Skip to main content
Log in

Gated entry into the ciliary compartment

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cilia and flagella play important roles in cell motility and cell signaling. These functions require that the cilium establishes and maintains a unique lipid and protein composition. Recent work indicates that a specialized region at the base of the cilium, the transition zone, serves as both a barrier to entry and a gate for passage of select components. For at least some cytosolic proteins, the barrier and gate functions are provided by a ciliary pore complex (CPC) that shares molecular and mechanistic properties with nuclear gating. Specifically, nucleoporins of the CPC limit the diffusional entry of cytosolic proteins in a size-dependent manner and enable the active transport of large molecules and complexes via targeting signals, importins, and the small G protein Ran. For membrane proteins, the septin protein SEPT2 is part of the barrier to entry whereas the gating function is carried out and/or regulated by proteins associated with ciliary diseases (ciliopathies) such as nephronophthisis, Meckel–Gruber syndrome and Joubert syndrome. Here, we discuss the evidence behind these models of ciliary gating as well as the similarities to and differences from nuclear gating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Basten SG, Giles RH (2013) Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Silverman MA, Leroux MR (2009) Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends Cell Biol 19:306–316

    Article  PubMed  CAS  Google Scholar 

  4. Sung CH, Leroux MR (2013) The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat Cell Biol 15:1387–1397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wei Q, Ling K, Hu J (2015) The essential roles of transition fibers in the context of cilia. Curr Opin Cell Biol 35:98–105

    Article  PubMed  CAS  Google Scholar 

  6. Emmer BT, Maric D, Engman DM (2010) Molecular mechanisms of protein and lipid targeting to ciliary membranes. J Cell Sci 123:529–536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Madhivanan K, Aguilar RC (2014) Ciliopathies: the trafficking connection. Traffic 15:1031–1056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Nachury MV, Seeley ES, Jin H (2010) Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol 26:59–87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nozawa YI, Lin C, Chuang PT (2013) Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Curr Opin Genet Dev 23:429–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Novarino G, Akizu N, Gleeson JG (2011) Modeling human disease in humans: the ciliopathies. Cell 147:70–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Czarnecki PG, Shah JV (2012) The ciliary transition zone: from morphology and molecules to medicine. Trends Cell Biol 22:201–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Garcia-Gonzalo FR, Reiter JF (2012) Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197:697–709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Szymanska K, Johnson CA (2012) The transition zone: an essential functional compartment of cilia. Cilia 1:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lim YS, Tang BL (2013) Getting into the cilia: nature of the barrier(s). Mol Membr Biol 30:350–354

    Article  PubMed  CAS  Google Scholar 

  16. Malicki J, Avidor-Reiss T (2014) From the cytoplasm into the cilium: bon voyage. Organogenesis 10:138–157

    Article  PubMed  PubMed Central  Google Scholar 

  17. Reiter JF, Blacque OE, Leroux MR (2012) The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 13:608–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kee HL, Verhey KJ (2013) Molecular connections between nuclear and ciliary import processes. Cilia 2:11

    Article  PubMed  PubMed Central  Google Scholar 

  19. Breslow DK, Koslover EF, Seydel F, Spakowitz AJ, Nachury MV (2013) An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J Cell Biol 203:129–147

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kee HL, Dishinger JF, Blasius TL, Liu CJ, Margolis B, Verhey KJ (2012) A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat Cell Biol 14:431–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lin YC et al (2013) Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat Chem Biol 9:437–443

    Article  PubMed  CAS  Google Scholar 

  22. Rout MP, Aitchison JD, Magnasco MO, Chait BT (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13:622–628

    Article  PubMed  CAS  Google Scholar 

  23. Calvert PD, Schiesser WE, Pugh EN Jr (2010) Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium. J Gen Physiol 135:173–196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Najafi M, Maza NA, Calvert PD (2012) Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc Natl Acad Sci USA 109:203–208

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brown JM, Cochran DA, Craige B, Kubo T, Witman GB (2015) Assembly of IFT trains at the ciliary base depends on IFT74. Curr Biol 25:1583–1593

    Article  PubMed  CAS  Google Scholar 

  26. Qin H, Diener DR, Geimer S, Cole DG, Rosenbaum JL (2004) Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J Cell Biol 164:255–266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Dishinger JF et al (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat Cell Biol 12:703–710

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hurd TW, Fan S, Margolis BL (2011) Localization of retinitis pigmentosa 2 to cilia is regulated by Importin beta2. J Cell Sci 124:718–726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Allen TD, Cronshaw JM, Bagley S, Kiseleva E, Goldberg MW (2000) The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci 113(Pt 10):1651–1659

    PubMed  CAS  Google Scholar 

  30. Raices M, D’Angelo MA (2012) Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 13:687–699

    Article  PubMed  CAS  Google Scholar 

  31. Fan S et al (2011) Induction of Ran GTP drives ciliogenesis. Mol Biol Cell 22:4539–4548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Santos N, Reiter JF (2014) A central region of Gli2 regulates its localization to the primary cilium and transcriptional activity. J Cell Sci 127:1500–1510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Maiuri T, Woloshansky T, Xia J, Truant R (2013) The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal. Hum Mol Genet 22:1383–1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chatel G, Fahrenkrog B (2012) Dynamics and diverse functions of nuclear pore complex proteins. Nucleus 3:162–171

