Skip to main content
Log in

Targeting the energy guardian AMPK: another avenue for treating cardiomyopathy?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

5′-AMP-activated protein kinase (AMPK) is a pivotal regulator of endogenous defensive molecules in various pathological processes. The AMPK signaling regulates a variety of intracellular intermedial molecules involved in biological reactions, including glycogen metabolism, protein synthesis, and cardiac fibrosis, in response to hypertrophic stimuli. Studies have revealed that the activation of AMPK performs a protective role in cardiovascular diseases, whereas its function in cardiac hypertrophy and cardiomyopathy remains elusive and poorly understood. In view of the current evidence of AMPK, we introduce the biological information of AMPK and cardiac hypertrophy as well as some upstream activators of AMPK. Next, we discuss two important types of cardiomyopathy involving AMPK, RKAG2 cardiomyopathy, and hypertrophic cardiomyopathy. Eventually, therapeutic research, genetic screening, conflicts, obstacles, challenges, and potential directions are also highlighted in this review, aimed at providing a comprehensive understanding of AMPK for readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB; American Heart Association Statistics C, Stroke Statistics S (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:e38–e360

  2. Mortality GBD, Causes of Death C (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385:117–171

  3. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB, American Heart A, Council on Clinical Cardiology HF, Transplantation C, Quality of C, Outcomes R, Functional G, Translational Biology Interdisciplinary Working G, Council on E, Prevention (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816

  4. Maron BJ, Maron MS (2013) Hypertrophic cardiomyopathy. Lancet 381:242–255

    Article  PubMed  Google Scholar 

  5. Sternick EB, de Almeida Araujo S, Rocha C, Gollob M (2014) Myocardial infarction in a teenager. Eur Heart J 35:1558

    Article  PubMed  Google Scholar 

  6. Banerjee SK, McGaffin KR, Huang XN, Ahmad F (2010) Activation of cardiac hypertrophic signaling pathways in a transgenic mouse with the human PRKAG2 Thr400Asn mutation. Biochim Biophys Acta 1802:284–291

    Article  CAS  PubMed  Google Scholar 

  7. Magida JA, Leinwand LA (2014) Metabolic crosstalk between the heart and liver impacts familial hypertrophic cardiomyopathy. EMBO Mol Med 6:482–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR, Kumada M, Sato K, Schiekofer S, Ohashi K, Funahashi T, Colucci WS, Walsh K (2004) Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med 10:1384–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun Y, Yi W, Yuan Y, Lau WB, Yi D, Wang X, Wang Y, Su H, Wang X, Gao E, Koch WJ, Ma XL (2013) C1q/tumor necrosis factor-related protein-9, a novel adipocyte-derived cytokine, attenuates adverse remodeling in the ischemic mouse heart via protein kinase A activation. Circulation 128:S113–S120

    Article  CAS  PubMed  Google Scholar 

  10. Yi W, Sun Y, Yuan Y, Lau WB, Zheng Q, Wang X, Wang Y, Shang X, Gao E, Koch WJ, Ma XL (2012) C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart. Circulation 125:3159–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng Q, Yuan Y, Yi W, Lau WB, Wang Y, Wang X, Sun Y, Lopez BL, Christopher TA, Peterson JM, Wong GW, Yu S, Yi D, Ma XL (2011) C1q/TNF-related proteins, a family of novel adipokines, induce vascular relaxation through the adiponectin receptor-1/AMPK/eNOS/nitric oxide signaling pathway. Arterioscler Thromb Vasc Biol 31:2616–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Fan C, Deng C, Zhao L, Hu W, Di S, Ma Z, Zhang Y, Qin Z, Jin Z, Yan X, Jiang S, Sun Y, Yi W (2016) Melatonin reverses flow shear stress-induced injury in bone marrow mesenchymal stem cells via activation of AMP-activated protein kinase signaling. J Pineal Res 60:228–241

    Article  CAS  PubMed  Google Scholar 

  13. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  CAS  PubMed  Google Scholar 

  14. Towbin JA, Lorts A, Jefferies JL (2015) Left ventricular non-compaction cardiomyopathy. Lancet 386:813–825

    Article  PubMed  Google Scholar 

  15. Dolinsky VW, Chan AY, Robillard Frayne I, Light PE, Des Rosiers C, Dyck JR (2009) Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation 119:1643–1652

