Okazaki Y, Furuno M, Kasukawa T et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573. doi:10.1038/nature01266
PubMed
Article
Google Scholar
Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108. doi:10.1038/nature11233
CAS
PubMed
PubMed Central
Article
Google Scholar
Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. doi:10.1101/gr.132159.111
CAS
PubMed
PubMed Central
Article
Google Scholar
Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927. doi:10.1101/gad.17446611
CAS
PubMed
PubMed Central
Article
Google Scholar
Guo X, Gao L, Wang Y et al (2015) Advances in long noncoding RNAs: identification, structure prediction and function annotation. Brief Funct Genomics. doi:10.1093/bfgp/elv022
Google Scholar
Harrow J, Frankish A, Gonzalez JM et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22:1760–1774. doi:10.1101/gr.135350.111
CAS
PubMed
PubMed Central
Article
Google Scholar
Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802. doi:10.1016/j.cell.2011.10.002
CAS
PubMed
PubMed Central
Article
Google Scholar
Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM (2014) Long non-coding RNAs as a source of new peptides. elife 3:e03523. doi:10.7554/eLife.03523
PubMed
PubMed Central
Article
CAS
Google Scholar
Guttman M, Russell P, Ingolia NT et al (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154:240–251. doi:10.1016/j.cell.2013.06.009
CAS
PubMed
PubMed Central
Article
Google Scholar
Bánfai B, Jia H, Khatun J et al (2012) Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 22:1646–1657. doi:10.1101/gr.134767.111
PubMed
PubMed Central
Article
CAS
Google Scholar
Bazzini AA, Johnstone TG, Christiano R et al (2014) Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. doi:10.1002/embj.201488411
PubMed
PubMed Central
Google Scholar
Frith MC, Forrest AR, Nourbakhsh E et al (2006) The abundance of short proteins in the mammalian proteome. PLoS Genet 2:e52. doi:10.1371/journal.pgen.0020052
PubMed
PubMed Central
Article
CAS
Google Scholar
Anderson DM, Anderson KM, Chang C-L et al (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595–606. doi:10.1016/j.cell.2015.01.009
CAS
PubMed
PubMed Central
Article
Google Scholar
Pauli A, Norris ML, Valen E et al (2014) Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343:1248636. doi:10.1126/science.1248636
PubMed
PubMed Central
Article
CAS
Google Scholar
Yan Y, Cooper C, Hamedani MK et al (2015) The steroid receptor RNA activator protein (SRAP) controls cancer cell migration/motility. FEBS Lett 589:4010–4018. doi:10.1016/j.febslet.2015.11.007
CAS
PubMed
Article
Google Scholar
Rupaimoole R, Lee J, Haemmerle M et al (2015) Long noncoding RNA ceruloplasmin promotes cancer growth by altering glycolysis. Cell Rep 13:2395–2402. doi:10.1016/j.celrep.2015.11.047
CAS
PubMed
PubMed Central
Article
Google Scholar
Novikova IV, Hennelly SP, Tung C-S, Sanbonmatsu KY (2013) Rise of the RNA machines: exploring the structure of long non-coding RNAs. J Mol Biol 425:3731–3746. doi:10.1016/j.jmb.2013.02.030
CAS
PubMed
Article
Google Scholar
Weeks KM (2015) Review toward all RNA structures, concisely. Biopolymers 103:438–448. doi:10.1002/bip.22601
CAS
PubMed
Article
Google Scholar
Smola MJ, Rice GM, Busan S et al (2015) Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat Protoc 10:1643–1669. doi:10.1038/nprot.2015.103
CAS
PubMed
Article
Google Scholar
Spitale RC, Flynn RA, Zhang QC et al (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature. doi:10.1038/nature14263
PubMed Central
Google Scholar
Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227. doi:10.1038/nature07672
CAS
PubMed
PubMed Central
Article
Google Scholar
Sun M, Gadad SS, Kim D-S, Kraus WL (2015) Discovery, annotation, and functional analysis of long noncoding RNAs controlling Cell-cycle gene expression and proliferation in breast cancer cells. Mol Cell. doi:10.1016/j.molcel.2015.06.023
PubMed Central
Google Scholar
Marques AC, Hughes J, Graham B et al (2013) Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol 14:R131. doi:10.1186/gb-2013-14-11-r131
