Skip to main content

The Role of AMPK in the Control of Cardiac Hypertrophy

  • Chapter
  • First Online:
Cardiac Energy Metabolism in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 11))

Abstract

The development of cardiac hypertrophy in response to sustained cardiac stress causes considerable structural and metabolic remodeling of the heart that can have profound detrimental consequences. AMP-activated protein kinase (AMPK), a well-studied mediator of cellular energy homeostasis, has been shown to be a regulator of cardiac hypertrophy via its influence on several key signaling pathways involved in cardiomyocyte growth control. Although the ability of activated AMPK to inhibit protein synthesis has been a major focus of the anti-hypertrophic effects of AMPK, alterations in other cellular processes such as cardiac energy metabolism and cytoskeletal remodeling have also emerged as complimentary pathways by which AMPK is thought to inhibit the development of cardiac hypertrophy. Consistent with this, increasing evidence supports the use of pharmacological activators of AMPK to prevent the progression of cardiac hypertrophy. Despite these findings, this concept is not universally accepted as AMPK has also been shown to be elevated in hypertrophic hearts, suggesting that AMPK plays a role in promoting rather than inhibiting cardiomyocyte growth. This chapter reviews some of the published literature that focuses on the role of AMPK in the control of cardiomyocyte growth and discusses the potential benefits and pitfalls that may accompany the approach of pharmacologically activating AMPK to control the pathogenesis of cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorn GW 2nd, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Chan AY, Dolinsky VW, Soltys CL et al (2008) Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem 283:24194–24201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  CAS  PubMed  Google Scholar 

  4. Naylor LH, George K, O'driscoll G et al (2008) The athlete’s heart: a contemporary appraisal of the ‘Morganroth hypothesis’. Sports Med 38:69–90

    Article  PubMed  Google Scholar 

  5. Lorell BH (1997) Transition from hypertrophy to failure. Circulation 96:3824–3827

    CAS  PubMed  Google Scholar 

  6. Allard MF, Schonekess BO, Henning SL et al (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742–H750

    CAS  PubMed  Google Scholar 

  7. Doenst T, Pytel G, Schrepper A et al (2010) Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 86:461–470

    Article  CAS  PubMed  Google Scholar 

  8. Razeghi P, Young ME, Alcorn JL et al (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    Article  CAS  PubMed  Google Scholar 

  9. Barger PM, Kelly DP (1999) Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms. Am J Med Sci 318:36–42

    Article  CAS  PubMed  Google Scholar 

  10. El Alaoui-Talibi Z, Guendouz A, Moravec M et al (1997) Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine. Am J Physiol 272:H1615–H1624

    PubMed  Google Scholar 

  11. Nascimben L, Ingwall JS, Lorell BH et al (2004) Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44:662–667

    Article  CAS  PubMed  Google Scholar 

  12. Lehman JJ, Kelly DP (2002) Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Fail Rev 7:175–185

    Article  CAS  PubMed  Google Scholar 

  13. Allard MF (2004) Energy substrate metabolism in cardiac hypertrophy. Curr Hypertens Rep 6:430–435

    Article  PubMed  Google Scholar 

  14. Kolwicz SC Jr, Tian R (2011) Glucose metabolism and cardiac hypertrophy. Cardiovasc Res 90:194–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Spirito P, Seidman CE, Mckenna WJ et al (1997) The management of hypertrophic cardiomyopathy. N Engl J Med 336:775–785

    Article  CAS  PubMed  Google Scholar 

  16. Maron BJ, Bonow RO, Cannon RO 3rd et al (1987) Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (1). N Engl J Med 316:780–789

    Article  CAS  PubMed  Google Scholar 

  17. Mathew J, Sleight P, Lonn E et al (2001) Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation 104:1615–1621

    Article  CAS  PubMed  Google Scholar 

  18. Levy D, Salomon M, D'agostino RB et al (1994) Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation 90:1786–1793

    Article  CAS  PubMed  Google Scholar 

  19. Chan AY, Dyck JR (2005) Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis: a potential strategy to prevent the development of cardiac hypertrophy. Can J Physiol Pharmacol 83:24–28