    Article  CAS  PubMed  Google Scholar 

  16. Hardie DG (2015) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33:1–7

    Article  CAS  PubMed  Google Scholar 

  17. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  CAS  PubMed  Google Scholar 

  18. Chen L, Xin FJ, Wang J, Hu J, Zhang YY, Wan S, Cao LS, Lu C, Li P, Yan SF, Neumann D, Schlattner U, Xia B, Wang ZX, Wu JW (2013) Conserved regulatory elements in AMPK. Nature 498:E8–10

    Article  CAS  PubMed  Google Scholar 

  19. Carling D, Viollet B (2015) Beyond energy homeostasis: the expanding role of AMP-activated protein kinase in regulating metabolism. Cell Metab 21:799–804

    Article  CAS  PubMed  Google Scholar 

  20. Zaha VG, Young LH (2012) AMP-activated protein kinase regulation and biological actions in the heart. Circ Res 111:800–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG (2014) Phosphorylation by Akt within the ST loop of AMPK-alpha1 down-regulates its activation in tumour cells. Biochem J 459:275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen L, Jiao ZH, Zheng LS, Zhang YY, Xie ST, Wang ZX, Wu JW (2009) Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 459:1146–1149

    Article  CAS  PubMed  Google Scholar 

  23. Young LH (2008) AMP-activated protein kinase conducts the ischemic stress response orchestra. Circulation 117:832–840

    Article  PubMed  Google Scholar 

  24. Galinanes M, Bullough D, Mullane KM, Hearse DJ (1992) Sustained protection by acadesine against ischemia- and reperfusion-induced injury. Studies in the transplanted rat heart. Circulation 86:589–597

    Article  CAS  PubMed  Google Scholar 

  25. Amato S, Liu X, Zheng B, Cantley L, Rakic P, Man HY (2011) AMP-activated protein kinase regulates neuronal polarization by interfering with PI 3-kinase localization. Science 332:247–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Agarwal S, Bell CM, Rothbart SB, Moran RG (2015) AMP-activated protein kinase (AMPK) control of mTORC1 Is p53- and TSC2-independent in pemetrexed-treated carcinoma cells. J Biol Chem 290:27473–27486

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M, Ito S, Ogai A, Asakura M, Kim J, Minamino T, Takashima S, Sanada S, Sugimachi M, Komamura K, Mochizuki N, Kitakaze M (2009) Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation 119:2568–2577

    Article  CAS  PubMed  Google Scholar 

  28. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller O, Back W, Zimmer M (1998) Peutz–Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18:38–43

    Article  CAS  PubMed  Google Scholar 

  29. Ma H, Guo R, Yu L, Zhang Y, Ren J (2011) Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur Heart J 32:1025–1038

    Article  CAS  PubMed  Google Scholar 

  30. Kuwabara Y, Horie T, Baba O, Watanabe S, Nishiga M, Usami S, Izuhara M, Nakao T, Nishino T, Otsu K, Kita T, Kimura T, Ono K (2015) MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Circ Res 116:279–288

    Article  CAS  PubMed  Google Scholar 

  31. Scott JW, Ling N, Issa SM, Dite TA, O’Brien MT, Chen ZP, Galic S, Langendorf CG, Steinberg GR, Kemp BE, Oakhill JS (2014) Small molecule drug A-769662 and AMP synergistically activate naive AMPK independent of upstream kinase signaling. Chem Biol 21:619–627

    Article  CAS  PubMed  Google Scholar 

  32. Stuck BJ, Lenski M, Bohm M, Laufs U (2008) Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase. J Biol Chem 283:32562–32569

    Article  CAS  PubMed  Google Scholar 

  33. Fassett JT, Hu X, Xu X, Lu Z, Zhang P, Chen Y, Bache RJ (2013) AMPK attenuates microtubule proliferation in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 304:H749–H758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan AY, Dolinsky VW, Soltys CL, Viollet B, Baksh S, Light PE, Dyck JR (2008) Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem 283:24194–24201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, Samant S, Ravindra PV, Isbatan A, Gupta MP (2010) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 285:3133–3144

    Article  CAS  PubMed  Google Scholar 

  36. Noga AA, Soltys CL, Barr AJ, Kovacic S, Lopaschuk GD, Dyck JR (2007) Expression of an active LKB1 complex in cardiac myocytes results in decreased protein synthesis associated with phenylephrine-induced hypertrophy. Am J Physiol Heart Circ Physiol 292:H1460–H1469

