Skip to main content
Log in

CTRP3 attenuates post-infarct cardiac fibrosis by targeting Smad3 activation and inhibiting myofibroblast differentiation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel adipokine with modulation effects on metabolism, inflammation, and cardiovascular system. This study aimed to investigate the effect of CTRP3 on cardiac fibrosis and its underlying mechanism. The myocardial expression of CTRP3 was significantly decreased after myocardial infarction (MI). Adenovirus-delivered CTRP3 supplement attenuated myocardial hypertrophy, improved cardiac function, inhibited interstitial fibrosis, and decreased the number of myofibroblasts post-MI. In cultured adult rat cardiac fibroblasts (CFs), CTRP3 attenuated cell proliferation; migration; and the expression of connective tissue growth factor, collagen I, and collagen III induced by transforming growth factor (TGF)-β1. Moreover, CTRP3 inhibited whereas CTRP3 small interfering RNA (siRNA) facilitated the expression of α-SMA and profibrotic molecules induced by TGF-β1. CTRP3 also attenuated TGF-β1-induced Smad3 phosphorylation, nuclear translocation, and interaction with p300. CTRP3 increased the phosphorylation of AMP-activated protein kinase (AMPK) and Akt in both rat hearts and CFs. Adenine 9-β-d-arabinofuranoside (AraA), an AMPK inhibitor, abolished the protective effect of CTRP3 against TGF-β1-induced profibrotic response and Smad3 activation. Taken together, CTRP3 attenuates cardiac fibrosis by inhibiting myofibroblast differentiation and the subsequent extracellular matrix production. AMPK is required for the anti-fibrotic effect of CTRP3 through targeting Smad3 activation and inhibiting myofibroblast differentiation.

Key message

  • CTRP3 alleviates cardiac fibrosis in a rat post-MI model and in cardiac fibroblasts.

  • CTRP3 inhibits fibroblast-to-myofibroblast differentiation.

  • CTRP3 exerts anti-fibrotic effect through targeting Smad3 activation.

  • AMPK mediates the anti-fibrotic effect of CTRP3 by inhibition of Smad3 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gersh BJ, Sliwa K, Mayosi BM, Yusuf S (2010) Novel therapeutic concepts: the epidemic of cardiovascular disease in the developing world: global implications. Eur Heart J 31:642–648

    Article  PubMed  Google Scholar 

  2. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278

    Article  CAS  PubMed  Google Scholar 

  3. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10:15–26

    Article  CAS  PubMed  Google Scholar 

  4. Rohr S (2009) Myofibroblasts in diseased hearts: new players in cardiac arrhythmias? Heart Rhythm 6:848–856

    Article  PubMed  Google Scholar 

  5. Kishore U, Gaboriaud C, Waters P, Shrive AK, Greenhough TJ, Reid KB, Sim RB, Arlaud GJ (2004) C1q and tumor necrosis factor superfamily: modularity and versatility. Trends Immunol 25:551–561

    Article  CAS  PubMed  Google Scholar 

  6. Maeda T, Abe M, Kurisu K, Jikko A, Furukawa S (2001) Molecular cloning and characterization of a novel gene, CORS26, encoding a putative secretory protein and its possible involvement in skeletal development. J Biol Chem 276:3628–3634

    Article  CAS  PubMed  Google Scholar 

  7. Schäffler A, Ehling A, Neumann E, Herfarth H, Paul G, Tarner I, Gay S, Schölmerich J, Müller-Ladner U (2003) Genomic organization, promoter, amino acid sequence, chromosomal localization, and expression of the human gene for CORS-26 (collagenous repeat-containing sequence of 26-kDa protein). Biochim Biophys Acta 1630:123–129

    Article  PubMed  Google Scholar 

  8. Schäffler A, Ehling A, Neumann E, Herfarth H, Tarner I, Gay S, Schölmerich J, Müller-Ladner U (2003) Genomic organization, chromosomal localization and adipocytic expression of the murine gene for CORS-26 (collagenous repeat-containing sequence of 26 kDa protein). Biochim Biophys Acta 1628:64–70

    Article  PubMed  Google Scholar 

  9. Weigert J, Neumeier M, Schäffler A, Fleck M, Schölmerich J, Schutz C, Buechler C (2005) The adiponectin paralog CORS-26 has anti-inflammatory properties and is produced by human monocytic cells. FEBS Lett 579:5565–5570

    Article  CAS  PubMed  Google Scholar 

  10. Wölfing B, Buechler C, Weigert J, Neumeier M, Aslanidis C, Schöelmerich J, Schäffler A (2008) Effects of the new C1q/TNF-related protein (CTRP-3) “cartonectin” on the adipocytic secretion of adipokines. Obesity (Silver Spring) 16:1481–1486

    Article  Google Scholar 

  11. Akiyama H, Furukawa S, Wakisaka S, Maeda T (2007) CTRP3/cartducin promotes proliferation and migration of endothelial cells. Mol Cell Biochem 304:243–248

    Article  CAS  PubMed  Google Scholar 

  12. Akiyama H, Furukawa S, Wakisaka S, Maeda T (2009) Elevated expression of CTRP3/cartducin contributes to promotion of osteosarcoma cell proliferation. Oncol Rep 21:1477–1481