    Article  CAS  PubMed  Google Scholar 

  20. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  CAS  PubMed  Google Scholar 

  21. Dyck JR, Lopaschuk GD (2006) AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol 574:95–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhou G, Myers R, Li Y et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wong AK, Howie J, Petrie JR et al (2009) AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease. Clin Sci (Lond) 116:607–620

    Article  CAS  Google Scholar 

  24. Stapleton D, Mitchelhill KI, Gao G et al (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271:611–614

    Article  CAS  PubMed  Google Scholar 

  25. Hardie DG (2003) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144:5179–5183

    Article  CAS  PubMed  Google Scholar 

  26. Carling D, Aguan K, Woods A et al (1994) Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem 269:11442–11448

    CAS  PubMed  Google Scholar 

  27. Cheung PC, Salt IP, Davies SP et al (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346(Pt 3):659–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Thornton C, Snowden MA, Carling D (1998) Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J Biol Chem 273:12443–12450

    Article  CAS  PubMed  Google Scholar 

  29. Viollet B, Athea Y, Mounier R et al (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci (Landmark Ed) 14:19–44

    Article  CAS  Google Scholar 

  30. Suter M, Riek U, Tuerk R et al (2006) Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem 281:32207–32216

    Article  CAS  PubMed  Google Scholar 

  31. Sakamoto K, Zarrinpashneh E, Budas GR et al (2006) Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1. Am J Physiol Endocrinol Metab 290:E780–E788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kola B, Boscaro M, Rutter GA et al (2006) Expanding role of AMPK in endocrinology. Trends Endocrinol Metab 17:205–215

    Article  CAS  PubMed  Google Scholar 

  33. Woods A, Vertommen D, Neumann D et al (2003) Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 278:28434–28442

    Article  CAS  PubMed  Google Scholar 

  34. Djouder N, Tuerk RD, Suter M et al (2010) PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J 29:469–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Woods A, Dickerson K, Heath R et al (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33

    Article  CAS  PubMed  Google Scholar 

  36. Hawley SA, Pan DA, Mustard KJ et al (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19

    Article  CAS  PubMed  Google Scholar 

  37. Lizcano JM, Goransson O, Toth R et al (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wagner TM, Mullally JE, Fitzpatrick FA (2006) Reactive lipid species from cyclooxygenase-2 inactivate tumor suppressor LKB1/STK11: cyclopentenone prostaglandins and 4-hydroxy-2-nonenal covalently modify and inhibit the AMP-kinase kinase that modulates cellular energy homeostasis and protein translation. J Biol Chem 281:2598–2604

    Article  CAS  PubMed  Google Scholar 

  39. Dolinsky VW, Chan AY, Robillard Frayne I et al (2009) Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation 119:1643–1652

    Article  CAS  PubMed  Google Scholar 

  40. Calamaras TD, Lee C, Lan F et al (2012) Post-translational modification of serine/threonine kinase LKB1 via Adduction of the Reactive Lipid Species 4-Hydroxy-trans-2-nonenal (HNE) at lysine residue 97 directly inhibits kinase activity. J Biol Chem 287:42400–42406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ikeda Y, Sato K, Pimentel DR et al (2009) Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction. J Biol Chem 284:35839–35849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways. Annu Rev Biochem 75:137–163

    Article  CAS  PubMed  Google Scholar 

  43. Neubauer S (2007) The failing heart–an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  44. Lopaschuk GD, Belke DD, Gamble J et al (1994) Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213:263–276

    Article  CAS  PubMed  Google Scholar 

  45. Van Der Vusse GJ, Van Bilsen M, Glatz JF (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 45:279–293

    Article  PubMed  Google Scholar 

  46. Wisneski JA, Gertz EW, Neese RA et al (1987) Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest 79:359–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bing RJ, Siegel A, Ungar I et al (1954) Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med 16:504–515