    Article  CAS  PubMed  Google Scholar 

  37. Zhu J, Ning RB, Lin XY, Chai DJ, Xu CS, Xie H, Zeng JZ, Lin JX (2014) Retinoid X receptor agonists inhibit hypertension-induced myocardial hypertrophy by modulating LKB1/AMPK/p70S6K signaling pathway. Am J Hypertens 27:1112–1124

    Article  PubMed  Google Scholar 

  38. Kang S, Chemaly ER, Hajjar RJ, Lebeche D (2011) Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. J Biol Chem 286:18465–18473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fu YN, Xiao H, Ma XW, Jiang SY, Xu M, Zhang YY (2011) Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation. Acta Pharmacol Sin 32:879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Calamaras TD, Lee C, Lan F, Ido Y, Siwik DA, Colucci WS (2015) The lipid peroxidation product 4-hydroxy-trans-2-nonenal causes protein synthesis in cardiac myocytes via activated mTORC1-p70S6K-RPS6 signaling. Free Radic Biol Med 82:137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Biesemann N, Mendler L, Wietelmann A, Hermann S, Schafers M, Kruger M, Boettger T, Borchardt T, Braun T (2014) Myostatin regulates energy homeostasis in the heart and prevents heart failure. Circ Res 115:296–310

    Article  CAS  PubMed  Google Scholar 

  42. Arad M, Maron BJ, Gorham JM, Johnson WH Jr, Saul JP, Perez-Atayde AR, Spirito P, Wright GB, Kanter RJ, Seidman CE, Seidman JG (2005) Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 352:362–372

    Article  CAS  PubMed  Google Scholar 

  43. Arad M, Benson DW, Perez-Atayde AR, McKenna WJ, Sparks EA, Kanter RJ, McGarry K, Seidman JG, Seidman CE (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahmad F, Arad M, Musi N, He H, Wolf C, Branco D, Perez-Atayde AR, Stapleton D, Bali D, Xing Y, Tian R, Goodyear LJ, Berul CI, Ingwall JS, Seidman CE, Seidman JG (2005) Increased alpha2 subunit-associated AMPK activity and PRKAG2 cardiomyopathy. Circulation 112:3140–3148

    Article  CAS  PubMed  Google Scholar 

  45. Kim M, Hunter RW, Garcia-Menendez L, Gong G, Yang YY, Kolwicz SC Jr, Xu J, Sakamoto K, Wang W, Tian R (2014) Mutation in the gamma2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res 114:966–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pchejetski D, Foussal C, Alfarano C, Lairez O, Calise D, Guilbeau-Frugier C, Schaak S, Seguelas MH, Wanecq E, Valet P, Parini A, Kunduzova O (2012) Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J 33:2360–2369

    Article  CAS  PubMed  Google Scholar 

  47. Cao T, Gao Z, Gu L, Chen M, Yang B, Cao K, Huang H, Li M (2014) AdipoR1/APPL1 potentiates the protective effects of globular adiponectin on angiotensin II-induced cardiac hypertrophy and fibrosis in neonatal rat atrial myocytes and fibroblasts. PLoS One 9:e103793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zong J, Deng W, Zhou H, Bian ZY, Dai J, Yuan Y, Zhang JY, Zhang R, Zhang Y, Wu QQ, Guo HP, Li HL, Tang QZ (2013) 3,3′-Diindolylmethane protects against cardiac hypertrophy via 5′-adenosine monophosphate-activated protein kinase-alpha2. PLoS One 8:e53427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee JE, Yi CO, Jeon BT, Shin HJ, Kim SK, Jung TS, Choi JY, Roh GS (2012) alpha-Lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima Fatty rats. Cardiovasc Diabetol 11:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu D, Lei H, Wang JY, Zhang CL, Feng H, Fu FY, Li L, Wu LL (2015) CTRP3 attenuates post-infarct cardiac fibrosis by targeting Smad3 activation and inhibiting myofibroblast differentiation. J Mol Med (Berl) 93:1311–1325

    Article  CAS  Google Scholar 

  51. Daskalopoulos EP, Dufeys C, Bertrand L, Beauloye C, Horman S (2016) AMPK in cardiac fibrosis and repair: actions beyond metabolic regulation. J Mol Cell Cardiol 91:188–200