PubMed
PubMed Central
Article
Google Scholar
ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi:10.1038/nature11247
Article
CAS
Google Scholar
Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208. doi:10.1038/ng.3192
CAS
PubMed
PubMed Central
Article
Google Scholar
Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. doi:10.1038/nature11993
CAS
PubMed
Article
Google Scholar
Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338. doi:10.1038/nature11928
CAS
PubMed
Article
Google Scholar
Werner MS, Ruthenburg AJ (2015) Nuclear fractionation reveals thousands of chromatin-tethered noncoding RNAs adjacent to active genes. Cell Rep 12:1089–1098. doi:10.1016/j.celrep.2015.07.033
CAS
PubMed
Article
Google Scholar
Herman RC, Williams JG, Penman S (1976) Message and non-message sequences adjacent to poly(A) in steady state heterogeneous nuclear RNA of HeLa cells. Cell 7:429–437
CAS
PubMed
Article
Google Scholar
Yue F, Cheng Y, Breschi A et al (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:355–364. doi:10.1038/nature13992
CAS
PubMed
PubMed Central
Article
Google Scholar
Haerty W, Ponting CP (2015) Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci. RNA 21:333–346. doi:10.1261/rna.047324.114
PubMed
Article
CAS
Google Scholar
Nitsche A, Rose D, Fasold M et al (2015) Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. RNA 21:801–812. doi:10.1261/rna.046342.114
CAS
PubMed
PubMed Central
Article
Google Scholar
Ulitsky I, Shkumatava A, Jan CH et al (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550. doi:10.1016/j.cell.2011.11.055
CAS
PubMed
PubMed Central
Article
Google Scholar
Necsulea A, Soumillon M, Warnefors M et al (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:635–640. doi:10.1038/nature12943
CAS
PubMed
Article
Google Scholar
Diederichs S (2014) The four dimensions of noncoding RNA conservation. Trends Genet 30:121–123. doi:10.1016/j.tig.2014.01.004
CAS
PubMed
Article
Google Scholar
Mercer TR, Dinger ME, Sunkin SM et al (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721. doi:10.1073/pnas.0706729105
CAS
PubMed
PubMed Central
Article
Google Scholar
Goff LA, Groff AF, Sauvageau M et al (2015) Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 112:6855–6862. doi:10.1073/pnas.1411263112
CAS
PubMed
PubMed Central
Article
Google Scholar
Grote P, Herrmann BG (2015) Long noncoding RNAs in organogenesis: making the difference. Trends Genet 31:329–335. doi:10.1016/j.tig.2015.02.002
CAS
PubMed
Article
Google Scholar
Plath K, Fang J, Mlynarczyk-Evans SK et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135. doi:10.1126/science.1084274
CAS
PubMed
Article
Google Scholar
da Rocha ST, Boeva V, Escamilla-Del-Arenal M et al (2014) Jarid2 Is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol Cell 53:301–316. doi:10.1016/j.molcel.2014.01.002
PubMed
Article
CAS
Google Scholar
Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756. doi:10.1126/science.1163045
CAS
PubMed
PubMed Central
Article
Google Scholar
Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323. doi:10.1016/j.cell.2007.05.022
CAS
PubMed
PubMed Central
Article
Google Scholar
Li L, Liu B, Wapinski OL et al (2013) Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep 5:3–12. doi:10.1016/j.celrep.2013.09.003
CAS
PubMed
PubMed Central
Article
Google Scholar
Schorderet P, Duboule D (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet 7:e1002071. doi:10.1371/journal.pgen.1002071
CAS
PubMed
PubMed Central
Article
Google Scholar
Klattenhoff CA, Scheuermann JC, Surface LE et al (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:570–583. doi:10.1016/j.cell.2013.01.003
CAS
PubMed
PubMed Central
Article
Google Scholar
Grote P, Herrmann BG (2013) The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol 10:1579–1585. doi:10.4161/rna.26165
CAS
PubMed
PubMed Central
Article
Google Scholar
Grote P, Wittler L, Hendrix D et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214. doi:10.1016/j.devcel.2012.12.012
