Skip to main content

Advertisement

Log in

Achilles’ heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Pluripotent stem cells differentiate into almost any specialized adult cell type of an organism. PSCs can be derived either from the inner cell mass of a blastocyst—giving rise to embryonic stem cells—or after reprogramming of somatic terminally differentiated cells to obtain ES-like cells, named induced pluripotent stem cells. The potential use of these cells in the clinic, for investigating in vitro early embryonic development or for screening the effects of new drugs or xenobiotics, depends on capability to maintain their genome integrity during prolonged culture and differentiation. Both human and mouse PSCs are prone to genomic and (epi)genetic instability during in vitro culture, a feature that seriously limits their real potential use. Culture-induced variations of specific chromosomes or genes, are almost all unpredictable and, as a whole, differ among independent cell lines. They may arise at different culture passages, suggesting the absence of a safe passage number maintaining genome integrity and rendering the control of genomic stability mandatory since the very early culture passages. The present review highlights the urgency for further studies on the mechanisms involved in determining (epi)genetic and chromosome instability, exploiting the knowledge acquired earlier on other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  6. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  7. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  CAS  PubMed  Google Scholar 

  8. González F, Boué S, Izpisúa Belmonte JC (2011) Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat Rev Genet 12:231–242. doi:10.1038/nrg2937

    Article  PubMed  CAS  Google Scholar 

  9. Zapata AG, Alfaro D, García-Ceca J (2012) Biology of stem cells: the role of microenvironments. Adv Exp Med Biol 741:135–151. doi:10.1007/978-1-4614-2098-9_10

    Article  CAS  PubMed  Google Scholar 

  10. Tichy ED, Stambrook PJ (2008) DNA repair in murine embryonic stem cells and differentiated cells. Exp Cell Res 314:1929–1936. doi:10.1016/j.yexcr.2008.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giachino C, Orlando L, Turinetto V (2013) Maintenance of genomic stability in mouse embryonic stem cells: relevance in aging and disease. Int J Mol Sci 14:2617–2636. doi:10.3390/ijms14022617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peterson SE, Loring JF (2014) Genomic instability in pluripotent stem cells: implications for clinical applications. J Biol Chem 289:4578–4584. doi:10.1074/jbc.R113.516419

    Article  CAS  PubMed  Google Scholar 

  13. Oliveira PH, da Silva CL, Cabral JM (2014) Concise review: genomic instability in human stem cells: current status and future challenges. Stem Cells 32:2824–2832. doi:10.1002/stem.1796

    Article  CAS  PubMed  Google Scholar 

  14. Rebuzzini P, Redi CA, Zuccotti M, Garagna S (2011) Genome stability in embryonic stem cells. In: Embryonic stem cells– recent advantages in pluripotent stem cell-based regenerative medicine Edited by Craig S, Atwood, p 399. doi: 10.5772/15091

  15. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105:2883–2888. doi:10.1073/pnas.0711983105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54

    Article  CAS  PubMed  Google Scholar 

  17. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25:207–215

    Article  CAS  PubMed  Google Scholar 

  18. Amps K, Andrews PW, Anyfantis G et al (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Int Stem Cell Initiat Nat Biotechnol 29:1132–1144. doi:10.1038/nbt.2051

    CAS  Google Scholar 

  19. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277. doi:10.1038/nrc3034

    Article  CAS  PubMed  Google Scholar 

  20. Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM, Montgomery KD (2011) Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol 29:313–314. doi:10.1038/nbt.1835

    Article  CAS  PubMed  Google Scholar 

  21. Martins-Taylor K, Nisler BS, Taapken SM, Compton T, Crandall L, Montgomery KD, Lalande M, Xu RH (2011) Recurrent copy number variations in human induced pluripotent stem cells. Nat Biotechnol 29:488–491. doi:10.1038/nbt.1890

    Article  CAS  PubMed  Google Scholar 

  22. Garitaonandia I, Amir H, Boscolo FS, Wambua GK, Schultheisz HL, Sabatini K, Morey R, Waltz S, Wang YC, Tran H, Leonardo TR, Nazor K, Slavin I, Lynch C, Li Y, Coleman R, Gallego Romero I, Altun G, Reynolds D, Dalton S, Parast M, Loring JF, Laurent LC (2015) Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS One 10:e0118307. doi:10.1371/journal.pone.0118307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Olariu V, Harrison NJ, Coca D, Gokhale PJ, Baker D, Billings S, Kadirkamanathan V, Andrews PW (2010) Modeling the evolution of culture-adapted human embryonic stem cells. Stem Cell Res 4:50–56. doi:10.1016/j.scr.2009.09.001

    Article  PubMed  Google Scholar 

  24. Longo L, Bygrave A, Grosveld FG, Pandolfi PP (1997) The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res 6:321–328

    Article  CAS  PubMed  Google Scholar 

  25. Sugawara A, Goto K, Sotomaru Y, Sofuni T, Ito T (2006) Current status of chromosomal abnormalities in mouse embryonic stem cell lines used in Japan. Comp Med 56:31–34

