Skip to main content
Log in

Ab ovo or de novo? Mechanisms of centriole duplication

  • Minireview
  • Published:
Molecules and Cells

Abstract

The centrosome, an organelle comprising centrioles and associated pericentriolar material, is the major microtubule organizing center in animal cells. For the cell to form a bipolar mitotic spindle and ensure proper chromosome segregation at the end of each cell cycle, it is paramount that the cell contains two and only two centrosomes. Because the number of centrosomes in the cell is determined by the number of centrioles, cells have evolved elaborate mechanisms to control centriole biogenesis and to tightly coordinate this process with DNA replication. Here we review key proteins involved in centriole assembly, compare two major modes of centriole biogenesis, and discuss the mechanisms that ensure stringency of centriole number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvey, P.L. (1985). An investigation of the centriole cycle using 3T3 and CHO cells. J. Cell Sci. 78, 147–162.

    PubMed  CAS  Google Scholar 

  • Balczon, R., Bao, L., Zimmer, W.E., Brown, K., Zinkowski, R.P., and Brinkley, B.R. (1995). Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105–115.

    Article  PubMed  CAS  Google Scholar 

  • Berthet, C., Aleem, E., Coppola, V., Tessarollo, L., and Kaldis, P. (2003). Cdk2 Knockout mice are viable. Curr. Biol. 13, 1775–1785.

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt-Dias, M., and Carvalho-Santos, Z. (2008). Double life of centrioles: CP110 in the spotlight. Trends. Cell Biol. 18, 8–11.

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L, Gatt, M.K., Carmo, N., Balloux, F., Callaini, G., and Glover, D.M. (2005). Sak/Plk4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207.

    Article  PubMed  CAS  Google Scholar 

  • Bisgrove, B.W., and Yost, H.J. (2006). The roles of cilia in developmental disorders and disease. Development 133, 4131–4143.

    Article  PubMed  CAS  Google Scholar 

  • Blow, J.J., and Dutta, A. (2005). Preventing re-replication of chromosomal DNA. Nat. Rev. Mol. Cell Biol. 6, 476–486.

    Article  PubMed  CAS  Google Scholar 

  • Bobinnec, Y., Khodjakov, A, Mir, L.M., Rieder, C.L., Edde, B., and Bornens, M. (1998). Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Indjeian, V.B., McManus, M., Wang, L., and Dynlacht, B.D. (2002). CP110, a cell cycle-dependent Cdk substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339–350.

    Article  PubMed  CAS  Google Scholar 

  • Chretien, D., Buendia, B., Fuller, S.D., and Karsenti, E. (1997). Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 120, 117–133.

    Article  PubMed  CAS  Google Scholar 

  • Dammermann, A., Muller-Reichert, T., Pelletier, L., Habermann, B., Desai, A., and Oegema, K. (2004). Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7, 815–829.

    Article  PubMed  CAS  Google Scholar 

  • Dammermann, A., Maddox, P.S., Desai, A., and Oegema, K. (2008). SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the γ-tubulin-mediated addition of centriolar microtubules. J. Cell Biol. 180, 771–785.

    Article  PubMed  CAS  Google Scholar 

  • Dawe, H.R., Farr, H., and Gull, K. (2007). Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J. Cell Sci 120, 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Delattre, M., and Gonczy, P. (2004). The arithmetic of centrosome biogenesis. J. Cell Sci. 117, 1619–1630.

    Article  PubMed  CAS  Google Scholar 

  • Delattre, M., Canard, C., and Gonczy, P. (2006). Sequential protein recruitment in C. elegans centriole formation. Curr. Biol. 16, 1844–1849.

    Article  PubMed  CAS  Google Scholar 

  • Dippell, R. (1968). The development of basal bodies in Paramecium. Proc. Natl. Acad. Sci. USA 61, 461–468.

    Article  PubMed  CAS  Google Scholar 

  • Dirksen, E.R. (1991). Centriole and basal body formation during ciliogenesis revisited. Biol. Cell 72, 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Dix, C.I., and Raff, J.W. (2007). Drosophila Spd-2 recruits PCM to the sperm centriole, but is dispensable for centriole duplication. Curr. Biol. 17, 1759–1764.

    Google Scholar 

  • Duensing, S., and Munger, K. (2003). Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J. Virol. 77, 12331–12335.

