Skip to main content
Log in

Experimental verification of a conserved intronic microRNA located in the human TrkC gene with a cell type-dependent apoptotic function

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Tropomyosin receptor kinase C (TrkC) is involved in cell survival, apoptosis induction and tumorigenesis. We hypothesized that, similar to p75NTR receptor, some of the diverse functions of TrkC could be mediated by a microRNA (miRNA) embedded within the gene. Here, we experimentally verified the expression and processing of two bioinformatically predicted miRNAs named TrkC-miR1-5p and TrkC-miR1-3p. Transfecting a DNA fragment corresponding to the TrkC-premir1 sequence in HEK293t cells caused ~300-fold elevation in the level of mature TrkC-miR1 and also a significant downregulation of its predicted target genes. Furthermore, endogenous TrkC-miR1 was detected in several cell lines and brain tumors confirming its endogenous generation. Furthermore, its orthologous miRNA was detected in developing rat brain. Accordingly, TrkC-miR1 expression was increased during the course of neural differentiation of NT2 cell, whereas its suppression attenuated NT2 differentiation. Consistent with opposite functions of TrkC, TrkC-miR1 overexpression promoted survival and apoptosis in U87 and HEK293t cell lines, respectively. In conclusion, our data report the discovery of a new miRNA with overlapping function to TrkC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc B Biol Sci 361:1545–1564

    Article  CAS  Google Scholar 

  2. Luo Y, Kaz AM, Kanngurn S, Welsch P, Morris SM et al (2013) NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet 9:e1003552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE et al (1999) Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci 96:4540–4545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Genevois AL, Ichim G, Coissieux MM, Lambert MP, Lavial F et al (2013) Dependence receptor TrkC is a putative colon cancer tumor suppressor. Proc Natl Acad Sci USA 110:3017–3022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jin W, Kim GM, Kim MS, Lim MH, Yun C et al (2010) TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis 31:1939–1947

    Article  CAS  PubMed  Google Scholar 

  6. Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CM (2011) miR-34a regulates mouse neural stem cell differentiation. PLoS ONE 6:e21396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  8. Wang Z (2010) MicroRNA: a matter of life or death. World J Biol Chem 1:41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wang Y, Lee CG (2009) MicroRNA and cancer–focus on apoptosis. J Cell Mol Med 13:12–23

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chen J, Zhang X, Lentz C, Abi-Daoud M, Paré GC et al (2011) miR-193b regulates Mcl-1 in melanoma. Am J Pathol 179:2162–2168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lal A, Navarro F, Maher C, Maliszewski LE, Yan N et al (2009) miR-24 inhibits cell proliferation by suppressing expression of E2F2, MYC and other cell cycle regulatory genes by binding to “seedless” 3′ UTR microRNA recognition elements. Mol Cell 35:610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  CAS  PubMed  Google Scholar 

  13. Berezikov E, Cuppen E, Plasterk RH (2006) Approaches to microRNA discovery. Nat Genet 38:S2–S7

    Article  CAS  PubMed  Google Scholar 

  14. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    Article  CAS  PubMed  Google Scholar 

  15. Andrews PW (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103:285–293

    Article  CAS  PubMed  Google Scholar 

  16. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  17. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658

    Article  CAS  PubMed  Google Scholar 

  18. Parsi S, Soltani BM, Hosseini E, Tousi SE, Mowla SJ (2012) Experimental verification of a predicted intronic microRNA in human NGFR gene with a potential pro-apoptotic function. PLoS ONE 7:e35561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  20. Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F et al (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10:R64

    Article  PubMed Central  PubMed  Google Scholar 

  21. Dalmay T (2008) MicroRNAs and cancer. J Intern Med 263:366–375

    Article  CAS  PubMed  Google Scholar 

  22. Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP et al (2005) The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 9:403–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gomes CP, Cho JH, Hood L, Franco OL, Pereira RW et al (2013) A review of computational tools in microRNA discovery. Front Genet 4:81