    CAS  PubMed  Google Scholar 

  26. Kim YM, Lee JY, Xia L, Mulvihill JJ, Li S (2013) Trisomy 8: a common finding in mouse embryonic stem (ES) cell lines. Mol Cytogenet 6:3. doi:10.1186/1755-8166-6-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rebuzzini P, Neri T, Mazzini G, Zuccotti M, Redi CA, Garagna S (2008) Karyotype analysis of the euploid cell population of a mouse embryonic stem cell line revealed a high incidence of chromosome abnormalities that varied during culture. Cytogenet Genome Res 121:18–24. doi:10.1159/000124377

    Article  CAS  PubMed  Google Scholar 

  28. Rebuzzini P, Neri T, Zuccotti M, Redi CA, Garagna S (2008) Chromosome number variation in three mouse embryonic stem cell lines during culture. Cytotechnology 58:17–23. doi:10.1007/s10616-008-9164-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rebuzzini P, Pignalosa D, Mazzini G, Di Liberto R, Coppola A, Terranova N, Magni P, Redi CA, Zuccotti M, Garagna S (2012) Mouse embryonic stem cells that survive γ-rays exposure maintain pluripotent differentiation potential and genome stability. J Cell Physiol 227:1242–1249. doi:10.1002/jcp.22908

    Article  CAS  PubMed  Google Scholar 

  30. Ben-David U, Benvenisty N (2012) High prevalence of evolutionarily conserved and species-specific genomic aberrations in mouse pluripotent stem cells. Stem Cells 30:612–622. doi:10.1002/stem.1057

    Article  CAS  PubMed  Google Scholar 

  31. Gaztelumendi N, Nogués C (2014) Chromosome instability in mouse embryonic stem cells. Sci Rep 4:5324. doi:10.1038/srep05324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rebuzzini P, Zuccotti M, Redi CA, Garagna S (2015) Chromosomal abnormalities in embryonic and somatic stem cells. Cytogenet Genome Res 147:1–9. doi:10.1159/000441645

    Article  PubMed  Google Scholar 

  33. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531. doi:10.1016/j.stem.2010.07.017

    Article  CAS  PubMed  Google Scholar 

  34. Chen Q, Shi X, Rudolph C, Yu Y, Zhang D, Zhao X, Mai S, Wang G, Schlegelberger B, Shi Q (2011) Recurrent trisomy and Robertsonian translocation of chromosome 14 in murine iPS cell lines. Chromosome Res 19:857–868. doi:10.1007/s10577-011-9239-y

    Article  CAS  PubMed  Google Scholar 

  35. Pasi CE, Dereli-Öz A, Negrini S, Friedli M, Fragola G, Lombardo A, Van Houwe G, Naldini L, Casola S, Testa G, Trono D, Pelicci PG, Halazonetis TD (2011) Genomic instability in induced stem cells. Cell Death Differ 18:745–753. doi:10.1038/cdd.2011.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilić J, Pekarik V, Tiscornia G, Edel M, Boué S, Izpisúa Belmonte JC (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284. doi:10.1038/nbt.1503

    Article  CAS  PubMed  Google Scholar 

  37. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N, Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M, Plath K, Lowry WE (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5:111–123. doi:10.1016/j.stem.2009.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boulting GL, Kiskinis E, Croft GF, Amoroso MW, Oakley DH, Wainger BJ, Williams DJ, Kahler DJ, Yamaki M, Davidow L, Rodolfa CT, Dimos JT, Mikkilineni S, MacDermott AB, Woolf CJ, Henderson CE, Wichterle H, Eggan K (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol 29:279–286. doi:10.1038/nbt.1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67. doi:10.1038/nature09805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu P, Kaplan A, Yuan B, Hanna JH, Lupski JR, Reiner O (2014) Passage number is a major contributor to genomic structural variations in mouse iPSCs. Stem Cells 32:2657–2667. doi:10.1002/stem.1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holland AJ, Cleveland DW (2012) Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 13:501–514. doi:10.1038/embor.2012.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang X, Lan W, Ems-McClung SC, Stukenberg PT, Walczak CE (2007) Aurora B phosphorylates multiple sites on mitotic centromere-associated kinesin to spatially and temporally regulate its function. Mol Biol Cell 18:3264–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holubcová Z, Matula P, Sedláčková M, Vinarský V, Doležalová D, Bárta T, Dvořák P, Hampl A (2011) Human embryonic stem cells suffer from centrosomal amplification. Stem Cells 29:46–56. doi:10.1002/stem.549

    Article  PubMed  CAS  Google Scholar 

  45. Brevini TA, Pennarossa G, Maffei S, Tettamanti G, Vanelli A, Isaac S, Eden A, Ledda S, de Eguileor M, Gandolfi F (2012) Centrosome amplification and chromosomal instability in human and animal parthenogenetic cell lines. Stem Cell Rev 8:1076–1087. doi:10.1007/s12015-012-9379-2