CAS
PubMed
PubMed Central
Article
Google Scholar
Marín-Béjar O, Marchese FP, Athie A et al (2013) Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome Biol 14:R104. doi:10.1186/gb-2013-14-9-r104
PubMed
PubMed Central
Article
CAS
Google Scholar
Brockdorff N (2013) Noncoding RNA and Polycomb recruitment. RNA 19:429–442. doi:10.1261/rna.037598.112
CAS
PubMed
PubMed Central
Article
Google Scholar
Khalil AM, Guttman M, Huarte M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106:11667–11672. doi:10.1073/pnas.0904715106
CAS
PubMed
PubMed Central
Article
Google Scholar
Guttman M, Donaghey J, Carey BW et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300. doi:10.1038/nature10398
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhao J, Ohsumi TK, Kung JT et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40:939–953. doi:10.1016/j.molcel.2010.12.011
CAS
PubMed
PubMed Central
Article
Google Scholar
Schmitz K-M, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269. doi:10.1101/gad.590910
CAS
PubMed
PubMed Central
Article
Google Scholar
O’Leary VB, Ovsepian SV, Carrascosa LG et al (2015) PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep 11:474–485. doi:10.1016/j.celrep.2015.03.043
PubMed
Article
CAS
Google Scholar
Mondal T, Subhash S, Vaid R et al (2015) MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat Comms 6:7743. doi:10.1038/ncomms8743
CAS
Article
Google Scholar
Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307. doi:10.1016/j.cell.2013.02.012
CAS
PubMed
PubMed Central
Article
Google Scholar
Hu X, Feng Y, Zhang D et al (2014) A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 26:344–357. doi:10.1016/j.ccr.2014.07.009
CAS
PubMed
PubMed Central
Article
Google Scholar
Pasmant E, Laurendeau I, Héron D et al (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67:3963–3969. doi:10.1158/0008-5472.CAN-06-2004
CAS
PubMed
Article
Google Scholar
Yap KL, Li S, Muñoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674. doi:10.1016/j.molcel.2010.03.021
CAS
PubMed
PubMed Central
Article
Google Scholar
Trievel RC, Shilatifard A (2009) WDR5, a complexed protein. Nat Struct Mol Biol 16:678–680. doi:10.1038/nsmb0709-678
CAS
PubMed
Article
Google Scholar
Yang YW, Flynn RA, Chen Y et al (2014) Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. elife 3:e02046. doi:10.7554/eLife.02046
PubMed
PubMed Central
Google Scholar
Wang KC, Yang YW, Liu B et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124. doi:10.1038/nature09819
CAS
PubMed
PubMed Central
Article
Google Scholar
Gomez JA, Wapinski OL, Yang YW et al (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152:743–754. doi:10.1016/j.cell.2013.01.015
CAS
PubMed
PubMed Central
Article
Google Scholar
Di Ruscio A, Ebralidze AK, Benoukraf T et al (2013) DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503:371–376. doi:10.1038/nature12598
PubMed
PubMed Central
Article
CAS
Google Scholar
Arab K, Park YJ, Lindroth AM et al (2014) Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell. doi:10.1016/j.molcel.2014.06.031
PubMed
Google Scholar
Hamazaki N, Uesaka M, Nakashima K et al (2015) Gene activation-associated long noncoding RNAs function in mouse preimplantation development. Development 142:910–920. doi:10.1242/dev.116996
CAS
PubMed
PubMed Central
Article
Google Scholar
Prensner JR, Iyer MK, Sahu A et al (2013) The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 45:1392–1398. doi:10.1038/ng.2771
CAS
PubMed
PubMed Central
Article
Google Scholar
Han P, Li W, Lin C-H et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106. doi:10.1038/nature13596
CAS
PubMed
PubMed Central
Article
Google Scholar
Bond AM, Vangompel MJW, Sametsky EA et al (2009) Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12:1020–1027. doi:10.1038/nn.2371
CAS
PubMed
PubMed Central
Article
Google Scholar
Cajigas I, Leib DE, Cochrane J et al (2015) Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent chromatin remodeling inhibition. Development 142:2641–2652. doi:10.1242/dev.126318