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hashizume C, Moyori A, Kobayashi A, Yamakoshi N, Endo A, Wong RW (2013) Nucleoporin Nup62 maintains centrosome homeostasis. Cell Cycle 12:3804–3816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ibarra A, Hetzer MW (2015) Nuclear pore proteins and the control of genome functions. Genes Dev 29:337–349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Pascual-Garcia P, Jeong J, Capelson M (2014) Nucleoporin Nup98 associates with Trx/MLL and NSL histone-modifying complexes and regulates Hox gene expression. Cell Rep 9:433–442

    Article  PubMed  CAS  Google Scholar 

  38. Diener DR, Lupetti P, Rosenbaum JL (2015) Proteomic analysis of isolated ciliary transition zones reveals the presence of ESCRT proteins. Curr Biol 25:379–384

    Article  PubMed  CAS  Google Scholar 

  39. Field MC, Koreny L, Rout MP (2014) Enriching the pore: splendid complexity from humble origins. Traffic 15:141–156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Grossman E, Medalia O, Zwerger M (2012) Functional architecture of the nuclear pore complex. Annu Rev Biophys 41:557–584

    Article  PubMed  CAS  Google Scholar 

  41. Takao D, Dishinger JF, Kee HL, Pinskey JM, Allen BL, Verhey KJ (2014) An assay for clogging the ciliary pore complex distinguishes mechanisms of cytosolic and membrane protein entry. Curr Biol 24:2288–2294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Finlay DR, Meier E, Bradley P, Horecka J, Forbes DJ (1991) A complex of nuclear pore proteins required for pore function. J Cell Biol 114:169–183

    Article  PubMed  CAS  Google Scholar 

  43. Leng Y, Cao C, Ren J, Huang L, Chen D, Ito M, Kufe D (2007) Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62. J Biol Chem 282:19321–19330

    Article  PubMed  CAS  Google Scholar 

  44. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148:635–651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Al-Bassam J, van Breugel M, Harrison SC, Hyman A (2006) Stu2p binds tubulin and undergoes an open-to-closed conformational change. J Cell Biol 172:1009–1022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fakhro KA, Choi M, Ware SM, Belmont JW, Towbin JA, Lifton RP, Khokha MK, Brueckner M (2011) Rare copy number variations in congenital heart disease patients identify unique genes in left–right patterning. Proc Natl Acad Sci USA 108:2915–2920

    Article  PubMed  PubMed Central  Google Scholar 

  47. Katta SS, Smoyer CJ, Jaspersen SL (2014) Destination: inner nuclear membrane. Trends Cell Biol 24:221–229

    Article  PubMed  CAS  Google Scholar 

  48. Laba JK, Steen A, Veenhoff LM (2014) Traffic to the inner membrane of the nuclear envelope. Curr Opin Cell Biol 28:36–45

    Article  PubMed  CAS  Google Scholar 

  49. Lusk CP, Blobel G, King MC (2007) Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol 8:414–420

    Article  PubMed  CAS  Google Scholar 

  50. Ungricht R, Klann M, Horvath P, Kutay U (2015) Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. J Cell Biol 209:687–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Boni A, Politi AZ, Strnad P, Xiang W, Hossain MJ, Ellenberg J (2015) Live imaging and modeling of inner nuclear membrane targeting reveals its molecular requirements in mammalian cells. J Cell Biol 209:705–720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Beck M, Lucic V, Forster F, Baumeister W, Medalia O (2007) Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449:611–615

    Article  PubMed  CAS  Google Scholar 

  53. Maimon T, Elad N, Dahan I, Medalia O (2012) The human nuclear pore complex as revealed by cryo-electron tomography. Structure 20:998–1006

    Article  PubMed  CAS  Google Scholar 

  54. Ohba T, Schirmer EC, Nishimoto T, Gerace L (2004) Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J Cell Biol 167:1051–1062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Soullam B, Worman HJ (1995) Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane. J Cell Biol 130:15–27

    Article  PubMed  CAS  Google Scholar 

  56. Theerthagiri G, Eisenhardt N, Schwarz H, Antonin W (2010) The nucleoporin Nup188 controls passage of membrane proteins across the nuclear pore complex. J Cell Biol 189:1129–1142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Turgay Y, Ungricht R, Rothballer A, Kiss A, Csucs G, Horvath P, Kutay U (2010) A classical NLS and the SUN domain contribute to the targeting of SUN2 to the inner nuclear membrane. EMBO J 29:2262–2275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zuleger N, Kelly DA, Richardson AC, Kerr AR, Goldberg MW, Goryachev AB, Schirmer EC (2011) System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. J Cell Biol 193:109–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Chih B, Liu P, Chinn Y, Chalouni C, Komuves LG, Hass PE, Sandoval W, Peterson AS (2012) A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol 14:61–72

