Skip to main content

Nonhomologous DNA End Joining (NHEJ) and Chromosomal Translocations in Humans

  • Chapter
  • First Online:
Genome Stability and Human Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 50))

Abstract

Double-strand breaks (DSBs) arise in dividing cells about ten times per cell per day. Causes include replication across a nick, free radicals of oxidative metabolism, ionizing radiation, and inadvertent action by enzymes of DNA metabolism (such as failures of type II topoisomerases or cleavage by recombinases at off-target sites). There are two major double-strand break repair pathways. Homologous recombination (HR) can repair double-strand breaks, but only during S phase and typically only if there are hundreds of base pairs of homology. The more commonly used pathway is nonhomologous DNA end joining, abbreviated NHEJ. NHEJ can repair a DSB at any time during the cell cycle and does not require any homology, although a few nucleotides of terminal microhomology are often utilized by the NHEJ enzymes, if present. The proteins and enzymes of NHEJ include Ku, DNA-PKcs, Artemis, DNA polymerase μ (Pol μ), DNA polymerase λ (Pol λ), XLF (also called Cernunnos), XRCC4, and DNA ligase IV. These enzymes constitute what some call the classical NHEJ pathway, and in wild type cells, the vast majority of joining events appear to proceed using these components. NHEJ is present in many prokaryotes, as well as all eukaryotes, and very similar mechanistic flexibility evolved both convergently and divergently. When two double-strand breaks occur on different chromosomes, then the rejoining is almost always done by NHEJ. The causes of DSBs in lymphomas most often involve the RAG or AID enzymes that function in the specialized processes of antigen receptor gene rearrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AID:

activation-induced deaminase.

CpG:

the DNA sequence where the dinucleotide is 5 CG 3. These sites are distinctive because the C in such a sequence is methylated at the 5 position of the cytosine.

CSR:

class switch recombination, the process by which the Ig heavy chain isotype is changed from IgM to IgG, A or E by DNA recombination using switch regions. This process requires AID.

DNA-PKcs:

this is a serine/threonine protein kinase that is stimulated by free DNA ends. It phosphorylates itself and Artemis, the nuclease of NHEJ.

HR:

homologous recombination.

icr:

intermediate cluster region of the bcl-2 gene.

MBR:

major break point cluster region of the bcl-2 gene.

mcr:

minor break point cluster region of the bcl-2 gene.

MLL:

mixed-lineage lymphoma.

MTC:

major translocation cluster of the bcl-1 gene.

NHEJ:

nonhomologous DNA end joining.

PCNA:

proliferating cell nuclear antigen.

Pol λ:

DNA polymerase λ.

Pol μ:

DNA polymerase μ.

RAG:

recombination activating gene.

RSS:

recombination signal sequence. This is the sequence at which the RAG1:RAG2:HMGB1 complex, also called the RAG complex, binds in a sequence-specific manner to initiate the double-strand breaks that begin the V(D)J recombination process. The RSS has two components: CACAGTG, called the heptamer, and ACAAAAACC, called the nonamer, and the hetamer and nonamer are separated by either 12 nonconserved base pairs (then designated as a 12-RSS) or 23 base pairs (then designated as a 23-RSS). The RAG complex cuts 5 to the first C of the CACAGTG.

SHM:

somatic hypermutation, which is a process of point mutagenesis at the Ig genes, primarily in the assembled VJ or VDJ exons, which encode the variable domain exon of the light and heavy chains, respectively. SHM, like CSR, requires AID.

Switch regions:

repetitive zones upstream of the constant domains exons for the heavy chains genes, Igγ, Igα, and Igɛ.

V(D)J:

refers to the variable, diversity or joining segment (subexons) that must be assembled during the process of V(D)J recombination so that a complete variable domain exon can be generated at the immunoglobulin (Ig) and T-cell receptor (TCR) loci.

XLF:

XRCC4-like factor (also called Cernunnos). This protein is part of the XLF:XRCC4:DNA ligase IV complex.