    CAS  PubMed  Google Scholar 

  13. Maeda T, Wakisaka S (2010) CTRP3/cartducin is induced by transforming growth factor-beta1 and promotes vascular smooth muscle cell proliferation. Cell Biol Int 34:261–266

    Article  CAS  PubMed  Google Scholar 

  14. Peterson JM, Seldin MM, Wei Z, Aja S, Wong GW (2013) CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism. Am J Physiol Gastrointest Liver Physiol 305:G214–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hofmann C, Chen N, Obermeier F, Paul G, Buchler C, Kopp A, Falk W, Schaffler A (2011) C1q/TNF-related protein-3 (CTRP-3) is secreted by visceral adipose tissue and exerts antiinflammatory and antifibrotic effects in primary human colonic fibroblasts. Inflamm Bowel Dis 17:2462–2471

    Article  PubMed  Google Scholar 

  16. Hou M, Liu J, Liu F, Liu K, Yu B (2014) C1q tumor necrosis factor-related protein-3 protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis through the phosphoinositide 3-kinase/Akt pathway. Int J Mol Med 33:97–104

    CAS  PubMed  Google Scholar 

  17. Yi W, Sun Y, Yuan Y, Lau WB, Zheng Q, Wang X, Wang Y, Shang X, Gao E, Koch WJ et al (2012) C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart. Circulation 125:3159–3169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lin S, Ma S, Lu P, Cai W, Chen Y, Sheng J (2014) Effect of CTRP3 on activation of adventitial fibroblasts induced by TGF-beta1 from rat aorta in vitro. Int J Clin Exp Pathol 7:2199–2208

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Sumida A, Horiba M, Ishiguro H, Takenaka H, Ueda N, Ooboshi H, Opthof T, Kadomatsu K, Kodama I (2010) Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction. Cardiovasc Res 86:113–121

    Article  CAS  PubMed  Google Scholar 

  20. Quintas LE, Pierre SV, Liu L, Bai Y, Liu X, Xie ZJ (2010) Alterations of Na+/K+-ATPase function in caveolin-1 knockout cardiac fibroblasts. J Mol Cell Cardiol 49:525–531

    Article  CAS  PubMed  Google Scholar 

  21. Nickola MW, Wold LE, Colligan PB, Wang GJ, Samson WK, Ren J (2000) Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO. Hypertension 36:501–505

    Article  CAS  PubMed  Google Scholar 

  22. Davis J, Molkentin JD (2014) Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol 70:9–18

    Article  CAS  PubMed  Google Scholar 

  23. Calvieri C, Rubattu S, Volpe M (2012) Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. J Mol Med (Berl) 90:5–13

    Article  CAS  Google Scholar 

  24. Ghosh AK, Yuan W, Mori Y, Varga J (2000) Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-beta involves functional cooperation with p300/CBP transcriptional coactivators. Oncogene 19:3546–3555

    Article  CAS  PubMed  Google Scholar 

  25. Lim JY, Oh MA, Kim WH, Sohn HY, Park SI (2012) AMP-activated protein kinase inhibits TGF-beta-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300. J Cell Physiol 227:1081–1089

    Article  CAS  PubMed  Google Scholar 

  26. Choi KM, Hwang SY, Hong HC, Yang SJ, Choi HY, Yoo HJ, Lee KW, Nam MS, Park YS, Woo JT et al (2012) C1q/TNF-related protein-3 (CTRP-3) and pigment epithelium-derived factor (PEDF) concentrations in patients with type 2 diabetes and metabolic syndrome. Diabetes 61:2932–2936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Choi HY, Park JW, Lee N, Hwang SY, Cho GJ, Hong HC, Yoo HJ, Hwang TG, Kim SM, Baik SH et al (2013) Effects of a combined aerobic and resistance exercise program on C1q/TNF-related protein-3 (CTRP-3) and CTRP-5 levels. Diabetes Care 36:3321–3327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Yoo HJ, Hwang SY, Hong HC, Choi HY, Yang SJ, Choi DS, Baik SH, Bluher M, Youn BS, Choi KM (2013) Implication of progranulin and C1q/TNF-related protein-3 (CTRP3) on inflammation and atherosclerosis in subjects with or without metabolic syndrome. PLoS One 8:e55744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Choi KM, Hwang SY, Hong HC, Choi HY, Yoo HJ, Youn BS, Baik SH, Seo HS (2014) Implications of C1q/TNF-related protein-3 (CTRP-3) and progranulin in patients with acute coronary syndrome and stable angina pectoris. Cardiovasc Diabetol 13:14

    Article  PubMed Central  PubMed  Google Scholar 

  30. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    Article  CAS  PubMed  Google Scholar 

  31. van Nieuwenhoven FA, Turner NA (2013) The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul Pharmacol 58:182–188

    Article  PubMed  Google Scholar 

  32. Li X, Jiang L, Yang M, Wu YW, Sun SX, Sun JZ (2014) CTRP3 modulates the expression and secretion of adipokines in 3T3-L1 adipocytes. Endocr J 61:1153–62