    Article  CAS  PubMed  Google Scholar 

  48. Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase–development of the energy sensor concept. J Physiol 574:7–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. An D, Pulinilkunnil T, Qi D et al (2005) The metabolic “switch” AMPK regulates cardiac heparin-releasable lipoprotein lipase. Am J Physiol Endocrinol Metab 288:E246–E253

    Article  CAS  PubMed  Google Scholar 

  50. Luiken JJ, Coort SL, Willems J et al (2003) Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52:1627–1634

    Article  CAS  PubMed  Google Scholar 

  51. Chabowski A, Gorski J, Calles-Escandon J et al (2006) Hypoxia-induced fatty acid transporter translocation increases fatty acid transport and contributes to lipid accumulation in the heart. FEBS Lett 580:3617–3623

    Article  CAS  PubMed  Google Scholar 

  52. Kudo N, Barr AJ, Barr RL et al (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520

    Article  CAS  PubMed  Google Scholar 

  53. Russell RR 3rd, Bergeron R, Shulman GI et al (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 277:H643–H649

    CAS  PubMed  Google Scholar 

  54. Marsin AS, Bertrand L, Rider MH et al (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10:1247–1255

    Article  CAS  PubMed  Google Scholar 

  55. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  56. Browne GJ, Finn SG, Proud CG (2004) Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chem 279:12220–12231

    Article  CAS  PubMed  Google Scholar 

  57. Fassett JT, Hu X, Xu X et al (2013) AMPK attenuates microtubule proliferation in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 304:H749–H758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Allard MF, Parsons HL, Saeedi R et al (2007) AMPK and metabolic adaptation by the heart to pressure overload. Am J Physiol Heart Circ Physiol 292:H140–H148

    Article  CAS  PubMed  Google Scholar 

  59. Tian R, Musi N, D'agostino J et al (2001) Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104:1664–1669

    Article  CAS  PubMed  Google Scholar 

  60. Akki A, Smith K, Seymour AM (2008) Compensated cardiac hypertrophy is characterised by a decline in palmitate oxidation. Mol Cell Biochem 311:215–224

    Article  CAS  PubMed  Google Scholar 

  61. Sack MN, Rader TA, Park S et al (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842

    Article  CAS  PubMed  Google Scholar 

  62. Aitman TJ, Glazier AM, Wallace CA et al (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21:76–83

    Article  CAS  PubMed  Google Scholar 

  63. Barger PM, Brandt JM, Leone TC et al (2000) Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J Clin Invest 105:1723–1730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Arany Z, Novikov M, Chin S et al (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci U S A 103:10086–10091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Meng R, Pei Z, Zhang A et al (2011) AMPK activation enhances PPARalpha activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway. Arch Biochem Biophys 511:1–7

    Article  CAS  PubMed  Google Scholar 

  66. Meng RS, Pei ZH, Yin R et al (2009) Adenosine monophosphate-activated protein kinase inhibits cardiac hypertrophy through reactivating peroxisome proliferator-activated receptor-alpha signaling pathway. Eur J Pharmacol 620:63–70

    Article  CAS  PubMed  Google Scholar 

  67. Streicher JM, Ren S, Herschman H et al (2010) MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res 106:1434–1443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Altamirano F, Oyarce C, Silva P et al (2009) Testosterone induces cardiomyocyte hypertrophy through mammalian target of rapamycin complex 1 pathway. J Endocrinol 202:299–307

    Article  CAS  PubMed  Google Scholar 

  69. Young ME, Laws FA, Goodwin GW et al (2001) Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 276:44390–44395

    Article  CAS  PubMed  Google Scholar 

  70. Nuutila P, Maki M, Laine H et al (1995) Insulin action on heart and skeletal muscle glucose uptake in essential hypertension. J Clin Invest 96:1003–1009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Zhang J, Duncker DJ, Ya X et al (1995) Effect of left ventricular hypertrophy secondary to chronic pressure overload on transmural myocardial 2-deoxyglucose uptake. A 31P NMR spectroscopic study. Circulation 92:1274–1283