XRCC4:

XRCC4 cross-complementation group 4. This protein is part of the XLF:XRCC4:DNA ligase IV complex.

References

  • Ahnesorg, P., Smith, P., and Jackson, S. P. (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote nonhomologous end-joining. Cell, 124, 301–313.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, C. W. and Carter, T. H. (1996) The DNA-Activated Protein Kinase-DNA-PK. In: Jessberger, R. and Lieber, M. R. (Eds.) Molecular Analysis of DNA Rearrangements in the Immune System, Springer-Verlag, Heidelberg, pp. 91–112.

    Google Scholar 

  • Bebenek, B., Garcia-Diaz, M., Blanco, L., and Kunkel, T. A. (2003) The frameshift infidelity of human DNA polymerase lambda: implications for function. J Biol Chem, 278, 34685–34690.

    Article  CAS  PubMed  Google Scholar 

  • Bertocci, B., Desmet, A., Weill, J.-C., and Reynaud, C. A. (2006) Non-overlapping functions of polX family DNA polymerases, pol m, pol l, and Tdt, during immunoglobulin V(D)J recombination in vivo. Immunity, 25, 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Bransteitter, R., Pham, P., Scharff, M. D., and Goodman, M. F. (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci, 100, 4102–4107.

    Article  CAS  PubMed  Google Scholar 

  • Buck, D., Malivert, L., Dechasseval, R., Barraud, A., Fondaneche, M.-C., Xanal, O., Plebani, A., Stephan, J.-L., Hufnagel, M., Lediest, F., Fischer, A., Durrandy, A., Villartay, J.-P. D., and Revy, P. (2006) Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell, 124, 287–299.

    Article  CAS  PubMed  Google Scholar 

  • Burgers, P. M., Koonin, E. V., Bruford, E., Blanco, L., Burtis, K. C., Christman, M. F., Copeland, W. C., Friedberg, E. C., Hanaoka, F., Hinkle, D. C., Lawrence, L. W., Nakanishi, M., Ohmori, H., Prakash, L., Prakash, S., Reynaud, C. A., Sugino, A., Todo, T., Wang, Z., Weill, J. C., and Woodgate, R. (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem, 276, 43487–43490.

    Article  CAS  PubMed  Google Scholar 

  • Chance, B., Sies, H., and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev, 59, 527–603.

    CAS  PubMed  Google Scholar 

  • Chen, L., Trujillo, K., Ramos, W., Sung, P., and Tomkinson, A. E. (2001) Promotion of DNA ligase IV-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell, 8, 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  • Daley, J. M., Laan, R. L. V., Suresh, A., and Wilson, T. E. (2005a) DNA joint dependence of pol X family polymerase action in nonhomologous end joining. J Biol Chem, 280, 29030–29037.

    Article  CAS  PubMed  Google Scholar 

  • Daley, J. M., Palmbos, P. L., Wu, D., and Wilson, T. E. (2005b) Nonhomologous end joining in yeast. Ann Rev Genet, 39, 431–451.

    Article  CAS  PubMed  Google Scholar 

  • Daley, J. M. and Wilson, T. E. (2007) Evidence that base stacking potential in annealed 3’ overhangs determines polymerase utilization in yeast nonhomologous end joining. DNA Repair (Amst), 7, 67–76.

    Article  Google Scholar 

  • Devries, E., Vandriel, W., Bergsma, W. G., Arnberg, A. C., and Vandervliet, P. C. (1989) HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J Mol Biol, 208, 65–78.

    Article  CAS  Google Scholar 

  • Falzon, M., Fewell, J., and Kuff, E. L. (1993) EBP-80, a transcription factor closely resembling the human autoantigen Ku, recognizes single- to double-strand transitions in DNA. J Biol Chem, 268, 10546–10552.