    Article  CAS  PubMed  Google Scholar 

  46. Närvä E, Autio R, Rahkonen N, Kong L, Harrison N, Kitsberg D, Borghese L, Itskovitz-Eldor J, Rasool O, Dvorak P, Hovatta O, Otonkoski T, Tuuri T, Cui W, Brüstle O, Baker D, Maltby E, Moore HD, Benvenisty N, Andrews PW, Yli-Harja O, Lahesmaa R (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol 28:371–377. doi:10.1038/nbt.1615

    Article  PubMed  CAS  Google Scholar 

  47. Azuhata T, Scott D, Takamizawa S, Wen J, Davidoff A, Fukuzawa M, Sandler A (2001) The inhibitor of apoptosis protein survivin is associated with high-risk behavior of neuroblastoma. J Pediatr Surg 36:1785–1791

    Article  CAS  PubMed  Google Scholar 

  48. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Caldas C, Brenton JD (2005) Sizing up miRNAs as cancer genes. Nat Med 11:712–714

    Article  CAS  PubMed  Google Scholar 

  50. Tanner MM, Tirkkonen M, Kallioniemi A, Isola J, Kuukasjärvi T, Collins C, Kowbel D, Guan XY, Trent J, Gray JW, Meltzer P, Kallioniemi OP (1996) Independent amplification and frequent co-amplification of three nonsyntenic regions on the long arm of chromosome 20 in human breast cancer. Cancer Res 56:3441–3445

    CAS  PubMed  Google Scholar 

  51. Midorikawa Y, Yamamoto S, Ishikawa S, Kamimura N, Igarashi H, Sugimura H, Makuuchi M, Aburatani H (2006) Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene 25:5581–5590

    Article  CAS  PubMed  Google Scholar 

  52. Koynova DK, Jordanova ES, Milev AD, Dijkman R, Kirov KS, Toncheva DI, Gruis NA (2007) Gene-specific fluorescence in situ hybridization analysis on tissue microarray to refine the region of chromosome 20q amplification in melanoma. Melanoma Res 17:37–41

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen HT, Geens M, Mertzanidou A, Jacobs K, Heirman C, Breckpot K, Spits C (2014) Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL. Mol Hum Reprod 20:168–177. doi:10.1093/molehr/gat077

    Article  CAS  PubMed  Google Scholar 

  54. Liang G, Zhang Y (2013) Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res 23:49–69

    Article  CAS  PubMed  Google Scholar 

  55. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118. doi:10.1016/j.stem.2010.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E, Ng S, Sourour M, Hämäläinen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brüstle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62. doi:10.1038/nature09871

    Article  CAS  PubMed  Google Scholar 

  57. Quinlan AR, Boland MJ, Leibowitz ML, Shumilina S, Pehrson SM, Baldwin KK, Hall IM (2011) Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell 9:366–373. doi:10.1016/j.stem.2011.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L, Ferrandino AF, Rosenberg Belmaker LA, Szekely A, Wilson M, Kocabas A, Calixto NE, Grigorenko EL, Huttner A, Chawarska K, Weissman S, Urban AE, Gerstein M, Vaccarino FM (2012) Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492:438–442. doi:10.1038/nature11629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen Y, Guo L, Chen J, Zhao X, Zhou W, Zhang C, Wang J, Jin L, Pei D, Zhang F (2014) Genome-wide CNV analysis in mouse induced pluripotent stem cells reveals dosage effect of pluripotent factors on genome integrity. BMC Genom 15:79. doi:10.1186/1471-2164-15-79

    Article  CAS  Google Scholar 

  60. Martins-Taylor K, Xu RH (2012) Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells 30:22–27. doi:10.1002/stem.705

    Article  CAS  PubMed  Google Scholar 

  61. Adams BR, Golding SE, Rao RR, Valerie K (2010a) Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants. PLoS One 5:e10001. doi: 10.1371/journal.pone.0010001

  62. Adams BR, Hawkins AJ, Povirk LF, Valerie K (2010) ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells. Aging (Albany NY) 2:582–596

    Article  CAS  PubMed Central  Google Scholar 

  63. Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564. doi:10.1038/nrg2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bogomazova AN, Lagarkova MA, Tskhovrebova LV, Shutova MV, Kiselev SL (2011) Error-prone nonhomologous end joining repair operates in human pluripotent stem cells during late G2. Aging (Albany NY) 3:584–596

    Article  Google Scholar 

  65. Rithidech K, Bond VP, Cronkite EP, Thompson MH, Bullis JE (1995) Hypermutability of mouse chromosome 2 during the development of x-ray-induced murine myeloid leukemia. Proc Natl Acad Sci USA 92:1152–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, Sui G, Cutler DJ, Liu Y, Brimble SN, Noaksson K, Hyllner J, Schulz TC, Zeng X, Freed WJ, Crook J, Abraham S, Colman A, Sartipy P, Matsui S, Carpenter M, Gazdar AF, Rao M, Chakravarti A (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099–1103