    Article  CAS  PubMed  Google Scholar 

  72. Liao R, Jain M, Cui L et al (2002) Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106:2125–2131

    Article  CAS  PubMed  Google Scholar 

  73. Young LH, Renfu Y, Russell R et al (1997) Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 95:415–422

    Article  CAS  PubMed  Google Scholar 

  74. Leong HS, Grist M, Parsons H et al (2002) Accelerated rates of glycolysis in the hypertrophied heart: are they a methodological artifact? Am J Physiol Endocrinol Metab 282:E1039–E1045

    CAS  PubMed  Google Scholar 

  75. Allard MF, Henning SL, Wambolt RB et al (1997) Glycogen metabolism in the aerobic hypertrophied rat heart. Circulation 96:676–682

    Article  CAS  PubMed  Google Scholar 

  76. Schonekess BO, Allard MF, Lopaschuk GD (1995) Propionyl L-carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ Res 77:726–734

    Article  CAS  PubMed  Google Scholar 

  77. Schonekess BO, Allard MF, Lopaschuk GD (1996) Recovery of glycolysis and oxidative metabolism during postischemic reperfusion of hypertrophied rat hearts. Am J Physiol 271:H798–H805

    CAS  PubMed  Google Scholar 

  78. Dennis SC, Gevers W, Opie LH (1991) Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol 23:1077–1086

    Article  CAS  PubMed  Google Scholar 

  79. Liu B, Clanachan AS, Schulz R et al (1996) Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 79:940–948

    Article  CAS  PubMed  Google Scholar 

  80. Horman S, Beauloye C, Vertommen D et al (2003) Myocardial ischemia and increased heart work modulate the phosphorylation state of eukaryotic elongation factor-2. J Biol Chem 278:41970–41976

    Article  CAS  PubMed  Google Scholar 

  81. Browne GJ, Proud CG (2002) Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 269:5360–5368

    Article  CAS  PubMed  Google Scholar 

  82. Redpath NT, Price NT, Severinov KV et al (1993) Regulation of elongation factor-2 by multisite phosphorylation. Eur J Biochem 213:689–699

    Article  CAS  PubMed  Google Scholar 

  83. Chan AY, Soltys CL, Young ME et al (2004) Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J Biol Chem 279:32771–32779

    Article  CAS  PubMed  Google Scholar 

  84. Mcleod LE, Proud CG (2002) ATP depletion increases phosphorylation of elongation factor eEF2 in adult cardiomyocytes independently of inhibition of mTOR signalling. FEBS Lett 531:448–452

    Article  CAS  PubMed  Google Scholar 

  85. Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Kim M, Tian R (2011) Targeting AMPK for cardiac protection: opportunities and challenges. J Mol Cell Cardiol 51:548–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Finckenberg P, Mervaala E (2010) Novel regulators and drug targets of cardiac hypertrophy. J Hypertens 28(Suppl 1):S33–S38

    Article  CAS  PubMed  Google Scholar 

  88. Shioi T, Mcmullen JR, Tarnavski O et al (2003) Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107:1664–1670

    Article  CAS  PubMed  Google Scholar 

  89. Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114:549–564

    Google Scholar 

  90. Ferrari S, Bannwarth W, Morley SJ et al (1992) Activation of p70s6k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs. Proc Natl Acad Sci U S A 89:7282–7286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Dennis PB, Pullen N, Pearson RB et al (1998) Phosphorylation sites in the autoinhibitory domain participate in p70(s6k) activation loop phosphorylation. J Biol Chem 273:14845–14852

    Article  CAS  PubMed  Google Scholar 

  92. Moser BA, Dennis PB, Pullen N et al (1997) Dual requirement for a newly identified phosphorylation site in p70s6k. Mol Cell Biol 17:5648–5655

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Pearson RB, Dennis PB, Han JW et al (1995) The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 14:5279–5287

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Proud CG (1996) p70 S6 kinase: an enigma with variations. Trends Biochem Sci 21:181–185

    Article  CAS  PubMed  Google Scholar 

  95. Cheng SW, Fryer LG, Carling D et al (2004) Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem 279:15719–15722

    Article  CAS  PubMed  Google Scholar 

  96. Boluyt MO, Zheng JS, Younes A et al (1997) Rapamycin inhibits alpha 1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ Res 81:176–186