    Article  PubMed  CAS  Google Scholar 

  • Duensing, A., Liu, Y., Perdreau, S.A., Kleylein-Sohn, J., Nigg, E.A., and Duensing, S. (2007). Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26, 6280–6288.

    Article  PubMed  CAS  Google Scholar 

  • Dutcher, S.K. (2007). Finding treasures in frozen cells: new centriole intermediates. Bioessays 29, 630–634.

    Article  PubMed  CAS  Google Scholar 

  • Fisk, H.A., and Winey, M. (2001). The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106, 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Fisk, H.A, Mattison, O.P., and Winey, M. (2003). Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc. Natl. Acad. Sci. USA 100, 14875–14880.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, S.D., Gowen, B.E., Reinsch, S., Sawyer, A., Buendia, B., Wepf, R., and Karsenti, E. (1995). The core of the mammalian centriole contains γ-tubulin. Curr. Biol. 5, 1384–1393.

    Article  PubMed  CAS  Google Scholar 

  • Geng, Y., Yu, Q., Sicinska, E., Das, M., Schneider, J.E., Bhattacharya, S., Rideout, W.M., Bronson, R.T., Gardner, H., and Sicinski, P. (2003). Cyclin E ablation in the mouse. Cell 114, 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Hinchcliffe, E.H., and Sluder, G. (2001a). It takes two to tango: understanding how centrosome duplication is regulated through-houtthe cell cycle. Genes Dev. 15, 1167–1181.

    Article  PubMed  CAS  Google Scholar 

  • Hinchcliffe, E.H., and Sluder, G. (2001b). Centrosome duplication: Three kinases come up a winner! Curr. Biol. 11, R698–R701.

    Article  PubMed  CAS  Google Scholar 

  • Hiraki, M., Nakazawa, Y., Kamiya, R., and Hirono, M. (2007). Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr. Biol. 17, 1778–1783.

    Article  PubMed  CAS  Google Scholar 

  • Hook, S.S., Lin, J.J., and Dutta, A. (2007). Mechanisms to control re-replication and implications for cancer. Curr. Opin. Cell Biol. 19, 663–671.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.H., and Winey, M. (2006). Centrosome duplication: is asymmetry the clue? Curr. Biol. 16, R808–810.

    Article  PubMed  CAS  Google Scholar 

  • Kasbek, O., Yang, O.H., Yusof, A.M., Chapman, H.M., Winey, M., and Fisk, H.A. (2007). Preventing the degradation of Mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol. Biol. Cell 18, 4457–4469.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, C.A., Kopish, K.R., Zipperlen, P., Ahringer, J., and O’Connell, K.F. (2004). Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 6, 511–523.

    Article  PubMed  CAS  Google Scholar 

  • Keryer, G., Ris, H., and Borisy, G.G. (1984). Centriole distribution during tripolar mitosis in Chinese hamster ovary cells. J. Cell Biol. 98, 2222–2229.

    Article  PubMed  CAS  Google Scholar 

  • Khodjakov, A., Rieder, C.L., Sluder, G., Cassels, G., Sibon, O., and Wang, C.L. (2002). De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158, 1171–1181.

    Article  PubMed  CAS  Google Scholar 

  • Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S., and Hyman, A. A. (2003). SAS-4 Is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587.

    Article  PubMed  CAS  Google Scholar 

  • Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Habedanck, R., Stierhof, Y.D., and Nigg, E.A. (2007). Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190–202.

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama, R., and Borisy, G.G. (1981). Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J. Cell Biol. 91, 814–821.

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama, R., and Borisy, G.G. (1983). Cytasters induced within unfertilized sea-urchin eggs. J. Cell Sci. 61, 175–189.

    PubMed  CAS  Google Scholar 

  • La Terra, S., English, C.N., Hergert, P., McEwen, B.F., Sluder, G., and Khodjakov, A. (2005). The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168, 713–722.

    Article  PubMed  CAS  Google Scholar 

  • Leidel, S., Delattre, M., Cerutti, L, Baumer, K., and Gonczy, P. (2005). SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat. Cell Biol. 7, 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Loncarek, J., Hergert, P., Magidson, V., and Khodjakov, A. (2008). Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 10, 322–328.

    Article  PubMed  CAS  Google Scholar 

  • Mahowald, A.P., Caulton, J.H., Edwards, M.K., and Floyd, A.D. (1979). Loss of centrioles and polypioidization in follicle cells of Drosophila melanogaster. Exp. Cell Res. 118, 404–410.