    CAS  PubMed  Google Scholar 

  • Ferguson, D. O. and Alt, F. W. (2001) DNA double-strand break repair and chromosomal translocations: lessons from animal models. Oncogene, 20, 5572–5579.

    Article  CAS  PubMed  Google Scholar 

  • Gelb, A. B. and Medeiros, L. J. (2002) The Molecular Biology of Leukemias. In: Coleman, W. B. and Tsongalis, G. J. (Eds.) The Molecular Basis of Human Cancer, Humana Press, Totowa, pp. 427–459.

    Google Scholar 

  • Goodarzi, A. A., Yu, Y., Riballo, E., Douglas, P., Walker, S. A., Ye, R., Harer, C., Marchetti, C., Morrice, N., Jeggo, P. A., and Lees-Miller, S. P. (2006) DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J, 25, 3880–3889.

    Article  CAS  PubMed  Google Scholar 

  • Grawunder, U., Wilm, M., Wu, X., Kulesza, P., Wilson, T. E., Mann, M., and Lieber, M. R. (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature, 388, 492–495.

    Article  CAS  PubMed  Google Scholar 

  • Gu, J., Lu, H., Tippin, B., Shimazaki, N., Goodman, M. F., and Lieber, M. R. (2007a) XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. EMBO J, 26, 1010–1023.

    Article  CAS  PubMed  Google Scholar 

  • Gu, J., Lu, H., Tsai, A. G., Schwarz, K., and Lieber, M. R. (2007b) Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence. Nucleic Acids Res, 35, 5755–5762.

    Article  CAS  PubMed  Google Scholar 

  • Han, L. and Yu, K. (2008) Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV – deficient B cells. J Exp Med, 205, 2745–2753.

    Article  CAS  PubMed  Google Scholar 

  • Hübscher, U., Nasheuer, H. P., and Syväoja, J. (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci, 25, 143–147.

    Article  PubMed  Google Scholar 

  • Jaeger, U., Bocskor, S., Le, T., Mitterbauer, G., Bolz, I., Chott, A., Kneba, A., Mannhalter, C., and Nadel, B. (2000) Follicular lymphomas BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood, 95, 3520–3529.

    Google Scholar 

  • Lewis, S. M., Agard, E., Suh, S., and Czyzyk, L. (1997) Cryptic signals and the fidelity of V(D)J Joining. Mol Cell Biol, 17, 3125–3136.

    CAS  PubMed  Google Scholar 

  • Li, Y., Chirgadze, D. Y., Bolanos-Garcia, V. M., Sibanda, B. L., Davies, O. R., Ahnesorg, P., Jackson, S. P., and Blundell, T. L. (2008) Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ. EMBO J, 27, 290–300.

    Article  CAS  PubMed  Google Scholar 

  • Lieber, M. R. (1998) Pathologic and physiologic double-strand breaks: roles in cancer, aging, and the immune system. Am J Path, 153, 1323–1332.

    CAS  PubMed  Google Scholar 

  • Lieber, M. R. (2006) The polymerases for V(D)J recombination. Immunity, 25, 7–9.

    Article  CAS  PubMed  Google Scholar 

  • Lieber, M. R. (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem, 283, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Lieber, M. R. and Karanjawala, Z. E. (2004) Ageing, repetitive genomes and DNA damage. Nature Rev Mol Cell Biol, 5, 69–75.

    Article  CAS  Google Scholar 

  • Lieber, M. R., Ma, Y., Pannicke, U., and Schwarz, K. (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nature Rev Mol Cell Biol, 4, 712–720.