    Article  CAS  PubMed  Google Scholar 

  97. Sadoshima J, Izumo S (1995) Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ Res 77:1040–1052

    Article  CAS  PubMed  Google Scholar 

  98. Fu YN, Xiao H, Ma XW et al (2011) Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation. Acta Pharmacol Sin 32:879–887

    Article  CAS  PubMed  Google Scholar 

  99. Zarrinpashneh E, Beauloye C, Ginion A et al (2008) AMPKalpha2 counteracts the development of cardiac hypertrophy induced by isoproterenol. Biochem Biophys Res Commun 376:677–681

    Article  CAS  PubMed  Google Scholar 

  100. Sen S, Kundu BK, Wu HC et al (2013) Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart. JAMA 2:e004796

    Google Scholar 

  101. Ha Do T, Trung TN, Phuong TT et al (2010) The selected flavonol glycoside derived from Sophorae Flos improves glucose uptake and inhibits adipocyte differentiation via activation AMPK in 3T3-L1 cells. Bioorg Med Chem Lett 20:6076–6081

    Article  PubMed  CAS  Google Scholar 

  102. Lin YC, Hung CM, Tsai JC et al (2010) Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J Agric Food Chem 58:9511–9517

    Article  CAS  PubMed  Google Scholar 

  103. Inoki K, Li Y, Zhu T et al (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657

    Article  CAS  PubMed  Google Scholar 

  104. Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Shiojima I, Sato K, Izumiya Y et al (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115:2108–2118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Kobayashi T, Minowa O, Sugitani Y et al (2001) A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A 98:8762–8767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Kang S, Chemaly ER, Hajjar RJ et al (2011) Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. J Biol Chem 286:18465–18473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Shioi T, Mcmullen JR, Kang PM et al (2002) Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 22:2799–2809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Shiojima I, Yefremashvili M, Luo Z et al (2002) Akt signaling mediates postnatal heart growth in response to insulin and nutritional status. J Biol Chem 277:37670–37677

    Article  CAS  PubMed  Google Scholar 

  110. Matsui T, Li L, Wu JC et al (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–22901

    Article  CAS  PubMed  Google Scholar 

  111. Kemi OJ, Ceci M, Wisloff U et al (2008) Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol 214:316–321

    Article  CAS  PubMed  Google Scholar 

  112. Chen BL, Ma YD, Meng RS et al (2010) Activation of AMPK inhibits cardiomyocyte hypertrophy by modulating of the FOXO1/MuRF1 signaling pathway in vitro. Acta Pharmacol Sin 31:798–804

    Article  CAS  PubMed  Google Scholar 

  113. Horman S, Vertommen D, Heath R et al (2006) Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem 281:5335–5340

    Article  CAS  PubMed  Google Scholar 

  114. Soltys CL, Kovacic S, Dyck JR (2006) Activation of cardiac AMP-activated protein kinase by LKB1 expression or chemical hypoxia is blunted by increased Akt activity. Am J Physiol Heart Circ Physiol 290:H2472–H2479

    Article  CAS  PubMed  Google Scholar 

  115. Wilkins BJ, Dai YS, Bueno OF et al (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94:110–118

    Article  CAS  PubMed  Google Scholar 

  116. Wilkins BJ, Molkentin JD (2004) Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322:1178–1191

    Article  CAS  PubMed  Google Scholar 

  117. Molkentin JD, Lu JR, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  CAS  PubMed  Google Scholar 

  118. Li HL, Yin R, Chen D et al (2007) Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy. J Cell Biochem 100:1086–1099

    Article  CAS  PubMed  Google Scholar 

  119. Hedhli N, Pelat M, Depre C (2005) Protein turnover in cardiac cell growth and survival. Cardiovasc Res 68:186–196

    Article  CAS  PubMed  Google Scholar 

  120. Kedar V, Mcdonough H, Arya R et al (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 101:18135–18140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Arya R, Kedar V, Hwang JR et al (2004) Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. J Cell Biol 167:1147–1159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Willis MS, Ike C, Li L et al (2007) Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res 100:456–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Koide M, Hamawaki M, Narishige T et al (2000) Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy. Circulation 102:1045–1052