    Article  CAS  PubMed  Google Scholar 

  52. Vieira AK, Soares VM, Bernardo AF, Neves FA, Mattos AB, Guedes RM, Cortez E, Andrade DC, Lacerda-Miranda G, Garcia-Souza EP, Moura AS (2015) Overnourishment during lactation induces metabolic and haemodynamic heart impairment during adulthood. Nutr Metab Cardiovasc Dis 25:1062–1069

    Article  CAS  PubMed  Google Scholar 

  53. Javadov S, Rajapurohitam V, Kilic A, Zeidan A, Choi A, Karmazyn M (2009) Anti-hypertrophic effect of NHE-1 inhibition involves GSK-3beta-dependent attenuation of mitochondrial dysfunction. J Mol Cell Cardiol 46:998–1007

    Article  CAS  PubMed  Google Scholar 

  54. Hernandez JS, Barreto-Torres G, Kuznetsov AV, Khuchua Z, Javadov S (2014) Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med 18:709–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, Mocanu MM, Yellon DM (2008) Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol 103:274–284

    Article  CAS  PubMed  Google Scholar 

  56. Zaha VG, Qi D, Su KN, Palmeri M, Lee HY, Hu X, Wu X, Shulman GI, Rabinovitch PS, Russell RR 3rd, Young LH (2016) AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia. J Mol Cell Cardiol 91:104–113

    Article  CAS  PubMed  Google Scholar 

  57. Barreto-Torres G, Hernandez JS, Jang S, Rodriguez-Munoz AR, Torres-Ramos CA, Basnakian AG, Javadov S (2015) The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARalpha-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol 308:H749–H758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maron BJ, Roberts WC, Arad M, Haas TS, Spirito P, Wright GB, Almquist AK, Baffa JM, Saul JP, Ho CY, Seidman J, Seidman CE (2009) Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 301:1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Stork S, Voelker W, Ertl G, Wanner C, Strotmann J (2009) Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation 119:524–529

    Article  CAS  PubMed  Google Scholar 

  60. Murphy RT, Mogensen J, McGarry K, Bahl A, Evans A, Osman E, Syrris P, Gorman G, Farrell M, Holton JL, Hanna MG, Hughes S, Elliott PM, Macrae CA, McKenna WJ (2005) Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff–Parkinson–White syndrome: natural history. J Am Coll Cardiol 45:922–930

    Article  CAS  PubMed  Google Scholar 

  61. Banerjee SK, Ramani R, Saba S, Rager J, Tian R, Mathier MA, Ahmad F (2007) A PRKAG2 mutation causes biphasic changes in myocardial AMPK activity and does not protect against ischemia. Biochem Biophys Res Commun 360:381–387

    Article  CAS  PubMed  Google Scholar 

  62. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346(Pt 3):659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sidhu JS, Rajawat YS, Rami TG, Gollob MH, Wang Z, Yuan R, Marian AJ, DeMayo FJ, Weilbacher D, Taffet GE, Davies JK, Carling D, Khoury DS, Roberts R (2005) Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff–Parkinson–White syndrome. Circulation 111:21–29

    Article  CAS  PubMed  Google Scholar 

  64. Arad M, Moskowitz IP, Patel VV, Ahmad F, Perez-Atayde AR, Sawyer DB, Walter M, Li GH, Burgon PG, Maguire CT, Stapleton D, Schmitt JP, Guo XX, Pizard A, Kupershmidt S, Roden DM, Berul CI, Seidman CE, Seidman JG (2003) Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff–Parkinson–White syndrome in glycogen storage cardiomyopathy. Circulation 107:2850–2856

    Article  CAS  PubMed  Google Scholar 

  65. Ho CY, Seidman CE (2006) A contemporary approach to hypertrophic cardiomyopathy. Circulation 113:e858–e862

    Article  PubMed  Google Scholar 

  66. Alcalai R, Seidman JG, Seidman CE (2008) Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J Cardiovasc Electrophysiol 19:104–110

    PubMed  Google Scholar 

  67. Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman CE (1998) Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 338:1248–1257

    Article  CAS  PubMed  Google Scholar 

  68. Bos JM, Towbin JA, Ackerman MJ (2009) Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol 54:201–211

    Article  CAS  PubMed  Google Scholar 

  69. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    Article  CAS  PubMed  Google Scholar 

  70. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  CAS  PubMed  Google Scholar 