    Article  CAS  Google Scholar 

  • Lieber, M. R., Yu, K., and Raghavan, S. C. (2006) Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair, 5, 1234–1245.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J. L., Kim, E. M., Haber, J. E., and Lee, S. E. (2003) Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol, 23, 8820–8828.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., Lu, H., Tippin, B., Goodman, M. F., Shimazaki, N., Koiwai, O., Hsieh, C.-L., Schwarz, K., and Lieber, M. R. (2004) A biochemically defined system for mammalian nonhomologous DNA end joining. Mol Cell, 16, 701–713.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., Pannicke, U., Lu, H., Niewolik, D., Schwarz, K., and Lieber, M. R. (2005) The DNA-PKcs phosphorylation sites of human artemis. J Biol Chem, 280, 33839–33846.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., Pannicke, U., Schwarz, K., and Lieber, M. R. (2002) Hairpin opening and overhang processing by an Artemis: DNA-PKcs complex in V(D)J recombination and in nonhomologous end joining. Cell, 108, 781–794.

    Article  CAS  PubMed  Google Scholar 

  • Martin, G. M., Smith, A. C., Ketterer, D. J., Ogburn, C. E., and Disteche, C. M. (1985) Increased chromosomal aberrations in first metaphases of cells isolated from the kidneys of aged mice. Israel J Med Sci, 21, 296–301.

    CAS  PubMed  Google Scholar 

  • Moon, A. F., Garcia-Diaz, M., Batra, V. K., Beard, W. A., Bebenek, K., Kunkel, T. A., Wilson, S. H., and Pedersen, L. C. (2007) The X family portrait: structural insights into biological functions of X family polymerases. DNA Repair (Amst), 6, 1709–1725.

    Article  CAS  Google Scholar 

  • Nasheuer, H. P., Pospiech, H., and Syväoja, J. (2006) DNA Polymerases. In: Ganten, D. and Ruckpaul, K. E. (Eds.) Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine, Springer Verlag, Berlin-Heidelberg-NewYork.

    Google Scholar 

  • Nick McElhinny, S. A., Havener, J. M., Garcia-Diaz, M., Juarez, R., Bebenek, K., Kee, B. L., Blanco, L., Kunkel, T. A., and Ramsden, D. A. (2005) A gradient of template dependence defines distinct biological roles for family x polymerases in nonhomologous end joining. Mol Cell, 19, 357–366.

    Article  CAS  Google Scholar 

  • Niewolik, D., Pannicke, U., Lu, H., Ma, Y., Wang, L. C., Kulesza, P., Zandi, E., Lieber, M. R., and Schwarz, K. (2006) DNA-PKcs dependence of artemis endonucleolytic activity: differences between hairpins and 5’ or 3’ overhangs. J Biol Chem, 281, 33900–33909.

    Article  CAS  PubMed  Google Scholar 

  • Raghavan, S. C., Gu, J., Swanson, P. C., and Lieber, M. R. (2007) The structure-specific nicking of small heteroduplexes by the RAG complex: implications for lymphoid chromosomal translocations. DNA Repair (Amst), 6, 751–759.

    Article  CAS  Google Scholar 

  • Raghavan, S. C., Kirsch, I. R., and Lieber, M. R. (2001) Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J Biol Chem, 276, 29126–29133.

    Article  CAS  PubMed  Google Scholar 

  • Raghavan, S. C. and Lieber, M. R. (2006) DNA structures at chromosomal translocation sites. BioEssays, 28, 480–494.

    Article  CAS  PubMed  Google Scholar 

  • Raghavan, S. C., Swanson, P. C., Ma, Y., and Lieber, M. R. (2005a) Double-strand break formation by the RAG complex at the bcl-2 Mbr and at other non-B DNA structures in vitro. Mol Cell Biol, 25, 5904–5919.

    Article  CAS  PubMed  Google Scholar 

  • Raghavan, S. C., Swanson, P. C., Wu, X., Hsieh, C.-L., and Lieber, M. R. (2004a) A non-B-DNA structure at the bcl-2 major break point region is cleaved by the RAG complex. Nature, 428, 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Ramadan, K., Maga, G., Shevelev, I. V., Villani, G., Blanco, L., and Hubscher, U. (2003) Human DNA polymerase lambda possesses terminal deoxyribonucleotidyl transferase activity and can elongate RNA primers: implications for novel functions. J Mol Biol, 328, 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Ramadan, K., Shevelev, I. V., Maga, G., and Hubscher, U. (2004) De novo DNA synthesis by human DNA polymerase lambda, DNA polymerase mu, and terminal deoxynucleotidyl transferase. J Mol Biol, 339, 395–404.