    Article  CAS  PubMed  Google Scholar 

  124. Tsutsui H, Ishihara K, Cooper GT (1993) Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 260:682–687

    Article  CAS  PubMed  Google Scholar 

  125. Thornton C, Bright NJ, Sastre M et al (2011) AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid beta-peptide exposure. Biochem J 434:503–512

    Article  CAS  PubMed  Google Scholar 

  126. Marx A, Nugoor C, Panneerselvam S et al (2010) Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J 24:1637–1648

    Article  CAS  PubMed  Google Scholar 

  127. Illenberger S, Drewes G, Trinczek B et al (1996) Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110mark. Phosphorylation sites and regulation of microtubule dynamics. J Biol Chem 271:10834–10843

    Article  CAS  PubMed  Google Scholar 

  128. Takahashi M, Shiraishi H, Ishibashi Y et al (2003) Phenotypic consequences of beta1-tubulin expression and MAP4 decoration of microtubules in adult cardiocytes. Am J Physiol Heart Circ Physiol 285:H2072–H2083

    CAS  PubMed  Google Scholar 

  129. Sato H, Nagai T, Kuppuswamy D et al (1997) Microtubule stabilization in pressure overload cardiac hypertrophy. J Cell Biol 139:963–973

    Google Scholar 

  130. Arad M, Seidman CE, Seidman JG (2007) AMP-activated protein kinase in the heart: role during health and disease. Circ Res 100:474–488

    Article  CAS  PubMed  Google Scholar 

  131. Blair E, Redwood C, Ashrafian H et al (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 10:1215–1220

    Article  CAS  PubMed  Google Scholar 

  132. Gollob MH, Green MS, Tang AS et al (2001) Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 344:1823–1831

    Article  CAS  PubMed  Google Scholar 

  133. Arad M, Benson DW, Perez-Atayde AR et al (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109:357–362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Arad M, Maron BJ, Gorham JM et al (2005) Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 352:362–372

    Article  CAS  PubMed  Google Scholar 

  135. Arad M, Moskowitz IP, Patel VV et al (2003) Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 107:2850–2856

    Article  CAS  PubMed  Google Scholar 

  136. Banerjee SK, Ramani R, Saba S et al (2007) A PRKAG2 mutation causes biphasic changes in myocardial AMPK activity and does not protect against ischemia. Biochem Biophys Res Commun 360:381–387

    Article  CAS  PubMed  Google Scholar 

  137. Sidhu JS, Rajawat YS, Rami TG et al (2005) Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome. Circulation 111:21–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Folmes KD, Chan AY, Koonen DP et al (2009) Distinct early signaling events resulting from the expression of the PRKAG2 R302Q mutant of AMPK contribute to increased myocardial glycogen. Circ Cardiovasc Genet 2:457–466

    Article  CAS  PubMed  Google Scholar 

  139. Zou L, Shen M, Arad M et al (2005) N488I mutation of the gamma2-subunit results in bidirectional changes in AMP-activated protein kinase activity. Circ Res 97:323–328

    Article  CAS  PubMed  Google Scholar 

  140. Ahmad F, Arad M, Musi N et al (2005) Increased alpha2 subunit-associated AMPK activity and PRKAG2 cardiomyopathy. Circulation 112:3140–3148

    Article  CAS  PubMed  Google Scholar 

  141. Gollob MH (2003) Glycogen storage disease as a unifying mechanism of disease in the PRKAG2 cardiac syndrome. Biochem Soc Trans 31:228–231

    Article  CAS  PubMed  Google Scholar 

  142. Liao Y, Takashima S, Maeda N et al (2005) Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovasc Res 67:705–713

    Article  CAS  PubMed  Google Scholar 

  143. Shibata R, Ouchi N, Ito M et al (2004) Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med 10:1384–1389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Steinberg GR, Kemp BE (2009) AMPK in Health and Disease. Physiol Rev 89:1025–1078