    Article  PubMed Central  PubMed  Google Scholar 

  24. Guo L, Lu Z (2010) The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS ONE 5:e11387

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ellwanger DC, Büttner FA, Mewes H-W, Stümpflen V (2011) The sufficient minimal set of miRNA seed types. Bioinformatics 27:1346–1350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Shin C, Nam J-W, Farh KK-H, Chiang HR, Shkumatava A et al (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38:789–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hsieh L-C, Lin S-I, Shih AC-C, Chen J-W, Lin W-Y et al (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    Article  PubMed Central  PubMed  Google Scholar 

  28. Li B, Duan H, Li J, Deng XW, Yin W et al (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81:525–539

    Article  CAS  PubMed  Google Scholar 

  29. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  CAS  PubMed  Google Scholar 

  30. Dangwal S, Thum T (2013) MicroRNAs in platelet physiology and pathology. Hamostaseologie 33:17–20

    Article  CAS  PubMed  Google Scholar 

  31. Xiao-Chun W, Wei W, Zhu-Bo Z, Jing Z, Xiao-Gang T et al (2013) Overexpression of miRNA-21 promotes radiation-resistance of non-small cell lung cancer. Radiat Oncol 8:146

    Article  PubMed Central  Google Scholar 

  32. Linderoth J, Edén P, Ehinger M, Valcich J, Jerkeman M et al (2008) Genes associated with the tumour microenvironment are differentially expressed in cured versus primary chemotherapy-refractory diffuse large B-cell lymphoma. Br J Haematol 141:423–432

    Article  CAS  PubMed  Google Scholar 

  33. Aparicio O, Carnero E, Abad X, Razquin N, Guruceaga E et al (2010) Adenovirus VA RNA-derived miRNAs target cellular genes involved in cell growth, gene expression and DNA repair. Nucleic Acids Res 38:750–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Koh YH, Suzuki K, Che W, Park YS, Miyamoto Y et al (2001) Inactivation of glutathione peroxidase by NO leads to the accumulation of H2O2 and the induction of HB-EGF via c-Jun NH2-terminal kinase in rat aortic smooth muscle cells. FASEB J 15:1472–1474

    CAS  PubMed  Google Scholar 

  35. Korpal M, Kang Y (2010) Targeting the transforming growth factor-beta signalling pathway in metastatic cancer. Eur J Cancer 46:1232–1240

    Article  CAS  PubMed  Google Scholar 

  36. Moore-Smith L, Pasche B (2011) TGFBR1 signaling and breast cancer. J Mammary Gland Biol Neoplasia 16:89–95

    Article  PubMed  Google Scholar 

  37. Yamamoto M, Sobue G, Yamamoto K, Mitsuma T (1996) Expression of mRNAs for neurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors (p75 NGFR, TrkA, TrkB, and TrkC) in the adult human peripheral nervous system and nonneural tissues. Neurochem Res 21:929–938

    Article  CAS  PubMed  Google Scholar 

  38. Brodeur GM, Nakagawara A, Yamashiro DJ, Ikegaki N, Liu X-G et al (1997) Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 31:49–56

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Hagel C, Hamel W, Müller S, Kluwe L et al (1998) Trk A, B, and C are commonly expressed in human astrocytes and astrocytic gliomas but not by human oligodendrocytes and oligodendroglioma. Acta Neuropathol 96:357–364

    Article  CAS  PubMed  Google Scholar 

  40. Lomen-Hoerth C, Shooter EM (1995) Widespread neurotrophin receptor expression in the immune system and other nonneuronal rat tissues. J Neurochem 64:1780–1789