CAS
PubMed
Article
Google Scholar
Minajigi A, Froberg JE, Wei C et al (2015) A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349:aab2276. doi:10.1126/science.aab2276
PubMed
Article
CAS
Google Scholar
Wang Y, He L, Du Y et al (2015) The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 16:413–425. doi:10.1016/j.stem.2015.03.003
CAS
PubMed
Article
Google Scholar
Kaneko S, Bonasio R, Saldaña-Meyer R et al (2013) Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol Cell. doi:10.1016/j.molcel.2013.11.012
PubMed Central
Google Scholar
Merry CR, Forrest ME, Sabers JN et al (2015) DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet. doi:10.1093/hmg/ddv343
PubMed
Google Scholar
Davidovich C, Wang X, Cifuentes-Rojas C et al (2015) Toward a Consensus on the Binding Specificity and Promiscuity of PRC2 for RNA. Mol Cell. doi:10.1016/j.molcel.2014.12.017
PubMed
PubMed Central
Google Scholar
Jiang W, Liu Y, Liu R et al (2015) The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Rep 11:137–148. doi:10.1016/j.celrep.2015.03.008
CAS
PubMed
Article
Google Scholar
Kurian L, Aguirre A, Sancho-Martinez I et al (2015) Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation 131:1278–1290. doi:10.1161/CIRCULATIONAHA.114.013303
CAS
PubMed
PubMed Central
Article
Google Scholar
Ng S-Y, Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51:349–359. doi:10.1016/j.molcel.2013.07.017
CAS
PubMed
Article
Google Scholar
Rapicavoli NA, Qu K, Zhang J et al (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. elife 2:e00762. doi:10.7554/eLife.00762
PubMed
PubMed Central
Article
Google Scholar
Krawczyk M, Emerson BM (2014) p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-κB complexes. elife 3:e01776
PubMed
PubMed Central
Article
Google Scholar
Wang P, Xue Y, Han Y et al (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–313. doi:10.1126/science.1251456
CAS
PubMed
Article
Google Scholar
Xing Z, Lin A, Li C et al (2014) lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell 159:1110–1125. doi:10.1016/j.cell.2014.10.013
CAS
PubMed
PubMed Central
Article
Google Scholar
Kung JT, Kesner B, An JY et al (2015) Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol Cell. doi:10.1016/j.molcel.2014.12.006
PubMed
PubMed Central
Google Scholar
Sun S, Del Rosario BC, Szanto A et al (2013) Jpx RNA activates Xist by evicting CTCF. Cell 153:1537–1551. doi:10.1016/j.cell.2013.05.028
CAS
PubMed
PubMed Central
Article
Google Scholar
Kim T-K, Hemberg M, Gray JM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187. doi:10.1038/nature09033
CAS
PubMed
PubMed Central
Article
Google Scholar
Koch F, Fenouil R, Gut M et al (2011) Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat Struct Mol Biol 18:956–963. doi:10.1038/nsmb.2085
CAS
PubMed
Article
Google Scholar
Natoli G, Andrau J-C (2012) Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 46:1–19. doi:10.1146/annurev-genet-110711-155459
CAS
PubMed
Article
Google Scholar
Collis P, Antoniou M, Grosveld F (1990) Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J 9:233–240
CAS
PubMed
PubMed Central
Google Scholar
Ashe HL, Monks J, Wijgerde M et al (1997) Intergenic transcription and transinduction of the human beta-globin locus. Genes Dev 11:2494–2509
CAS
PubMed
PubMed Central
Article
Google Scholar
Orom UA, Shiekhattar R (2011) Long non-coding RNAs and enhancers. Curr Opin Genet Dev 21:194–198. doi:10.1016/j.gde.2011.01.020
CAS
PubMed
PubMed Central
Article
Google Scholar
Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461. doi:10.1038/nature12787
CAS
PubMed
Article
Google Scholar
Ounzain S, Pezzuto I, Micheletti R et al (2014) Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. J Mol Cell Cardiol 76:55–70. doi:10.1016/j.yjmcc.2014.08.009
CAS
PubMed
PubMed Central
Article
Google Scholar
Orom UA, Derrien T, Beringer M et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58. doi:10.1016/j.cell.2010.09.001
CAS
PubMed
PubMed Central
Article