    Article  CAS  PubMed  Google Scholar 

  67. Lefort N, Feyeux M, Bas C, Féraud O, Bennaceur-Griscelli A, Tachdjian G, Peschanski M, Perrier AL (2008) Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol 26:1364–1366. doi:10.1038/nbt.1509

    Article  CAS  PubMed  Google Scholar 

  68. Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y, Van der Elst J, Liebaers I, Sermon K (2008) Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol 26:1361–1363. doi:10.1038/nbt.1510

    Article  CAS  PubMed  Google Scholar 

  69. Liang Q, Conte N, Skarnes WC, Bradley A (2008) Extensive genomic copy number variation in embryonic stem cells. Proc Natl Acad Sci USA 105:17453–17456. doi:10.1073/pnas.0805638105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Arlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW (2012) De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining. PLoS Genet 8:e1002981. doi:10.1371/journal.pgen.1002981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Richards RI, Sutherland GR (1992) Dynamic mutations: a new class of mutations causing human disease. Cell 70:709–712

    Article  CAS  PubMed  Google Scholar 

  72. Umar A, Kunkel TA (1996) DNA-replication fidelity, mismatch repair and genome instability in cancer cells. Eur J Biochem 238:297–307

    Article  CAS  PubMed  Google Scholar 

  73. Meissner A (2010) Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 28:1079–1088. doi:10.1038/nbt.1684

    Article  CAS  PubMed  Google Scholar 

  74. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  CAS  PubMed  Google Scholar 

  75. Bibikova M, Chudin E, Wu B, Zhou L, Garcia EW, Liu Y, Shin S, Plaia TW, Auerbach JM, Arking DE, Gonzalez R, Crook J, Davidson B, Schulz TC, Robins A, Khanna A, Sartipy P, Hyllner J, Vanguri P, Savant-Bhonsale S, Smith AK, Chakravarti A, Maitra A, Rao M, Barker DL, Loring JF, Fan JB (2006) Human embryonic stem cells have a unique epigenetic signature. Genome Res 16:1075–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Allegrucci C, Young LE (2007) Differences between human embryonic stem cell lines. Hum Reprod Update 13:103–120

    Article  CAS  PubMed  Google Scholar 

  77. Silva SS, Rowntree RK, Mekhoubad S, Lee JT (2008) X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci USA 105:4820–4825. doi:10.1073/pnas.0712136105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nagy A, Gócza E, Diaz EM, Prideaux VR, Iványi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110:815–821

    CAS  PubMed  Google Scholar 

  79. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, Gnirke A, Eggan K, Meissner A (2011) Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452. doi:10.1016/j.cell.2010.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dean W, Bowden L, Aitchison A, Klose J, Moore T, Meneses JJ, Reik W, Feil R (1998) Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125:2273–2282

    CAS  PubMed  Google Scholar 

  81. Lund RJ, Närvä E, Lahesmaa R (2012) Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 13:732–744. doi:10.1038/nrg3271

    Article  CAS  PubMed  Google Scholar 

  82. Nguyen HT, Geens M, Spits C (2013) Genetic and epigenetic instability in human pluripotent stem cells. Hum Reprod Update 19:187–205. doi:10.1093/humupd/dms048

    Article  CAS  PubMed  Google Scholar 

  83. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2005) Human embryonic stem cells as a model for studying epigenetic regulation during early development. Cell Cycle 4:1323–1326

    Article  CAS  PubMed  Google Scholar 

  84. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2007) Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines. Hum Mol Genet 16:R243–R251

    Article  CAS  PubMed  Google Scholar 

  85. Pick M, Stelzer Y, Bar-Nur O, Mayshar Y, Eden A, Benvenisty N (2009) Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells 27:2686–2690. doi:10.1002/stem.205

    Article  CAS  PubMed  Google Scholar 

  86. Li SS, Yu SL, Singh S (2010) Epigenetic states and expression of imprinted genes in human embryonic stem cells. World J Stem Cells 2:97–102. doi:10.4252/wjsc.v2.i4.97

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nishino K, Toyoda M, Yamazaki-Inoue M, Fukawatase Y, Chikazawa E, Sakaguchi H, Akutsu H, Umezawa A (2011) DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet 7:e1002085. doi:10.1371/journal.pgen.1002085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nazor KL, Altun G, Lynch C, Tran H, Harness JV, Slavin I, Garitaonandia I, Müller FJ, Wang YC, Boscolo FS, Fakunle E, Dumevska B, Lee S, Park HS, Olee T, D’Lima DD, Semechkin R, Parast MM, Galat V, Laslett AL, Schmidt U, Keirstead HS, Loring JF, Laurent LC (2012) Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10:620–634. doi:10.1016/j.stem.2012.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Horii T, Hatada I (2013) Epigenetic instability in embryonic stem cells in “pluripotent stem cells”, edited by Deepa Bhartiya and Nibedita Lenka. INTECH Open Access Publisher. doi:10.5772/54367