    Article  PubMed  CAS  Google Scholar 

  • Manandhar, G., Schatten, H., and Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biol. Reprod. 72, 2–13.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, W.F. (2007). Centriole assembly: the origin of nine-ness. Cur. Biol. 17, R1057–R1059.

    Article  CAS  Google Scholar 

  • Marshall, W.F. (2008). The cell biological basis of ciliary disease. J. Cell Biol. 180, 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, Y., and Maller, J.L. (2004). A centrosomal localization signal in cyclin E required for cdk2-independent S phase entry. Science 306, 885–888.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, Y., Hayashi, K., and Nishida, E. (1999). Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9, 429–432.

    Article  PubMed  CAS  Google Scholar 

  • Mazia D. (1987). The multiplicity of the mitotic centers and the time-course of their duplication and separation. Biophys. Biochem. Cytol. 7, 1–20.

    Article  Google Scholar 

  • Meraldi, P., Lukas, J., Fry, A.M., Bartek, J., and Nigg, E.A. (1999). Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat. Cell Biol. 1, 88–93.

    Article  PubMed  CAS  Google Scholar 

  • Moritz, M., Braunfeld, M.B., Guenebaut, V., Heuser, J., and Agard, D.A. (2000). Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat. Cell Biol. 2, 365–370.

    Article  PubMed  CAS  Google Scholar 

  • Moudjou, M., Bordes, N., Paintrand, M., and Bornens, M. (1996). γ-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J. Cell Sci. 109, 875–887.

    PubMed  CAS  Google Scholar 

  • Nakazawa, Y., Hiraki, M., Kamiya, R., and Hirono, M. (2007). SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr. Biol. 17, 2169–2174.

    Article  PubMed  CAS  Google Scholar 

  • Nigg, E.A. (2007). Centriole duplication: of rules and licenses. Trends Cell Biol. 17, 215–221.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, K.F., Caron, C., Kopish, K.R., Hurd, D.D., Kemphues, K.J., Li, Y., and White, J.G. (2001). The C. ielegans Zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547–558.

    Article  PubMed  CAS  Google Scholar 

  • O’Toole, E.T., Giddings, T.H., Mcintosh, J.R., and Dutcher, S.K. (2003). Three-dimensional organization of basal bodies from wild-type and δ-tubulin deletion strains of Chlamydomonas reinhardtii. Mol. Biol. Cell 14, 2999–3012.

    Article  PubMed  CAS  Google Scholar 

  • Okuda, M., Horn, H.F., Tarapore, P., Tokuyama, Y., Smulian, A.G., Chan, P.K., Knudsen, E.S., Hofmann, I.A., Snyder, J.D., Bove, K.E., et al. (2000). Nucleophosmin/B23 is a target of CDK2/Cy-clin E in centrosome duplication. Cell 103, 127–140.

    Article  PubMed  CAS  Google Scholar 

  • Peel, N., Stevens, N.R., Basto, R., and Raff, J.W. (2007). Overex-pressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr. Biol. 17, 834–843.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier, L., Ozlu, N., Hannak, E., Cowan, C., Habermann, B., Ruer, M., Muller-Reichert, T., and Hyman, A.A. (2004). The Caenor-habditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14, 863–873.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier, L., Toole, E., Schwager, A, Hyman, A.A, and Muller-Reichert, T. (2006). Centriole assembly in Caenorhabditis elegans. Nature 444, 619–623.

    Article  PubMed  CAS  Google Scholar 

  • Piel, M., Nordberg, J., Euteneuer, U., and Bornens, M. (2001). Cen-trosome-dependent exit of cytokinesis in animal cells. Science 291, 1550–1553

    Article  PubMed  CAS  Google Scholar 

  • Riparbelli, M.G., and Callaini, G. (2003). Drosophila parthenogenesis: a model for de novo centrosome assembly. Dev. Biol. 260, 298–313.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D.M., and Bettencourt-Dias, M. (2007a). Revisiting the role of the mother centriole in centriole biogenesis. Science 316, 1046–1050.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues-Martins, A., Bettencourt-Dias, M.n., Riparbelli, M., Ferreira, C, Ferreira, I., Callaini, G., and Glover, D.M. (2007b). DSAS-6 Organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr. Biol. 17, 1465–1472.