Google Scholar
Li W, Notani D, Ma Q et al (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516–520. doi:10.1038/nature12210
CAS
PubMed
PubMed Central
Article
Google Scholar
Lai F, Orom UA, Cesaroni M et al (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494:497–501. doi:10.1038/nature11884
CAS
PubMed
PubMed Central
Article
Google Scholar
Schaukowitch K, Joo J-Y, Liu X et al (2014) Enhancer RNA facilitates NELF release from immediate early genes. Mol Cell 56:29–42. doi:10.1016/j.molcel.2014.08.023
CAS
PubMed
PubMed Central
Article
Google Scholar
Mousavi K, Zare H, Dell’orso S et al (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51:606–617. doi:10.1016/j.molcel.2013.07.022
CAS
PubMed
PubMed Central
Article
Google Scholar
Yin Y, Yan P, Lu J et al (2015) Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA Gene activation during embryonic stem cell differentiation. Cell Stem Cell 16:504–516. doi:10.1016/j.stem.2015.03.007
CAS
PubMed
Article
Google Scholar
Maamar H, Cabili MN, Rinn J, Raj A (2013) linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Genes Dev 27:1260–1271. doi:10.1101/gad.217018.113
CAS
PubMed
PubMed Central
Article
Google Scholar
Welsh IC, Kwak H, Chen FL et al (2015) Chromatin architecture of the Pitx2 locus requires CTCF- and Pitx2-dependent asymmetry that mirrors embryonic gut laterality. Cell Rep. doi:10.1016/j.celrep.2015.08.075
PubMed
PubMed Central
Google Scholar
Yang L, Lin C, Jin C et al (2013) lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500:598–602. doi:10.1038/nature12451
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang F, Deng X, Ma W et al (2015) The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol 16:52. doi:10.1186/s13059-015-0618-0
PubMed
PubMed Central
Article
CAS
Google Scholar
Hacisuleyman E, Goff LA, Trapnell C et al (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21:198–206. doi:10.1038/nsmb.2764
CAS
PubMed
PubMed Central
Article
Google Scholar
Bergmann JH, Li J, Eckersley-Maslin MA et al (2015) Regulation of the ESC transcriptome by nuclear long non-coding RNAs. Genome Res 25:1336–1346. doi:10.1101/gr.189027.114
CAS
PubMed
PubMed Central
Article
Google Scholar
Ramos AD, Andersen RE, Liu SJ et al (2015) The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 16:439–447. doi:10.1016/j.stem.2015.02.007
CAS
PubMed
PubMed Central
Article
Google Scholar
Lin N, Chang K-Y, Li Z et al (2014) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell 53:1005–1019. doi:10.1016/j.molcel.2014.01.021
CAS
PubMed
PubMed Central
Article
Google Scholar
Aprea J, Prenninger S, Dori M et al (2013) Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment. EMBO J 32:3145–3160. doi:10.1038/emboj.2013.245
CAS
PubMed
PubMed Central
Article
Google Scholar
Barry G, Briggs JA, Vanichkina DP et al (2014) The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry 19:486–494. doi:10.1038/mp.2013.45
CAS
PubMed
Article
Google Scholar
Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938. doi:10.1016/j.molcel.2010.08.011
CAS
PubMed
PubMed Central
Article
Google Scholar
Eißmann M, Gutschner T, Hämmerle M et al (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 9:1076–1087. doi:10.4161/rna.21089
PubMed
PubMed Central
Article
CAS
Google Scholar
Lee S, Kopp F, Chang T-C et al (2015) Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. doi:10.1016/j.cell.2015.12.017
Google Scholar
Chen CY, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268:415–417. doi:10.1126/science.7536344
CAS
PubMed
Article
Google Scholar
Yan L, Yang M, Guo H et al (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20:1131–1139. doi:10.1038/nsmb.2660
CAS
PubMed
Article
Google Scholar
Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36
CAS
PubMed
PubMed Central
Article
Google Scholar
Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155. doi:10.1038/351153a0
CAS
PubMed
Article
Google Scholar
Leighton PA, Ingram RS, Eggenschwiler J et al (1995) Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375:34–39. doi:10.1038/375034a0