    Google Scholar 

  90. Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM 3rd, Biniszkiewicz D, Yanagimachi R, Jaenisch R (2001) Epigenetic instability in ES cells and cloned mice. Science 293:95–97

    Article  CAS  PubMed  Google Scholar 

  91. Piedrahita JA (2011) The role of imprinted genes in fetal growth abnormalities. Birth Defects Res A Clin Mol Teratol 91:682–692. doi:10.1002/bdra.20795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ishida M, Moore GE (2013) The role of imprinted genes in humans. Mol Aspects Med 34:826–840. doi:10.1016/j.mam.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  93. Kouzarides T (2007) SnapShot: histone-modifying enzymes. Cell 131:822

    Article  CAS  PubMed  Google Scholar 

  94. Ludwig G, Nejman D, Hecht M, Orlanski S, Abu-Remaileh M, Yanuka O, Sandler O, Marx A, Roberts D, Benvenisty N, Bergman Y, Mendelsohn M, Cedar H (2014) Aberrant DNA methylation in ES cells. PLoS ONE 9:e96090. doi:10.1371/journal.pone.0096090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  96. Planello AC, Ji J, Sharma V, Singhania R, Mbabaali F, Müller F, Alfaro JA, Bock C, De Carvalho DD, Batada NN (2014) Aberrant DNA methylation reprogramming during induced pluripotent stem cell generation is dependent on the choice of reprogramming factors. Cell Regen (Lond) 3:4. doi:10.1186/2045-9769-3-4

    Article  CAS  Google Scholar 

  97. Pollex T, Heard E (2012) Recent advances in X-chromosome inactivation research. Curr Opin Cell Biol 24:825–832. doi:10.1016/j.ceb.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  98. Shen Y, Matsuno Y, Fouse SD, Rao N, Root S, Xu R, Pellegrini M, Riggs AD, Fan G (2008) X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci USA 105:4709–4714. doi:10.1073/pnas.0712018105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dvash T, Lavon N, Fan G (2010) Variations of X chromosome inactivation occur in early passages of female human embryonic stem cells. PLoS ONE 5:e11330. doi:10.1371/journal.pone.0011330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lucchesi JC, Kelly WG, Panning B (2005) Chromatin remodeling in dosage compensation. Annu Rev Genet 39:615–651

    Article  CAS  PubMed  Google Scholar 

  101. Liu W, Yin Y, Jiang Y, Kou C, Luo Y, Huang S, Zheng Y, Li S, Li Q, Guo L, Gao S, Sun X (2011) Genetic and epigenetic X-chromosome variations in a parthenogenetic human embryonic stem cell line. J Assist Reprod Genet 28:303–313. doi:10.1007/s10815-010-9517-1

    Article  PubMed  Google Scholar 

  102. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, Alagappan R, Frampton GM, Xu P, Muffat J, Santagata S, Powers D, Barrett CB, Young RA, Lee JT, Jaenisch R, Mitalipova M (2010) Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141:872–883. doi:10.1016/j.cell.2010.04.010

    Article  CAS  PubMed  Google Scholar 

  103. Diaz Perez SV, Kim R, Li Z, Marquez VE, Patel S, Plath K, Clark AT (2012) Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin. Hum Mol Genet 21:751–764. doi:10.1093/hmg/ddr506

    Article  CAS  PubMed  Google Scholar 

  104. Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, Clark AT, Pyle AD, Lowry WE, Plath K (2010) Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7:329–342. doi:10.1016/j.stem.2010.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mekhoubad S, Bock C, de Boer AS, Kiskinis E, Meissner A, Eggan K (2012) Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10:595–609. doi:10.1016/j.stem.2012.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476. doi:10.1016/j.stem.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539. doi:10.1016/j.cell.2010.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bermejo-Alvarez P, Ramos-Ibeas P, Gutierrez-Adan A (2012) Solving the “X” in embryos and stem cells. Stem Cells Dev 21:1215–1224. doi:10.1089/scd.2011.0685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Minkovsky A, Patel S, Plath K (2012) Concise review: pluripotency and the transcriptional inactivation of the female Mammalian X chromosome. Stem Cells 30:48–54. doi:10.1002/stem.755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Navarro P, Chambers I, Karwacki-Neisius V, Chureau C, Morey C, Rougeulle C, Avner P (2008) Molecular coupling of Xist regulation and pluripotency. Science 321:1693–1695. doi:10.1126/science.1160952

    Article  CAS  PubMed  Google Scholar 

  111. van Bemmel JG, Mira-Bontenbal H, Gribnau J (2015) Cis- and trans-regulation in X inactivation. Chromosoma. doi:10.1007/s00412-015-0525-x

    PubMed  PubMed Central  Google Scholar 

  112. Putiri EL, Robertson KD (2011) Epigenetic mechanisms and genome stability. Clin Epigenetics 2:299–314

    Article  PubMed  Google Scholar 

  113. Tsumura A, Hayakawa T, Kumaki Y, Takebayashi S, Sakaue M, Matsuoka C, Shimotohno K, Ishikawa F, Li E, Ueda HR, Nakayama J, Okano M (2006) Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11:805–814