    Article  CAS  PubMed  Google Scholar 

  33. Akiyama H, Furukawa S, Wakisaka S, Maeda T (2006) Cartducin stimulates mesenchymal chondroprogenitor cell proliferation through both extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways. FEBS J 273:2257–2263

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Y, Wang JY, Feng H, Wang C, Li L, Wu D, Lei H, Li H, Wu LL (2014) Overexpression of c1q/tumor necrosis factor-related protein-3 promotes phosphate-induced vascular smooth muscle cell calcification both in vivo and in vitro. Arterioscler Thromb Vasc Biol 34:1002–1010

    Article  CAS  PubMed  Google Scholar 

  35. Gu L, Zhu YJ, Yang X, Guo ZJ, Xu WB, Tian XL (2007) Effect of TGF-beta/Smad signaling pathway on lung myofibroblast differentiation. Acta Pharmacol Sin 28:382–391

    Article  CAS  PubMed  Google Scholar 

  36. Bujak M, Ren G, Kweon HJ, Dobaczewski M, Reddy A, Taffet G, Wang XF, Frangogiannis NG (2007) Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116:2127–2138

    Article  CAS  PubMed  Google Scholar 

  37. Duan WJ, Yu X, Huang XR, Yu JW, Lan HY (2014) Opposing roles for Smad2 and Smad3 in peritoneal fibrosis in vivo and in vitro. Am J Pathol 184:2275–2284

    Article  CAS  PubMed  Google Scholar 

  38. Fujii M, Nakanishi H, Toyoda T, Tanaka I, Kondo Y, Osada H, Sekido Y (2012) Convergent signaling in the regulation of connective tissue growth factor in malignant mesothelioma: TGFbeta signaling and defects in the Hippo signaling cascade. Cell Cycle 11:3373–3379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, Nguyen C, Flodby P, Zhong Q, Krishnaveni MS et al (2012) Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem 287:7026–7038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lal H, Ahmad F, Zhou J, Yu JE, Vagnozzi RJ, Guo Y, Yu D, Tsai EJ, Woodgett J, Gao E et al (2014) Cardiac fibroblast glycogen synthase kinase-3beta regulates ventricular remodeling and dysfunction in ischemic heart. Circulation 130:419–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Liu X, Sun SQ, Hassid A, Ostrom RS (2006) cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts. Mol Pharmacol 70:1992–2003

    Article  CAS  PubMed  Google Scholar 

  42. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907

    Article  CAS  PubMed  Google Scholar 

  43. Noppe G, Dufeys C, Buchlin P, Marquet N, Castanares-Zapatero D, Balteau M, Hermida N, Bouzin C, Esfahani H, Viollet B et al (2014) Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKalpha1. J Mol Cell Cardiol 74C:32–43

    Article  Google Scholar 

  44. Hermida N, Markl A, Hamelet J, Van Assche T, Vanderper A, Herijgers P, van Bilsen M, Hilfiker-Kleiner D, Noppe G, Beauloye C et al (2013) HMGCoA reductase inhibition reverses myocardial fibrosis and diastolic dysfunction through AMP-activated protein kinase activation in a mouse model of metabolic syndrome. Cardiovasc Res 99:44–54

    Article  CAS  PubMed  Google Scholar 

  45. Beauloye C, Bertrand L, Horman S, Hue L (2011) AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 90:224–233

    Article  CAS  PubMed  Google Scholar 

  46. Xiao H, Ma X, Feng W, Fu Y, Lu Z, Xu M, Shen Q, Zhu Y, Zhang Y (2010) Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res 87:504–513

    Article  CAS  PubMed  Google Scholar 

  47. Mishra R, Cool BL, Laderoute KR, Foretz M, Viollet B, Simonson MS (2008) AMP-activated protein kinase inhibits transforming growth factor-beta-induced Smad3-dependent transcription and myofibroblast transdifferentiation. J Biol Chem 283:10461–10469

    Article  CAS  PubMed  Google Scholar 

  48. Voloshenyuk TG, Landesman ES, Khoutorova E, Hart AD, Gardner JD (2011) Induction of cardiac fibroblast lysyl oxidase by TGF-beta1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine 55:90–97

    Article  CAS  PubMed  Google Scholar 

  49. Roffe S, Hagai Y, Pines M, Halevy O (2010) Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: effect on myotube fusion. Exp Cell Res 316:1061–1069

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81270158 and 81470398), Research Fund for the Doctoral Program of Higher Education of China (20120001110009), and Beijing Natural Science Foundation (No. 7152083). We thank Dr. Sudhiranjan Gupta (Texas A&M Health Science Center, USA) for the valuable scientific advice.

Conflict of interest

The authors have declared that no competing interest exists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Li-Ling Wu.

Additional information

Dan Wu and Hong Lei contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Lei, H., Wang, JY. et al. CTRP3 attenuates post-infarct cardiac fibrosis by targeting Smad3 activation and inhibiting myofibroblast differentiation. J Mol Med 93, 1311–1325 (2015). https://doi.org/10.1007/s00109-015-1309-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1309-8

Keywords

Navigation