CAS
PubMed
Article
Google Scholar
Dey BK, Pfeifer K, Dutta A (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28:491–501. doi:10.1101/gad.234419.113
PubMed
PubMed Central
Article
Google Scholar
Latos PA, Pauler FM, Koerner MV et al (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472. doi:10.1126/science.1228110
CAS
PubMed
Article
Google Scholar
Kanduri C (2016) Long noncoding RNAs: lessons from genomic imprinting. Biochim Biophys Acta 1859:102–111. doi:10.1016/j.bbagrm.2015.05.006
CAS
PubMed
Article
Google Scholar
Penny GD, Kay GF, Sheardown SA et al (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137. doi:10.1038/379131a0
CAS
PubMed
Article
Google Scholar
Marahrens Y, Panning B, Dausman J et al (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–166
CAS
PubMed
Article
Google Scholar
Zhou Y, Cheunsuchon P, Nakayama Y et al (2010) Activation of paternally expressed genes and perinatal death caused by deletion of the Gtl2 gene. Development 137:2643–2652. doi:10.1242/dev.045724
CAS
PubMed
PubMed Central
Article
Google Scholar
Sauvageau M, Goff LA, Lodato S et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. elife 2:e01749. doi:10.7554/eLife.01749
PubMed
PubMed Central
Article
Google Scholar
Nakagawa S, Naganuma T, Shioi G, Hirose T (2011) Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol 193:31–39. doi:10.1083/jcb.201011110
CAS
PubMed
PubMed Central
Article
Google Scholar
Oliver PL, Chodroff RA, Gosal A et al (2015) Disruption of Visc-2, a brain-expressed conserved long noncoding RNA, does not elicit an overt anatomical or behavioral phenotype. Cereb Cortex 25:3572–3585. doi:10.1093/cercor/bhu196
PubMed
Article
Google Scholar
Li L, Chang HY (2014) Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol. doi:10.1016/j.tcb.2014.06.003
Google Scholar
Nakagawa S, Shimada M, Yanaka K et al (2014) The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development. doi:10.1242/dev.110544
PubMed
PubMed Central
Google Scholar
Herriges MJ, Swarr DT, Morley MP et al (2014) Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development. Genes Dev 28:1363–1379. doi:10.1101/gad.238782.114
CAS
PubMed
PubMed Central
Article
Google Scholar
Ng S-Y, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 31:522–533. doi:10.1038/emboj.2011.459
CAS
PubMed
Article
Google Scholar
Ramos AD, Diaz A, Nellore A et al (2013) Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell 12:616–628. doi:10.1016/j.stem.2013.03.003
CAS
PubMed
PubMed Central
Article
Google Scholar
Chalei V, Sansom SN, Kong L et al (2014) The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. elife 3:e04530. doi:10.7554/eLife.04530
PubMed
PubMed Central
Article
Google Scholar
Chan AS, Thorner PS, Squire JA, Zielenska M (2002) Identification of a novel gene NCRMS on chromosome 12q21 with differential expression between rhabdomyosarcoma subtypes. Oncogene 21:3029–3037. doi:10.1038/sj.onc.1205460
CAS
PubMed
Article
Google Scholar
Uhde CW, Vives J, Jaeger I, Li M (2010) Rmst is a novel marker for the mouse ventral mesencephalic floor plate and the anterior dorsal midline cells. PLoS One 5:e8641. doi:10.1371/journal.pone.0008641
PubMed
PubMed Central
Article
CAS
Google Scholar
Wheeler E, Huang N, Bochukova EG et al (2013) Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet 45:513–517. doi:10.1038/ng.2607
CAS
PubMed
PubMed Central
Article
Google Scholar
Blackshaw S, Harpavat S, Trimarchi J et al (2004) Genomic analysis of mouse retinal development. PLoS Biol 2:E247. doi:10.1371/journal.pbio.0020247
PubMed
PubMed Central
Article
CAS
Google Scholar
Krol J, Krol I, Alvarez CPP et al (2015) A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Nat Comms 6:7305. doi:10.1038/ncomms8305
CAS
Article
Google Scholar
Rapicavoli NA, Poth EM, Blackshaw S (2010) The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol 10:49. doi:10.1186/1471-213X-10-49
PubMed
PubMed Central
Article
CAS
Google Scholar