    Article  PubMed  CAS  Google Scholar 

  • Salisbury, J.L., Suino, K.M., Busby, R., and Springett, M. (2002). Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  • Silflow, C.D., Liu, B., LaVoie, M., Richardson, E.A., and Palevitz, B.A (1999). γ-Tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells. Cell Motil. Cytoskeleton 42, 285–297.

    Article  PubMed  CAS  Google Scholar 

  • Sluder, G., and Begg, D.A. (1985). Experimental analysis of the reproduction of spindle poles. J. Cell Sci. 76, 35–51.

    PubMed  CAS  Google Scholar 

  • Sorokin, S.P. (1968). Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230.

    PubMed  CAS  Google Scholar 

  • Spektor, A., Tsang, W.Y., Khoo, D., and Dynlacht, B.D. (2007). Cep97 and CP110 Suppress a cilia assembly program. Cell 130, 678–690.

    Article  PubMed  CAS  Google Scholar 

  • Strnad, P., and Gönczy, P. (2008). Mechanisms of procentriole formation. Trends. Cell Biol. 18, 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Strnad, P., Leidel, S., Vinogradova, T., Euteneuer, U., Khodjakov, A., and Gonczy, P. (2007). Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 13, 203–213.

    Article  PubMed  CAS  Google Scholar 

  • Stucke, V.M., Sillje, H.H., Arnaud, L, and Nigg, E.A. (2002). Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 21, 1723–1732.

    Article  PubMed  CAS  Google Scholar 

  • Szollosy, D., Calarco, P., and Donahue, R.P. (1972). Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11, 521–541.

    Google Scholar 

  • Szöllosi, D., and Ozil, J.P. (1991). De novo formation of centrioles in parthenogenetically activated, diploidized rabbit embryos. Biol. Cell 72, 61–66.

    Article  PubMed  Google Scholar 

  • Tokuyama, Y., Horn, H.F., Kawamura, K., Tarapore, P., and Fukasawa, K. (2001). Specific phosphorylation of nucleo-phosmin on Thr199 by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J. Biol. Chem. 276, 21529–21537.

    Article  PubMed  CAS  Google Scholar 

  • Tsou, M.F.B., and Stearns, T. (2006a). Controlling centrosome number: licenses and blocks. Curr. Opin. Cell Biol. 18, 74–78.

    Article  PubMed  CAS  Google Scholar 

  • Tsou, M.F.B., and Stearns, T. (2006b). Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947–951.

    Article  PubMed  CAS  Google Scholar 

  • Uetake, Y., Loncarek, J., Nordberg, J.J., English, C.N., La Terra, S., Khodjakov, A., and Sluder, G. (2007). Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J. Cell Biol. 176, 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Vladar, E.K., and Stearns, T. (2007). Molecular characterization of centriole assembly in ciliated epithelial cells. J. Cell Biol. 178, 31–42.

    Article  PubMed  CAS  Google Scholar 

  • Vorobjev, I.A., and Chentsov, Y. (1982). Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 93, 938–949.

    Article  PubMed  CAS  Google Scholar 

  • Winey, M., Goetsch, L., Baum, P., and Byers, B. (1991). Mps1 and Mps2: novel yeast genes defining distinct steps of spindle pole body duplication. J. Cell Biol. 114, 745–754.

    Article  PubMed  CAS  Google Scholar 

  • Winkles, J.A., and Alberts, G.F. (2005). Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 24, 260–266.

    Article  PubMed  CAS  Google Scholar 

  • Wong, C., and Stearns, T. (2003). Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat. Cell Biol. 5, 539–544.

    Article  PubMed  CAS  Google Scholar 

  • Young, A., Dictenberg, J.B., Purohit, A., Tuft, R., and Doxsey, S.J. (2000). Cytoplasmic dynein-mediated assembly of pericentrin and γ-tubulin onto centrosomes. Mol. Biol. Cell 11, 2047–2056.

    PubMed  CAS  Google Scholar 

  • Zhu, F., Lawo, S., Bird, A, Pinchev, D., Ralph, A., Richter, C, Muller-Reichert, T., Kittler, R., Hyman, A.A, and Pelletier, L (2008). The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis. Curr. Biol. 18, 136–141.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jadranka Loncarek or Alexey Khodjakov.

About this article

Cite this article

Loncarek, J., Khodjakov, A. Ab ovo or de novo? Mechanisms of centriole duplication. Mol Cells 27, 135–142 (2009). https://doi.org/10.1007/s10059-009-0017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0017-z

Keywords

Navigation