  71. Qin F, Siwik DA, Luptak I, Hou X, Wang L, Higuchi A, Weisbrod RM, Ouchi N, Tu VH, Calamaras TD, Miller EJ, Verbeuren TJ, Walsh K, Cohen RA, Colucci WS (2012) The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. Circulation 125(1757–1764):S1751–S1756

    Google Scholar 

  72. Moss NG, Riguera DA, Solinga RM, Kessler MM, Zimmer DP, Arendshorst WJ, Currie MG, Goy MF (2009) The natriuretic peptide uroguanylin elicits physiologic actions through 2 distinct topoisomers. Hypertension 53:867–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thandapilly SJ, Louis XL, Yang T, Stringer DM, Yu L, Zhang S, Wigle J, Kardami E, Zahradka P, Taylor C, Anderson HD, Netticadan T (2011) Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway. Eur J Pharmacol 668:217–224

    Article  CAS  PubMed  Google Scholar 

  74. Sung MM, Dyck JR (2015) Therapeutic potential of resveratrol in heart failure. Ann N Y Acad Sci 1348:32–45

    Article  CAS  PubMed  Google Scholar 

  75. Li HL, Yin R, Chen D, Liu D, Wang D, Yang Q, Dong YG (2007) Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy. J Cell Biochem 100:1086–1099

    Article  CAS  PubMed  Google Scholar 

  76. Duca FA, Cote CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, Lam TK (2015) Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med 21:506–511

    Article  CAS  PubMed  Google Scholar 

  77. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, Cline GW, Samuel VT, Kibbey RG, Shulman GI (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57:696–705

    Article  CAS  PubMed  Google Scholar 

  80. Barreto-Torres G, Parodi-Rullan R, Javadov S (2012) The role of PPARalpha in metformin-induced attenuation of mitochondrial dysfunction in acute cardiac ischemia/reperfusion in rats. Int J Mol Sci 13:7694–7709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gundewar S, Calvert JW, Jha S, Toedt-Pingel I, Ji SY, Nunez D, Ramachandran A, Anaya-Cisneros M, Tian R, Lefer DJ (2009) Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 104:403–411

    Article  CAS  PubMed  Google Scholar 

  82. Zhang CX, Pan SN, Meng RS, Peng CQ, Xiong ZJ, Chen BL, Chen GQ, Yao FJ, Chen YL, Ma YD, Dong YG (2011) Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol 38:55–62

    Article  PubMed  CAS  Google Scholar 

  83. Goodnight CJ (2011) Evolution in metacommunities. Philos Trans R Soc Lond B Biol Sci 366:1401–1409

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bilandzic A, Fitzpatrick T, Rosella L, Henry D (2016) Risk of bias in systematic reviews of non-randomized studies of adverse cardiovascular effects of thiazolidinediones and cyclooxygenase-2 inhibitors: application of a new Cochrane risk of bias tool. PLoS Med 13:e1001987

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang MY, Unger RH (2005) Role of PP2C in cardiac lipid accumulation in obese rodents and its prevention by troglitazone. Am J Physiol Endocrinol Metab 288:E216–E221

    Article  CAS  PubMed  Google Scholar 

  86. Li P, Shibata R, Unno K, Shimano M, Furukawa M, Ohashi T, Cheng X, Nagata K, Ouchi N, Murohara T (2010) Evidence for the importance of adiponectin in the cardioprotective effects of pioglitazone. Hypertension 55:69–75

    Article  CAS  PubMed  Google Scholar 

  87. Kato MF, Shibata R, Obata K, Miyachi M, Yazawa H, Tsuboi K, Yamada T, Nishizawa T, Noda A, Cheng XW, Murate T, Koike Y, Murohara T, Yokota M, Nagata K (2008) Pioglitazone attenuates cardiac hypertrophy in rats with salt-sensitive hypertension: role of activation of AMP-activated protein kinase and inhibition of Akt. J Hypertens 26:1669–1676

    Article  CAS  PubMed  Google Scholar 

  88. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3:403–416

    Article  CAS  PubMed  Google Scholar 

  89. Timmermans AD, Balteau M, Gelinas R, Renguet E, Ginion A, de Meester C, Sakamoto K, Balligand JL, Bontemps F, Vanoverschelde JL, Horman S, Beauloye C, Bertrand L (2014) A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake. Am J Physiol Heart Circ Physiol 306:H1619–H1630

    Article  CAS  PubMed  Google Scholar 

  90. Liu XM, Peyton KJ, Shebib AR, Wang H, Korthuis RJ, Durante W (2011) Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am J Physiol Heart Circ Physiol 300:H84–H93