Sone M, Hayashi T, Tarui H et al (2007) The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 120:2498–2506. doi:10.1242/jcs.009357
CAS
PubMed
Article
Google Scholar
Kretz M, Webster DE, Flockhart RJ et al (2012) Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev 26:338–343. doi:10.1101/gad.182121.111
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhu L, Xu P-C (2013) Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression. Biochem Biophys Res Commun 432:612–617. doi:10.1016/j.bbrc.2013.02.036
CAS
PubMed
Article
Google Scholar
Lopez-Pajares V, Qu K, Zhang J et al (2015) A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation. Dev Cell 32:693–706. doi:10.1016/j.devcel.2015.01.028
CAS
PubMed
PubMed Central
Article
Google Scholar
Kretz M, Siprashvili Z, Chu C et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235. doi:10.1038/nature11661
CAS
PubMed
Article
Google Scholar
Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041. doi:10.1038/sj.onc.1206928
PubMed
Article
CAS
Google Scholar
Srikantan V, Zou Z, Petrovics G et al (2000) PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci USA 97:12216–12221. doi:10.1073/pnas.97.22.12216
CAS
PubMed
PubMed Central
Article
Google Scholar
Brunner AL, Beck AH, Edris B et al (2012) Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol 13:R75. doi:10.1186/gb-2012-13-8-r75
PubMed
PubMed Central
Article
Google Scholar
Yan X, Hu Z, Feng Y et al (2015) Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell 28:529–540. doi:10.1016/j.ccell.2015.09.006
CAS
PubMed
Article
Google Scholar
Du Z, Fei T, Verhaak RGW et al (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 20:908–913. doi:10.1038/nsmb.2591
CAS
PubMed
PubMed Central
Article
Google Scholar
Pandey GK, Mitra S, Subhash S et al (2014) The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell 26:722–737. doi:10.1016/j.ccell.2014.09.014
CAS
PubMed
Article
Google Scholar
Gutschner T, Hämmerle M, Eißmann M et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73:1180–1189. doi:10.1158/0008-5472.CAN-12-2850
CAS
PubMed
Article
Google Scholar
Xue S, Li Q-W, Che J-P et al (2015) Decreased expression of long non-coding RNA NBAT-1 is associated with poor prognosis in patients with clear cell renal cell carcinoma. Int J Clin Exp Pathol 8:3765–3774
CAS
PubMed
PubMed Central
Google Scholar
Trimarchi T, Bilal E, Ntziachristos P et al (2014) Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell 158:593–606. doi:10.1016/j.cell.2014.05.049
CAS
PubMed
PubMed Central
Article
Google Scholar
Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076. doi:10.1038/nature08975
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu B, Sun L, Liu Q et al (2015) A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27:370–381. doi:10.1016/j.ccell.2015.02.004
CAS
PubMed
Article
Google Scholar
Dijkstra JM, Alexander DB (2015) The “NF-κB interacting long noncoding RNA” (NKILA) transcript is antisense to cancer-associated gene PMEPA1. F1000Res 4:96. doi:10.12688/f1000research.6400.1
PubMed
PubMed Central
Google Scholar
Arun G, Diermeier S, Akerman M et al (2015) Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 30:34–51. doi:10.1101/gad.270959.115
PubMed
Article
CAS
Google Scholar
Nakagawa S, Ip JY, Shioi G et al (2012) Malat1 is not an essential component of nuclear speckles in mice. RNA 18:1487–1499. doi:10.1261/rna.033217.112
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang B, Arun G, Mao YS et al (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2:111–123. doi:10.1016/j.celrep.2012.06.003
CAS
PubMed
PubMed Central
Article
Google Scholar
Karreth FA, Reschke M, Ruocco A et al (2015) The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell. doi:10.1016/j.cell.2015.02.043
PubMed
Google Scholar
Gil J, Peters G (2006) Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7:667–677. doi:10.1038/nrm1987
CAS
PubMed
Article
Google Scholar
Wan G, Mathur R, Hu X et al (2013) Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal 25:1086–1095. doi:10.1016/j.cellsig.2013.02.006