    Article  CAS  PubMed  Google Scholar 

  114. Kimura H, Tada M, Nakatsuji N, Tada T (2004) Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol 24:5710–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546

    Article  CAS  PubMed  Google Scholar 

  116. Lonergan T, Bavister B, Brenner C (2007) Mitochondria in stem cells. Mitochondrion 7:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Van Haute L, Spits C, Geens M, Seneca S, Sermon K (2013) Human embryonic stem cells commonly display large mitochondrial DNA deletions. Nat Biotechnol 31:20–23. doi:10.1038/nbt.2473

    Article  PubMed  CAS  Google Scholar 

  118. Prigione A, Lichtner B, Kuhl H, Struys EA, Wamelink M, Lehrach H, Ralser M, Timmermann B, Adjaye J (2011) Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Stem Cells 29:1338–1348. doi:10.1002/stem.683

    CAS  PubMed  Google Scholar 

  119. Pitceathly RD, Rahman S, Hanna MG (2012) Single deletions in mitochondrial DNA-molecular mechanisms and disease phenotypes in clinical practice. Neuromuscul Disord 22:577–586. doi:10.1016/j.nmd.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  120. Wallace DC, Chalkia D (2013) Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Med 3:a021220

    Article  CAS  Google Scholar 

  121. Alexeyev MF (2009) Is there more to aging than mitochondrial DNA and reactive oxygen species? FEBS J 276:5768–5787. doi:10.1111/j.1742-4658.2009.07269.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Catalina P, Montes R, Ligero G, Sanchez L, de la Cueva T, Bueno C, Leone PE, Menendez P (2008) Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer 7:76. doi:10.1186/1476-4598-7-76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Peterson SE, Westra JW, Rehen SK, Young H, Bushman DM, Paczkowski CM, Yung YC, Lynch CL, Tran HT, Nickey KS, Wang YC, Laurent LC, Loring JF, Carpenter MK, Chun J (2011) Normal human pluripotent stem cell lines exhibit pervasive mosaic aneuploidy. PLoS ONE 6:e23018. doi:10.1371/journal.pone.0023018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Biancotti JC, Narwani K, Buehler N, Mandefro B, Golan-Lev T, Yanuka O, Clark A, Hill D, Benvenisty N, Lavon N (2010) Human embryonic stem cells as models for aneuploid chromosomal syndromes. Stem Cells 28:1530–1540. doi:10.1002/stem.483

    Article  CAS  PubMed  Google Scholar 

  125. Rebuzzini P, Fassina L, Mulas F, Bellazzi R, Redi CA, Di Liberto R, Magenes G, Adjaye J, Zuccotti M, Garagna S (2013) Mouse embryonic stem cells irradiated with γ-rays differentiate into cardiomyocytes but with altered contractile properties. Mutat Res 756:37–45. doi:10.1016/j.mrgentox.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  126. Luft S, Pignalosa D, Nasonova E, Arrizabalaga O, Helm A, Durante M, Ritter S (2014) Fate of D3 mouse embryonic stem cells exposed to X-rays or carbon ions. Mutat Res, Genet Toxicol Environ Mutagen 760:56–63. doi:10.1016/j.mrgentox.2013.12.004

    Article  CAS  Google Scholar 

  127. Ben-David U, Arad G, Weissbein U, Mandefro B, Maimon A, Golan-Lev T, Narwani K, Clark AT, Andrews PW, Benvenisty N, Carlos Biancotti J (2014) Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun 5:4825. doi:10.1038/ncomms5825

    Article  CAS  PubMed  Google Scholar 

  128. Bosman A, Letourneau A, Sartiani L, Del Lungo M, Ronzoni F, Kuziakiv R, Tohonen V, Zucchelli M, Santoni F, Guipponi M, Dumevska B, Hovatta O, Antonarakis SE, Jaconi ME (2015) Perturbations of heart development and function in cardiomyocytes from human embryonic stem cells with trisomy 21. Stem Cells 33:1434–1446. doi:10.1002/stem.1961

    Article  CAS  PubMed  Google Scholar 

  129. Wang CC, Kazuki Y, Oshimura M, Ikeo K, Gojobori T (2011) Gene dosage imbalance of human chromosome 21 in mouse embryonic stem cells differentiating to neurons. Gene 481:93–101. doi:10.1016/j.gene.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  130. Ruiz S, Lopez-Contreras AJ, Gabut M, Marion RM, Gutierrez-Martinez P, Bua S, Ramirez O, Olalde I, Rodrigo-Perez S, Li H, Marques-Bonet T, Serrano M, Blasco MA, Batada NN, Fernandez-Capetillo O (2015) Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nat Commun 6:8036. doi:10.1038/ncomms9036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gao Y, Han Z, Li Q, Wu Y, Shi X, Ai Z, Du J, Li W, Guo Z, Zhang Y (2015) Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating microRNA expression. FEBS J 282:685–699. doi:10.1111/febs.13173