    Article  CAS  PubMed  Google Scholar 

  91. Paiva MA, Rutter-Locher Z, Goncalves LM, Providencia LA, Davidson SM, Yellon DM, Mocanu MM (2011) Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am J Physiol Heart Circ Physiol 300:H2123–H2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Barreto-Torres G, Javadov S (2016) Possible role of interaction between PPARalpha and cyclophilin D in cardioprotection of AMPK against in vivo ischemia–reperfusion in rats. PPAR Res 2016:9282087

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kim AS, Miller EJ, Wright TM, Li J, Qi D, Atsina K, Zaha V, Sakamoto K, Young LH (2011) A small molecule AMPK activator protects the heart against ischemia–reperfusion injury. J Mol Cell Cardiol 51:24–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang HK, Miao Y, Wang YH, Zhao M, Feng ZH, Yu XJ, Liu JK, Zang WJ (2014) Aerobic interval training protects against myocardial infarction-induced oxidative injury by enhancing antioxidase system and mitochondrial biosynthesis. Clin Exp Pharmacol Physiol 41:192–201

    Article  PubMed  CAS  Google Scholar 

  95. Li L, Meng F, Li N, Zhang L, Wang J, Wang H, Li D, Zhang X, Dong P, Chen Y (2015) Exercise training prevents the attenuation of anesthetic pre-conditioning-mediated cardioprotection in diet-induced obese rats. Acta Anaesthesiol Scand 59:85–97

    Article  CAS  PubMed  Google Scholar 

  96. Holtzman NA, Murphy PD, Watson MS, Barr PA (1997) Predictive genetic testing: from basic research to clinical practice. Science 278:602–605

    Article  CAS  PubMed  Google Scholar 

  97. Gollust SE, Hull SC, Wilfond BS (2002) Limitations of direct-to-consumer advertising for clinical genetic testing. JAMA 288:1762–1767

    Article  PubMed  Google Scholar 

  98. Judge DP (2009) Use of genetics in the clinical evaluation of cardiomyopathy. JAMA 302:2471–2476

    Article  CAS  PubMed  Google Scholar 

  99. Keating MT, Sanguinetti MC (1996) Molecular genetic insights into cardiovascular disease. Science 272:681–685

    Article  CAS  PubMed  Google Scholar 

  100. Maron BJ, Lesser JR, Schiller NB, Harris KM, Brown C, Rehm HL (2009) Implications of hypertrophic cardiomyopathy transmitted by sperm donation. JAMA 302:1681–1684

    Article  CAS  PubMed  Google Scholar 

  101. Morse JH, Barst RJ (1997) Detection of familial primary pulmonary hypertension by genetic testing. N Engl J Med 337:202–203

    Article  CAS  PubMed  Google Scholar 

  102. Gordon RD, Klemm SA, Tunny TJ, Stowasser M (1992) Primary aldosteronism: hypertension with a genetic basis. Lancet 340:159–161

    Article  CAS  PubMed  Google Scholar 

  103. Scheffold T, Waldmuller S, Borisov K (2011) A case of familial hypertrophic cardiomyopathy emphasizes the importance of parallel screening of multiple disease genes. Clin Res Cardiol 100:627–628

    Article  PubMed  Google Scholar 

  104. Schofield RS, McGarry K, Murphy CL, O’Hare K (2013) Cardiac transplant in a family pedigree of hypertrophic cardiomyopathy secondary to a mutation in the AMP gene. BMJ Case Rep. doi:10.1136/bcr-2013-009929

    Google Scholar 

  105. Akman HO, Sampayo JN, Ross FA, Scott JW, Wilson G, Benson L, Bruno C, Shanske S, Hardie DG, Dimauro S (2007) Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase. Pediatr Res 62:499–504

    Article  CAS  PubMed  Google Scholar 

  106. Liu Y, Bai R, Wang L, Zhang C, Zhao R, Wan D, Chen X, Caceres G, Barr D, Barajas-Martinez H, Antzelevitch C, Hu D (2013) Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS One 8:e64603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dyck JR, Lopaschuk GD (2006) AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol 574:95–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wilson C, Contreras-Ferrat A, Venegas N, Osorio-Fuentealba C, Pavez M, Montoya K, Duran J, Maass R, Lavandero S, Estrada M (2013) Testosterone increases GLUT4-dependent glucose uptake in cardiomyocytes. J Cell Physiol 228:2399–2407