CAS
PubMed
PubMed Central
Article
Google Scholar
Montes M, Nielsen MM, Maglieri G et al (2015) The lncRNA MIR31HG regulates p16(INK4A) expression to modulate senescence. Nat Comms 6:6967. doi:10.1038/ncomms7967
CAS
Article
Google Scholar
Kumar PP, Emechebe U, Smith R et al (2014) Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. elife. doi:10.7554/eLife.02805
PubMed
PubMed Central
Google Scholar
Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419. doi:10.1016/j.cell.2010.06.040
CAS
PubMed
PubMed Central
Article
Google Scholar
Sánchez Y, Segura V, Marín-Béjar O et al (2014) Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature. Nat Comms 5:5812. doi:10.1038/ncomms6812
Article
CAS
Google Scholar
Dimitrova N, Zamudio JR, Jong RM et al (2014) LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell 54:777–790. doi:10.1016/j.molcel.2014.04.025
CAS
PubMed
PubMed Central
Article
Google Scholar
Wu G, Cai J, Han Y et al (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130:1452–1465. doi:10.1161/CIRCULATIONAHA.114.011675
CAS
PubMed
PubMed Central
Article
Google Scholar
Ishii N, Ozaki K, Sato H et al (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51:1087–1099. doi:10.1007/s10038-006-0070-9
CAS
PubMed
Article
Google Scholar
Broadbent HM, Peden JF, Lorkowski S et al (2008) Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 17:806–814. doi:10.1093/hmg/ddm352
CAS
PubMed
Article
Google Scholar
Visel A, Zhu Y, May D et al (2010) Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464:409–412. doi:10.1038/nature08801
CAS
PubMed
PubMed Central
Article
Google Scholar
Matkovich SJ, Edwards JR, Grossenheider TC et al (2014) Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci USA 111:12264–12269. doi:10.1073/pnas.1410622111
CAS
PubMed
PubMed Central
Article
Google Scholar
Ounzain S, Micheletti R, Beckmann T et al (2015) Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 36:353–368a. doi:10.1093/eurheartj/ehu180
PubMed
Article
Google Scholar
Ounzain S, Micheletti R, Arnan C et al (2015) CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2015.09.016
Google Scholar
Kumarswamy R, Bauters C, Volkmann I et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114:1569–1575. doi:10.1161/CIRCRESAHA.114.303915
CAS
PubMed
Article
Google Scholar
Bassett AR, Akhtar A, Barlow DP et al (2014) Considerations when investigating lncRNA function in vivo. elife 3:e03058
PubMed
PubMed Central
Article
Google Scholar
Janowski BA, Huffman KE, Schwartz JC et al (2005) Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nat Chem Biol 1:216–222. doi:10.1038/nchembio725
CAS
PubMed
Article
Google Scholar
Goff LA, Rinn JL (2015) Linking RNA biology to lncRNAs. Genome Res 25:1456–1465. doi:10.1101/gr.191122.115
CAS
PubMed
PubMed Central
Article
Google Scholar
Stadtfeld M, Apostolou E, Ferrari F, et al. (2012) Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat Genet 44:398–405, S1–S2. doi:10.1038/ng.1110
Zhang X, Lian Z, Padden C et al (2009) A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood 113:2526–2534. doi:10.1182/blood-2008-06-162164
CAS
PubMed
PubMed Central
Article
Google Scholar
Delpretti S, Montavon T, Leleu M et al (2013) Multiple enhancers regulate Hoxd genes and the Hotdog LncRNA during cecum budding. Cell Rep. doi:10.1016/j.celrep.2013.09.002
PubMed
Google Scholar
Gong C, Li Z, Ramanujan K et al (2015) A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell 34:181–191. doi:10.1016/j.devcel.2015.05.009
CAS
PubMed
Article
Google Scholar
Prensner JR, Sahu A, Iyer MK et al (2014) The IncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer. Oncotarget 5:1434–1438
PubMed
PubMed Central
Article
Google Scholar
McHugh CA, Chen C-K, Chow A et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–236. doi:10.1038/nature14443
CAS
PubMed
PubMed Central
Article
Google Scholar
Kay GF, Penny GD, Patel D et al (1993) Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell 72:171–182
CAS
PubMed
Article
Google Scholar