    Article  CAS  PubMed  Google Scholar 

  • Schar, P., Herrmann, G., Daly, G., and Lindahl, T. (1997) A newly identified DNA ligase of S. cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev, 11, 1912–1924.

    Article  CAS  PubMed  Google Scholar 

  • Sonoda, E., Hochegger, H., Saberi, A., Taniguchi, Y., and Takeda, S. (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst), 5, 1021–1029.

    Article  CAS  Google Scholar 

  • Teo, S. H. and Jackson, S. P. (1997) Identification of S. cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J, 16, 4788–4795.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, A. G., Engelhart, A. E., Hatmal, M. M., Houston, S. I., Hud, N. V., Haworth, I. S., and Lieber, M. R. (2009) Conformational variants of duplex DNA correlated with cytosine-rich chromosomal fragile sites. J Biol Chem, 284, 7157–7164.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, A. G., Lu, H., Raghavan, S. C., Muschen, M., Hsieh, C. L., and Lieber, M. R. (2008) Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell, 135, 1130–1142.

    Article  CAS  PubMed  Google Scholar 

  • Tseng, H. M. and Tomkinson, A. E. (2002) A physical and functional interaction between yeast Pol4 and Dnl4-Lif1 links DNA synthesis and ligation in nonhomologous end joining. J Biol Chem, 277, 45630–45637.

    Article  CAS  PubMed  Google Scholar 

  • Walker, J. R., Corpina, R. A., and Goldberg, J. (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature, 412, 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Welzel, N., T, T. L., Marculescu, R., Mitterbauer, G., Chott, A., Pott, C., Kneba, M., Du, M. Q., Kusec, R., Drach, J., Raderer, M., Mannhalter, C., Lechner, K., Nadel, B., and Jaeger, U. (2001) Templated nucleotide addition and immunoglobulin JH-gene utilization in t(11;14) junctions: implications for the mechanism of translocation and the origin of mantle cell lymphoma. Cancer Res, 61, 1629–1636.

    CAS  PubMed  Google Scholar 

  • West, R. B., Yaneva, M., and Lieber, M. R. (1998) Productive and nonproductive complexes of Ku and DNA-PK at DNA termini. Mol Cell Biol, 18, 5908–5920.

    CAS  PubMed  Google Scholar 

  • Wiemels, J. L., Leonard, B. C., Wang, Y., Segal, M. R., Hunger, S. P., Smith, M. T., Crouse, V., Ma, X., Buffler, P. A., and Pine, S. R. (2002) Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA, 99, 15101–15106.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, T. E., Grawunder, U., and Lieber, M. R. (1997) Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature, 388, 495–498.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, T. E. and Lieber, M. R. (1999) Efficient processing of DNA ends during yeast nonhomologous end joining: evidence for a DNA polymerase beta (POL4)-dependent pathway. J Biol Chem, 274, 23599–23609.

    Article  CAS  PubMed  Google Scholar 

  • Yaneva, M., Kowalewski, T., and Lieber, M. R. (1997) Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy. EMBO J, 16, 5098–5112.

    Article  CAS  PubMed  Google Scholar 

  • Zickler, D. and Kleckner, N. (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet, 33, 603–754.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Lieber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lieber, M.R., Gu, J., Lu, H., Shimazaki, N., Tsai, A.G. (2010). Nonhomologous DNA End Joining (NHEJ) and Chromosomal Translocations in Humans. In: Nasheuer, HP. (eds) Genome Stability and Human Diseases. Subcellular Biochemistry, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3471-7_14

Download citation

Publish with us

Policies and ethics