeting reveals its molecular requirements in mammalian cells. J Cell Biol 209(5):705–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ungricht R et al (2015) Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. J Cell Biol 209(5):687–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan S et al (2007) A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin beta interactions. J Cell Biol 178(3):387–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gruss OJ (2010) Nuclear transport receptor goes moonlighting. Nat Cell Biol 12(7):640–641

    Article  CAS  PubMed  Google Scholar 

  42. Jin H et al (2010) The conserved Bardet–Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141(7):1208–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Field MC et al (2011) Evolution: on a bender—BARs, ESCRTs, COPs, and finally getting your coat. J Cell Biol 193(6):963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dishinger JF et al (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat Cell Biol 12(7):703–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hurd TW et al (2011) Localization of retinitis pigmentosa 2 to cilia is regulated by Importin beta2. J Cell Sci 124(Pt 5):718–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Datta M et al (2011) Genome wide gene expression regulation by HIP1 Protein Interactor, HIPPI: prediction and validation. BMC Genom 12:463

    Article  CAS  Google Scholar 

  47. Shi L et al. (2017) The ciliary protein IFT57 in the macronucleus of Paramecium. J Eukaryot Microbiol. doi:10.1111/jeu.12423

    PubMed Central  Google Scholar 

  48. Madhivanan K, Aguilar RC (2014) Ciliopathies: the trafficking connection. Traffic 15(10):1031–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsiao YC et al (2012) Trafficking in and to the primary cilium. Cilia 1(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Francis SS et al (2011) A hierarchy of signals regulates entry of membrane proteins into the ciliary membrane domain in epithelial cells. J Cell Biol 193(1):219–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Molla-Herman A et al (2010) The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 123(Pt 10):1785–1795

    Article  CAS  PubMed  Google Scholar 

  52. Stoops EH et al (2015) The periciliary ring in polarized epithelial cells is a hot spot for delivery of the apical protein gp135. J Cell Biol 211(2):287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Drubin DG, Nelson WJ (1996) Origins of cell polarity. Cell 84(3):335–344

    Article  CAS  PubMed  Google Scholar 

  54. Papermaster DS et al (1985) Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment. Ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas. Investig Ophthalmol Vis Sci 26(10):1386–1404

    CAS  Google Scholar 

  55. Moritz OL et al (2001) Mutant rab8 impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol Biol Cell 12(8):2341–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang J et al (2012) The Arf GAP ASAP1 provides a platform to regulate Arf4- and Rab11-Rab8-mediated ciliary receptor targeting. EMBO J 31(20):4057–4071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boehlke C et al (2010) Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels. J Cell Sci 123(Pt 9):1460–1467

    Article  CAS  PubMed  Google Scholar 

  58. Das A, Guo W (2011) Rabs and the exocyst in ciliogenesis, tubulogenesis and beyond. Trends Cell Biol 21(7):383–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Emmer BT et al (2010) Molecular mechanisms of protein and lipid targeting to ciliary membranes. J Cell Sci 123(Pt 4):529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Finetti F et al (2015) The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse. J Cell Sci 128(14):2541–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Szalinski CM et al (2014) VAMP7 modulates ciliary biogenesis in kidney cells. PLoS One 9(1):e86425

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mazelova J et al (2009) Syntaxin 3 and SNAP-25 pairing, regulated by omega-3 docosahexaenoic acid, controls the delivery of rhodopsin for the biogenesis of cilia-derived sensory organelles, the rod outer segments. J Cell Sci 122(Pt 12):2003–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baker SA et al (2008) The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors. J Cell Biol 183(3):485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu Q et al (2015) Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol 17(3):228–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hunnicutt GR et al (1990) Cell body and flagellar agglutinins in Chlamydomonas reinhardtii: the cell body plasma membrane is a reservoir for agglutinins whose migration to the flagella is regulated by a functional barrier. J Cell Biol 111(4):1605–1616

    Article  CAS  PubMed  Google Scholar 

  66. Milenkovic L et al (2009) Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J Cell Biol 187(3):365–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3(11):813–825

    Article  CAS  PubMed  Google Scholar 

  68. Ou G et al (2007) Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol Biol Cell 18(5):1554–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lechtreck KF et al (2009) The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol 187(7):1117–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marfori M et al (2011) Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta 9:1562–1577