    Article  CAS  PubMed  Google Scholar 

  132. Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, Yoshikawa Y, Aiba K, Heuser JE, Nishino T, Hasegawa K, Nakatsuji N (2014) A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Reports 2:734–745. doi:10.1016/j.stemcr.2014.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lou YR, Kanninen L, Kuisma T, Niklander J, Noon LA, Burks D, Urtti A, Yliperttula M (2014) The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev 23:380–392. doi:10.1089/scd.2013.0314

    Article  CAS  PubMed  Google Scholar 

  134. Lei Y, Jeong D, Xiao J, Schaffer DV (2014) Developing defined and scalable 3D culture systems for culturing human pluripotent stem cells at high densities. Cell Mol Bioeng 7:172–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xu K, Narayanan K, Lee F, Bae KH, Gao S, Kurisawa M (2015) Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Acta Biomater 24:159–171. doi:10.1016/j.actbio.2015.06.026

    Article  PubMed  CAS  Google Scholar 

  136. Takayama K, Kawabata K, Nagamoto Y, Kishimoto K, Tashiro K, Sakurai F, Tachibana M, Kanda K, Hayakawa T, Furue MK, Mizuguchi H (2013) 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials 34:1781–1789. doi:10.1016/j.biomaterials.2012.11.029

    Article  CAS  PubMed  Google Scholar 

  137. Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR (2015) Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro. Hepatology 61:1370–1381. doi:10.1002/hep.27621

    Article  CAS  PubMed  Google Scholar 

  138. Lew DJ, Burke DJ (2003) The spindle assembly and spindle position checkpoints. Annu Rev Genet 37:251–282

    Article  CAS  PubMed  Google Scholar 

  139. Musacchio A (2011) Spindle assembly checkpoint: the third decade. Philos Trans R Soc Lond B Biol Sci 366:3595–3604. doi:10.1098/rstb.2011.0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    Article  CAS  PubMed  Google Scholar 

  141. Rao CV, Yamada HY, Yao Y, Dai W (2009) Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis 30:1469–1474. doi:10.1093/carcin/bgp081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180:665–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bakhoum SF, Thompson SL, Manning AL, Compton DA (2009) Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11:27–35. doi:10.1038/ncb1809

    Article  CAS  PubMed  Google Scholar 

  144. Torres EM, Williams BR, Amon A (2008) Aneuploidy: cells losing their balance. Genetics 179:737–746. doi:10.1534/genetics.108.090878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tanaka K, Hirota T (2009) Chromosome segregation machinery and cancer. Cancer Sci 100:1158–1165. doi:10.1111/j.1349-7006.2009.01178.x

    Article  CAS  PubMed  Google Scholar 

  146. Silkworth WT, Nardi IK, Paul R, Mogilner A, Cimini D (2012) Timing of centrosome separation is important for accurate chromosome segregation. Mol Biol Cell 23:401–411. doi:10.1091/mbc.E11-02-0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gregan J, Polakova S, Zhang L, Tolić-Nørrelykke IM, Cimini D (2011) Merotelic kinetochore attachment: causes and effects. Trends Cell Biol 21:374–381. doi:10.1016/j.tcb.2011.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11:49–54

    Article  CAS  PubMed  Google Scholar 

  150. Kallio MJ, Beardmore VA, Weinstein J, Gorbsky GJ (2002) Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells. J Cell Biol 158:841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Guerrero AA, Martínez AC, van Wely KH (2010) Merotelic attachments and non-homologous end joining are the basis of chromosomal instability. Cell Div 5:13. doi:10.1186/1747-1028-5-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Salisbury JL, Whitehead CM, Lingle WL, Barrett SL (1999) Centrosomes and cancer. Biol Cell 91:451–460

    Article  CAS  PubMed  Google Scholar 

  153. Krämer A, Neben K, Ho AD (2002) Centrosome replication, genomic instability and cancer. Leukemia 16:767–775

    Article  PubMed  Google Scholar 

  154. Strnad P, Gönczy P (2008) Mechanisms of procentriole formation. Trends Cell Biol 18:389–396. doi:10.1016/j.tcb.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  155. Loncarek J, Khodjakov A (2009) Ab ovo or de novo? Mechanisms of centriole duplication. Mol Cells 27:135–142. doi:10.1007/s10059-009-0017-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160. doi:10.1038/ncb2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Holland AJ, Lan W, Niessen S, Hoover H, Cleveland DW (2010) Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J Cell Biol 188:191–198. doi:10.1083/jcb.200911102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nigg EA (1998) Polo-like kinases: positive regulators of cell division from start to finish. Curr Opin Cell Biol 10:776–783

    Article  CAS  PubMed  Google Scholar 

  159. McCoy RC, Demko Z, Ryan A, Banjevic M, Hill M, Sigurjonsson S, Rabinowitz M, Fraser HB, Petrov DA (2015) Common variants spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos. Science 348:235–238. doi:10.1126/science.aaa3337