    Article  CAS  PubMed  Google Scholar 

  145. Devlin JT, Horton ES (1985) Effects of prior high-intensity exercise on glucose metabolism in normal and insulin-resistant men. Diabetes 34:973–979

    Article  CAS  PubMed  Google Scholar 

  146. Zhang CX, Pan SN, Meng RS et al (2011) Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol 38:55–62

    Article  PubMed  CAS  Google Scholar 

  147. Thirunavukkarasu M, Penumathsa SV, Koneru S et al (2007) Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: Role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic Biol Med 43:720–729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Dolinsky VW, Chakrabarti S, Pereira TJ et al (2013) Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim Biophys Acta 1832:1723–1733

    Article  CAS  PubMed  Google Scholar 

  149. Bergeron R, Russell RR 3rd, Young LH et al (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276:E938–E944

    CAS  PubMed  Google Scholar 

  150. Davis BJ, Xie Z, Viollet B et al (2006) Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 55:496–505

    Article  CAS  PubMed  Google Scholar 

  151. Gundewar S, Calvert JW, Jha S et al (2009) Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 104:403–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Cha HN, Choi JH, Kim YW et al (2010) Metformin inhibits isoproterenol-induced cardiac hypertrophy in mice. Korean J Physiol Pharmacol 14:377–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Chan JY, Phoo MS, Clement MV et al (2008) Resveratrol displays converse dose-related effects on 5-fluorouracil-evoked colon cancer cell apoptosis: the roles of caspase-6 and p53. Cancer Biol Ther 7:1305–1312

    Article  CAS  PubMed  Google Scholar 

  154. Toklu HZ, Sehirli O, Ersahin M et al (2010) Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats. J Pharm Pharmacol 62:1784–1793

    Article  CAS  PubMed  Google Scholar 

  155. Chan V, Fenning A, Iyer A et al (2011) Resveratrol improves cardiovascular function in DOCA-salt hypertensive rats. Curr Pharm Biotechnol 12:429–436

    Article  CAS  PubMed  Google Scholar 

  156. Liu Z, Song Y, Zhang X et al (2005) Effects of trans-resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model. Clin Exp Pharmacol Physiol 32:1049–1054

    Article  PubMed  Google Scholar 

  157. Jiang SY, Xu M, Ma XW et al (2010) A distinct AMP-activated protein kinase phosphorylation site characterizes cardiac hypertrophy induced by L-thyroxine and angiotensin II. Clin Exp Pharmacol Physiol 37:919–925

    Article  CAS  PubMed  Google Scholar 

  158. Shimano M, Ouchi N, Shibata R et al (2010) Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. J Mol Cell Cardiol 49:210–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Mullane K (1993) Acadesine: the prototype adenosine regulating agent for reducing myocardial ischaemic injury. Cardiovasc Res 27:43–47

    Article  CAS  PubMed  Google Scholar 

  160. Gruber HE, Hoffer ME, Mcallister DR et al (1989) Increased adenosine concentration in blood from ischemic myocardium by AICA riboside. Effects on flow, granulocytes, and injury. Circulation 80:1400–1411

    Article  CAS  PubMed  Google Scholar 

  161. Cool B, Zinker B, Chiou W et al (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3:403–416

    Article  CAS  PubMed  Google Scholar 

  162. Goransson O, Mcbride A, Hawley SA et al (2007) Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem 282:32549–32560

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  163. Sanders MJ, Ali ZS, Hegarty BD et al (2007) Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282:32539–32548

    Article  CAS  PubMed  Google Scholar 

  164. Kim AS, Miller EJ, Wright TM et al (2011) A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 51:24–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. B. Dyck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Byrne, N.J., Sung, M.M., Dyck, J.R.B. (2014). The Role of AMPK in the Control of Cardiac Hypertrophy. In: Lopaschuk, G., Dhalla, N. (eds) Cardiac Energy Metabolism in Health and Disease. Advances in Biochemistry in Health and Disease, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1227-8_13

Download citation

Publish with us

Policies and ethics