    Article  CAS  PubMed  Google Scholar 

  109. Russell RR 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xing Y, Musi N, Fujii N, Zou L, Luptak I, Hirshman MF, Goodyear LJ, Tian R (2003) Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative alpha2 subunit of AMP-activated protein kinase. J Biol Chem 278:28372–28377

    Article  CAS  PubMed  Google Scholar 

  111. Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS, Ahmad F, Lozado R, Shah G, Fananapazir L, Bachinski LL, Roberts R (2001) Identification of a gene responsible for familial Wolff–Parkinson–White syndrome. N Engl J Med 344:1823–1831

    Article  CAS  PubMed  Google Scholar 

  112. Davies JK, Wells DJ, Liu K, Whitrow HR, Daniel TD, Grignani R, Lygate CA, Schneider JE, Noel G, Watkins H, Carling D (2006) Characterization of the role of gamma2 R531G mutation in AMP-activated protein kinase in cardiac hypertrophy and Wolff–Parkinson–White syndrome. Am J Physiol Heart Circ Physiol 290:H1942–H1951

    Article  CAS  PubMed  Google Scholar 

  113. Patel VV, Arad M, Moskowitz IP, Maguire CT, Branco D, Seidman JG, Seidman CE, Berul CI (2003) Electrophysiologic characterization and postnatal development of ventricular pre-excitation in a mouse model of cardiac hypertrophy and Wolff–Parkinson–White syndrome. J Am Coll Cardiol 42:942–951

    Article  PubMed  Google Scholar 

  114. Oliveira SM, Zhang YH, Solis RS, Isackson H, Bellahcene M, Yavari A, Pinter K, Davies JK, Ge Y, Ashrafian H, Walker JW, Carling D, Watkins H, Casadei B, Redwood C (2012) AMP-activated protein kinase phosphorylates cardiac troponin I and alters contractility of murine ventricular myocytes. Circ Res 110:1192–1201

    Article  CAS  PubMed  Google Scholar 

  115. Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM Jr, Klein JB, Epstein PN (2004) Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab 287:E896–E905

    Article  CAS  PubMed  Google Scholar 

  116. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    Article  PubMed  Google Scholar 

  117. He C, Zhu H, Li H, Zou MH, Xie Z (2013) Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 62:1270–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60:1770–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Piano MR (2002) Alcoholic cardiomyopathy: incidence, clinical characteristics, and pathophysiology. Chest 121:1638–1650

    Article  PubMed  Google Scholar 

  120. Ge W, Li Q, Turdi S, Wang XM, Ren J (2011) Deficiency of insulin-like growth factor 1 reduces vulnerability to chronic alcohol intake-induced cardiomyocyte mechanical dysfunction: role of AMPK. J Cell Mol Med 15:1737–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Guo R, Ren J (2012) Deficiency in AMPK attenuates ethanol-induced cardiac contractile dysfunction through inhibition of autophagosome formation. Cardiovasc Res 94:480–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kandadi MR, Hu N, Ren J (2013) ULK1 plays a critical role in AMPK-mediated myocardial autophagy and contractile dysfunction following acute alcohol challenge. Curr Pharm Des 19:4874–4887

    Article  CAS  PubMed  Google Scholar 

  123. Guo R, Zhang Y, Turdi S, Ren J (2013) Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy. Biochim Biophys Acta 1832:1136–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bendale DS, Karpe PA, Chhabra R, Shete SP, Shah H, Tikoo K (2013) 17-beta Oestradiol prevents cardiovascular dysfunction in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br J Pharmacol 170:779–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pang T, Rajapurohitam V, Cook MA, Karmazyn M (2010) Differential AMPK phosphorylation sites associated with phenylephrine vs. antihypertrophic effects of adenosine agonists in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol 298:H1382–H1390

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81500263) and the China Postdoctoral Science Foundation (2016T90973 and 2015M572681).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongjin Wang or Yang Yang.

Ethics declarations

Conflict of interest

None.

Additional information

T. Li and S. Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Jiang, S., Yang, Z. et al. Targeting the energy guardian AMPK: another avenue for treating cardiomyopathy?. Cell. Mol. Life Sci. 74, 1413–1429 (2017). https://doi.org/10.1007/s00018-016-2407-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2407-7

Keywords

Navigation