    Article  CAS  Google Scholar 

  60. Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329:436–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Larkins CE, Aviles GD, East MP, Kahn RA, Caspary T (2011) Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell 22:4694–4703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ye F, Breslow DK, Koslover EF, Spakowitz AJ, Nelson WJ, Nachury MV (2013) Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. Elife 2:e00654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Barral Y, Mermall V, Mooseker MS, Snyder M (2000) Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol Cell 5:841–851

    Article  PubMed  CAS  Google Scholar 

  64. Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD (2000) Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290:341–344

    Article  PubMed  CAS  Google Scholar 

  65. Ihara M et al (2005) Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 8:343–352

    Article  PubMed  CAS  Google Scholar 

  66. Caudron F, Barral Y (2009) Septins and the lateral compartmentalization of eukaryotic membranes. Dev Cell 16:493–506

    Article  PubMed  CAS  Google Scholar 

  67. Ghossoub R et al (2013) Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length. J Cell Sci 126:2583–2594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Awata J, Takada S, Standley C, Lechtreck KF, Bellve KD, Pazour GJ, Fogarty KE, Witman GB (2014) Nephrocystin-4 controls ciliary trafficking of membrane and large soluble proteins at the transition zone. J Cell Sci 127:4714–4727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Cevik S et al (2013) Active transport and diffusion barriers restrict Joubert Syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain. PLoS Genet 9:e1003977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, Witman GB (2010) CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190:927–940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Williams CL et al (2011) MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 192:1023–1041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dowdle WE et al (2011) Disruption of a ciliary B9 protein complex causes Meckel syndrome. Am J Hum Genet 89:94–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Garcia-Gonzalo FR et al (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet 43:776–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Roberson EC et al (2015) TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. J Cell Biol 209:129–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Pazour GJ, Bloodgood RA (2008) Targeting proteins to the ciliary membrane. Curr Top Dev Biol 85:115–149

    Article  PubMed  CAS  Google Scholar 

  76. Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH (1999) Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97:877–887

    Article  PubMed  CAS  Google Scholar 

  77. Mazelova J et al (2009) Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J 28:183–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Francis SS, Sfakianos J, Lo B, Mellman I (2011) A hierarchy of signals regulates entry of membrane proteins into the ciliary membrane domain in epithelial cells. J Cell Biol 193:219–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Li Y, Zhang Q, Wei Q, Zhang Y, Ling K, Hu J (2012) SUMOylation of the small GTPase ARL-13 promotes ciliary targeting of sensory receptors. J Cell Biol 199:589–598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. McIntyre JC, Joiner AM, Zhang L, Iniguez-Lluhi J, Martens JR (2015) SUMOylation regulates ciliary localization of olfactory signaling proteins. J Cell Sci 128:1934–1945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Garcia-Gonzalo FR, Phua SC, Roberson EC, Garcia G 3rd, Abedin M, Schurmans S, Inoue T, Reiter JF (2015) Phosphoinositides regulate ciliary protein trafficking to modulate hedgehog signaling. Dev Cell 34:400–409

    Article  PubMed  CAS  Google Scholar 

  82. Chavez M, Ena S, Van Sande J, de Kerchove d’Exaerde A, Schurmans S, Schiffmann SN (2015) Modulation of ciliary phosphoinositide content regulates trafficking and sonic hedgehog signaling output. Dev Cell 34:338–350

    Article  PubMed  CAS  Google Scholar 

  83. Ori A et al (2013) Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 9:648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Mans BJ, Anantharaman V, Aravind L, Koonin EV (2004) Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3:1612–1637

    Article  PubMed  CAS  Google Scholar 

  85. Neumann N, Lundin D, Poole AM (2010) Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS One 5:e13241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Onischenko E, Weis K (2011) Nuclear pore complex-a coat specifically tailored for the nuclear envelope. Curr Opin Cell Biol 23:293–301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Eisenhardt N, Redolfi J, Antonin W (2014) Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J Cell Sci 127:908–921

    Article  PubMed  CAS  Google Scholar 

  88. Kim DI, Birendra KC, Zhu W, Motamedchaboki K, Doye V, Roux KJ (2014) Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci USA 111:E2453–E2461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Mitchell JM, Mansfeld J, Capitanio J, Kutay U, Wozniak RW (2010) Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. J Cell Biol 191:505–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Sang L et al (2011) Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145:513–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ounjai P, Kim KD, Liu H, Dong M, Tauscher AN, Witkowska HE, Downing KH (2013) Architectural insights into a ciliary partition. Curr Biol 23:339–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Elad N, Maimon T, Frenkiel-Krispin D, Lim RY, Medalia O (2009) Structural analysis of the nuclear pore complex by integrated approaches. Curr Opin Struct Biol 19:226–232

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Verhey lab for helpful discussions. DT is supported by a Postdoctoral Fellowship for Research Abroad from the Japan Society for the Promotion of Science. Work in KJV’s lab is supported by NIH RO1GM070862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen J. Verhey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takao, D., Verhey, K.J. Gated entry into the ciliary compartment. Cell. Mol. Life Sci. 73, 119–127 (2016). https://doi.org/10.1007/s00018-015-2058-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2058-0

Keywords

Navigation