    Article  CAS  PubMed  Google Scholar 

  160. Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45

    Article  CAS  PubMed  Google Scholar 

  161. Iwaizumi M, Shinmura K, Mori H, Yamada H, Suzuki M, Kitayama Y, Igarashi H, Nakamura T, Suzuki H, Watanabe Y, Hishida A, Ikuma M, Sugimura H (2009) Human Sgo1 downregulation leads to chromosomal instability in colorectal cancer. Gut 58:249–260. doi:10.1136/gut.2008.149468

    Article  CAS  PubMed  Google Scholar 

  162. Zhang N, Ge G, Meyer R, Sethi S, Basu D, Pradhan S, Zhao YJ, Li XN, Cai WW, El-Naggar AK, Baladandayuthapani V, Kittrell FS, Rao PH, Medina D, Pati D (2008) Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci USA 105:13033–13038. doi:10.1073/pnas.0801610105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gu W, Zhang F, Lupski JR (2008) Mechanisms for human genomic rearrangements. Pathogenetics 1:4. doi:10.1186/1755-8417-1-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18:74–82

    Article  CAS  PubMed  Google Scholar 

  165. Bailey JA, Eichler EE (2006) Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 7:552–564

    Article  CAS  PubMed  Google Scholar 

  166. Arlt MF, Wilson TE, Glover TW (2012) Replication stress and mechanisms of CNV formation. Curr Opin Genet Dev 22:204–210. doi:10.1016/j.gde.2012.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lieber MR, Gu J, Lu H, Shimazaki N, Tsai AG (2010) Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell Biochem 50:279–296. doi:10.1007/978-90-481-3471-7_14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Woodward KJ, Cundall M, Sperle K, Sistermans EA, Ross M, Howell G, Gribble SM, Burford DC, Carter NP, Hobson DL, Garbern JY, Kamholz J, Heng H, Hodes ME, Malcolm S, Hobson GM (2005) Heterogeneous duplications in patients with Pelizaeus-Merzbacher disease suggest a mechanism of coupled homologous and nonhomologous recombination. Am J Hum Genet 77:966–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lee JH, Kim KH, Morio T, Kim H (2006) Ataxia-telangiectasia-mutated-dependent activation of Ku in human fibroblasts exposed to hydrogen peroxide. Ann N Y Acad Sci 1091:76–82

    Article  CAS  PubMed  Google Scholar 

  170. Lee JA, Carvalho CM, Lupski JR (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131:1235–1247

    Article  CAS  PubMed  Google Scholar 

  171. Wells RD (1996) Molecular basis of genetic instability of triplet repeats. J Biol Chem 271:2875–2878

    Article  CAS  PubMed  Google Scholar 

  172. Viguera E, Canceill D, Ehrlich SD (2001) Replication slippage involves DNA polymerase pausing and dissociation. EMBO J 20:2587–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(2073–2087):e3. doi:10.1053/j.gastro.2009.12.064

    PubMed  Google Scholar 

  174. Bestor TH (1992) Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J 11:2611–2617

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Leonhardt H, Page AW, Weier HU, Bestor TH (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71:865–873

    Article  CAS  PubMed  Google Scholar 

  176. Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22:480–491. doi:10.1038/cr.2012.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yokochi T, Robertson KD (2002) Preferential methylation of unmethylated DNA by Mammalian de novo DNA methyltransferase Dnmt3a. J Biol Chem 277:11735–11745

    Article  CAS  PubMed  Google Scholar 

  178. Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA 99:16916–16921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S (2004) DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279:27816–27823

    Article  CAS  PubMed  Google Scholar 

  180. Li JY, Pu MT, Hirasawa R, Li BZ, Huang YN, Zeng R, Jing NH, Chen T, Li E, Sasaki H, Xu GL (2007) Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol 27:8748–8759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  182. Yang RF, Li CM, Qiu HR, Lu H, Wu HX, Xu JR, Li JY, Chen LJ (2010) Investigation of chromosome 1 aberrations in patients with multiple myeloma using cIg-FISH method and its significance. Zhonghua Xue Ye Xue Za Zhi 31:804–808

    PubMed  Google Scholar 

  183. Imreh MP, Gertow K, Cedervall J, Unger C, Holmberg K, Szöke K, Csöregh L, Fried G, Dilber S, Blennow E, Ahrlund-Richter L (2006) In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J Cell Biochem 99:508–516

    Article  CAS  PubMed  Google Scholar 

  184. Avery S, Hirst AJ, Baker D, Lim CY, Alagaratnam S, Skotheim RI, Lothe RA, Pera MF, Colman A, Robson P, Andrews PW, Knowles BB (2013) BCL-XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Reports 1:379–386. doi:10.1016/j.stemcr.2013.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paola Rebuzzini, Maurizio Zuccotti or Silvia Garagna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebuzzini, P., Zuccotti, M., Redi, C.A. et al. Achilles’ heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture. Cell. Mol. Life Sci. 73, 2453–2466 (2016). https://doi.org/10.1007/s00018-016-2171-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2171-8

Keywords

Navigation