    Article  CAS  PubMed  Google Scholar 

  41. Segal RA, Goumnerova LC, Kwon YK, Stiles CD, Pomeroy SL (1994) Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci 91:12867–12871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vickers KC, Sethupathy P, Baran-Gale J, Remaley AT (2013) Complexity of microRNA function and the role of isomiRs in lipid homeostasis. J Lipid Res 54:1182–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA et al (2010) Structure and activity of putative intronic miRNA promoters. RNA 16:495–505

    Article  PubMed Central  PubMed  Google Scholar 

  44. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS et al (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22:3172–3183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Qin Y, Yu Y, Dong H, Bian X, Guo X et al (2012) MicroRNA 21 inhibits left ventricular remodeling in the early phase of rat model with ischemia-reperfusion injury by suppressing cell apoptosis. Int J Med Sci 9:413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Rong M, Chen G, Dang Y (2013) Increased MiR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro. BMC Cancer 13:21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Eguchi M, Eguchi-Ishimae M, Tojo A, Morishita K, Suzuki K et al (1999) Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t (12; 15)(p13; q25). Blood 93:1355–1363

    CAS  PubMed  Google Scholar 

  48. Almeida MI, Nicoloso MS, Zeng L, Ivan C, Spizzo R et al (2012) Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cells. Gastroenterology 142(886–896):e889

    Google Scholar 

  49. Zhu S, Wu H, Wu F, Nie D, Sheng S et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359

    Article  CAS  PubMed  Google Scholar 

  50. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  CAS  PubMed  Google Scholar 

  51. Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  PubMed  Google Scholar 

  54. Levine E, McHale P, Levine H (2007) Small regulatory RNAs may sharpen spatial expression patterns. PLoS Comput Biol 3:e233

    Article  PubMed Central  PubMed  Google Scholar 

  55. Freemantle SJ, Kerley JS, Olsen SL, Gross RH, Spinella MJ (2002) Developmentally-related candidate retinoic acid target genes regulated early during neuronal differentiation of human embryonal carcinoma. Oncogene 21:2880–2889

    Article  CAS  PubMed  Google Scholar 

  56. Valerio A, Ferrario M, Martinez FO, Locati M, Ghisi V et al (2004) Gene expression profile activated by the chemokine CCL5/RANTES in human neuronal cells. J Neurosci Res 78:371–382

    Article  CAS  PubMed  Google Scholar 

  57. Wakamatsu A, J-i Imai, Watanabe S, Isogai T (2010) Alternative splicing of genes during neuronal differentiation of NT2 pluripotential human embryonal carcinoma cells. FEBS Lett 584:4041–4047

    Article  CAS  PubMed  Google Scholar 

  58. Lamballe F, Smeyne R, Barbacid M (1994) Developmental expression of trkC, the neurotrophin-3 receptor, in the mammalian nervous system. J Neurosci 14:14–28

    CAS  PubMed  Google Scholar 

  59. Ringstedt T, Lagercrantz H, Persson H (1993) Expression of members of the trk family in the developing postnatal rat brain. Dev Brain Res 72:119–131

    Article  CAS  Google Scholar 

  60. Tessarollo L, Tsoulfas P, Martin-Zanca D, Gilbert DJ, Jenkins NA et al (1993) trkC, a receptor for neurotrophin-3, is widely expressed in the developing nervous system and in non-neuronal tissues. Development 118:463–475

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Masood Soleimani, Ali Jason Saleh, Leila Zare and Hamed Dabiri for their kind advices and technical supports. This work was supported by TMU, ISTI and INSF financial aids.

Conflict of interest

The authors declare that there are no conflicts of interest with any financial organization regarding the material discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram M. Soltani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 208 kb)

Supplementary material 2 (XLSX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokanehiifard, S., Soltani, B.M., Parsi, S. et al. Experimental verification of a conserved intronic microRNA located in the human TrkC gene with a cell type-dependent apoptotic function. Cell. Mol. Life Sci. 72, 2613–2625 (2015). https://doi.org/10.1007/s00018-015-1868-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1868-4

Keywords

Navigation