    Article  Google Scholar 

  71. Twyffels L et al (2014) Transportin-1 and Transportin-2: protein nuclear import and beyond. FEBS Lett 588(10):1857–1868

    Article  CAS  PubMed  Google Scholar 

  72. Soniat M, Chook YM (2015) Nuclear localization signals for four distinct karyopherin-beta nuclear import systems. Biochem J 468(3):353–362

    Article  CAS  PubMed  Google Scholar 

  73. Fan S et al (2004) Polarity proteins control ciliogenesis via kinesin motor interactions. Curr Biol 14(16):1451–1461

    Article  CAS  PubMed  Google Scholar 

  74. Kovacs JJ et al (2008) Beta-arrestin-mediated localization of smoothened to the primary cilium. Science 320(5884):1777–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ghossoub R et al (2013) Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length. J Cell Sci 126(Pt 12):2583–2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Spiliotis ET (2010) Regulation of microtubule organization and functions by septin GTPases. Cytoskeleton (Hoboken) 67(6):339–345

    CAS  Google Scholar 

  77. Calvert PD et al (2006) Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol 16(11):560–568

    Article  CAS  PubMed  Google Scholar 

  78. Ellenberg J et al (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138(6):1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Larkins CE et al (2011) Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell 22(23):4694–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lim YS, Tang BL (2015) A role for Rab23 in the trafficking of Kif17 to the primary cilium. J Cell Sci 128(16):2996–3008

    Article  CAS  PubMed  Google Scholar 

  81. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525

    Article  CAS  PubMed  Google Scholar 

  82. Yoshimura S et al (2007) Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol 178(3):363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Knodler A et al (2010) Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci USA 107(14):6346–6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nachury MV et al (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129(6):1201–1213

    Article  CAS  PubMed  Google Scholar 

  85. Westlake CJ et al (2011) Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci USA 108(7):2759–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Follit JA et al (2010) The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. J Cell Biol 188(1):21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ward HH et al (2011) A conserved signal and GTPase complex are required for the ciliary transport of polycystin-1. Mol Biol Cell 22(18):3289–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang B et al (2015) GSK3beta-Dzip1-Rab8 cascade regulates ciliogenesis after mitosis. PLoS Biol 13(4):e1002129

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hattula K et al (2002) A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol Biol Cell 13(9):3268–3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Murga-Zamalloa CA et al (2010) Interaction of retinitis pigmentosa GTPase regulator (RPGR) with RAB8A GTPase: implications for cilia dysfunction and photoreceptor degeneration. Hum Mol Genet 19(18):3591–3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Babbey CM et al (2010) Rab10 associates with primary cilia and the exocyst complex in renal epithelial cells. Am J Physiol Renal Physiol 299(3):F495–F506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lumb JH, Field MC (2011) Rab23 is a flagellar protein in Trypanosoma brucei. BMC Res Notes 4:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sato T et al (2014) Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. J Cell Sci 127(Pt 2):422–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eggenschwiler JT et al (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412(6843):194–198

    Article  CAS  PubMed  Google Scholar 

  95. Bangs F, Anderson KV (2017) Primary cilia and mammalian hedgehog signaling. Cold Spring Harb Perspect Biol 9(5):a028175

    Article  PubMed  Google Scholar 

  96. Ungricht R, Kutay U (2015) Establishment of NE asymmetry-targeting of membrane proteins to the inner nuclear membrane. Curr Opin Cell Biol 34:135–141

    Article  CAS  PubMed  Google Scholar 

  97. Burns LT, Wente SR (2012) Trafficking to uncharted territory of the nuclear envelope. Curr Opin Cell Biol 24(3):341–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to all authors, whose work could not be cited due to space limitations. This work is supported by the following Ministry of Education (Singapore) Grants to L.L.: AcRF Tier 2 MOE2015-T2-2-073 and AcRF Tier1 RG132/15 and AcRF Tier1 RG48/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Madugula, V. Mechanisms of ciliary targeting: entering importins and Rabs. Cell. Mol. Life Sci. 75, 597–606 (2018). https://doi.org/10.1007/s00018-017-2629-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2629-3

Keywords

Navigation