Skip to main content

Advertisement

Log in

TGFBR1 Signaling and Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Over the past decade mutations discovered in genes such as BRCA1, BRCA2, TP53 and PTEN, have emerged as high-penetrance susceptibility genes and are clinically relevant for determination of breast cancer risk. Genetic counseling and subsequent screening for mutations and gene rearrangement has improved patient outcome through early detection and prophylactic interventions in patients with familial breast cancer syndromes. However, these high-penetrance genes only account for a small fraction of the hereditary linked breast cancers. It is currently believed that low-penetrance susceptibility alleles and/or environmental factors may play an important role in the remaining cases. TGFBR1*6A (*6A) is a common hypomorphic variant of the type I TGF-β receptor gene (TGFBR1) that has been associated with risk for several forms of cancer, in particular breast cancer. Several epidemiological studies have suggested that patients who carry the *6A allele have an increased risk of breast cancer. Furthermore, functional analysis suggests that this mutation alters TGF-β signaling and promotes tumorigenesis. Although a decade of research has provided basic information in regards to the prevalence of this mutation in several cancer types and populations the molecular underpinning of its functional effects are poorly understood. A better understanding of the molecular mechanism of TGFBR1 signaling in breast cancer may have an impact on breast cancer risk assessment and breast cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ARHGAP5:

Rho GTPase-activating protein 5

ATM:

Ataxia telangiectasia mutated

CDKN:

Cyclin-dependent kinase inhibitor

ERRB2:

Human Epidermal growth factor Receptor 2

FN1:

Fibronectin

GWA:

Genome-wide association

MAPK:

Mitogen-activated protein kinase

PIK3:

Phosphatidylinositol 3-kinase

PTEN:

Phosphatase and tensin homologue

rSMAD:

Receptor-regulated SMAD

coSMAD:

Co-mediator SMAD

iSMAD:

Inhibitory SMAD

STK11:

Serine/Threonine kinase

TGF-β:

Transforming growth factor beta

TGFBR:

Transforming growth factor beta receptor

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Rosman DS, Kaklamani V, Pasche B. New insights into breast cancer genetics and impact on patient management. Curr Treat Options Oncol. 2007;8:61–73.

    Article  PubMed  Google Scholar 

  3. Bodmer W, Tomlinson I. Rare genetic variants and the risk of cancer. Curr Opin Genet Dev. 2010;20:262–7.

    Article  PubMed  CAS  Google Scholar 

  4. Euhus DM. New insights into the prevention and treatment of familial breast cancer. J Surg Oncol. 2011;103:294–8.

    Article  PubMed  Google Scholar 

  5. Walsh CS, Ogawa S, Scoles DR, Miller CW, Kawamata N, Narod SA, et al. Genome-wide loss of heterozygosity and uniparental disomy in BRCA1/2-associated ovarian carcinomas. Clin Cancer Res. 2008;14:7645–51.

    Article  PubMed  CAS  Google Scholar 

  6. Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. 2006;295:1379–88.

    Article  PubMed  CAS  Google Scholar 

  7. Tai YC, Domchek S, Parmigiani G, Chen S. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2007;99:1811–4.

    Article  PubMed  CAS  Google Scholar 

  8. Pasche B. Recent advances in breast cancer genetics. Cancer Treat Res. 2008;141:1–10.

    Article  PubMed  Google Scholar 

  9. Muggia F, Safra T, Dubeau L. BRCA genes: lessons learned from experimental and clinical cancer. Ann Oncol. 2011;22 Suppl 1:i7–10.

    Article  PubMed  Google Scholar 

  10. Langerod A, Zhao H, Borgan O, Nesland JM, Bukholm IR, Ikdahl T, et al. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res. 2007;9:R30.

    Article  PubMed  Google Scholar 

  11. Hemel D, Domchek SM. Breast cancer predisposition syndromes. Hematol Oncol Clin North Am. 2010;24:799–814.

    Article  PubMed  Google Scholar 

  12. Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA. 1998;95:15406–11.

    Article  PubMed  CAS  Google Scholar 

  13. Meijers-Heijboer H, Wijnen J, Vasen H, Wasielewski M, Wagner A, Hollestelle A, et al. The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am J Hum Genet. 2003;72:1308–14.

    Article  PubMed  CAS  Google Scholar 

  14. Serrano-Fernandez P, Debniak T, Gorski B, Bogdanova N, Dork T, Cybulski C, et al. Synergistic interaction of variants in CHEK2 and BRCA2 on breast cancer risk. Breast Cancer Res Treat. 2009;117:161–5.

    Article  PubMed  CAS  Google Scholar 

  15. Akhurst RJ. TGF beta signaling in health and disease. Nat Genet. 2004;36:790–2.

    Article  PubMed  CAS  Google Scholar 

  16. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.

    Article  PubMed  CAS  Google Scholar 

  17. Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, et al. The type III TGF-beta receptor suppresses breast cancer progression. J Clin Invest. 2007;117:206–17.

    Article  PubMed  CAS  Google Scholar 

  18. Gal A, Sjoblom T, Fedorova L, Imreh S, Beug H, Moustakas A. Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene. 2008;27:1218–30.

    Article  PubMed  CAS  Google Scholar 

  19. Dillon RL, White DE, Muller WJ. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene. 2007;26:1338–45.

    Article  PubMed  CAS  Google Scholar 

  20. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA. 1995;92:5545–9.

    Article  PubMed  CAS  Google Scholar 

  21. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA. 2003;100:8430–5.

    Article  PubMed  CAS  Google Scholar 

  22. Korpal M, Kang Y. Targeting the transforming growth factor-beta signalling pathway in metastatic cancer. Eur J Cancer. 2010;46:1232–40.

    Article  PubMed  CAS  Google Scholar 

  23. Gatza CE, Oh SY, Blobe GC. Roles for the type III TGF-beta receptor in human cancer. Cell Signal. 2010;22:1163–74.

    Article  PubMed  CAS  Google Scholar 

  24. Foda HD, Zucker S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today. 2001;6:478–82.

    Article  PubMed  CAS  Google Scholar 

  25. Levy L, Hill CS. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17:41–58.

    Article  PubMed  CAS  Google Scholar 

  26. Zheng W. Genetic polymorphisms in the transforming growth factor-beta signaling pathways and breast cancer risk and survival. Methods Mol Biol. 2009;472:265–77.

    Article  PubMed  CAS  Google Scholar 

  27. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303:848–51.

    Article  PubMed  CAS  Google Scholar 

  28. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6:506–20.

    Article  PubMed  CAS  Google Scholar 

  29. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  PubMed  CAS  Google Scholar 

  30. Pasche B, Luo Y, Rao PH, Nimer SD, Dmitrovsky E, Caron P, et al. Type I transforming growth factor beta receptor maps to 9q22 and exhibits a polymorphism and a rare variant within a polyalanine tract. Cancer Res. 1998;58:2727–32.

    PubMed  CAS  Google Scholar 

  31. Vellucci VF, Reiss M. Cloning and genomic organization of the human transforming growth factor-beta type i receptor gene. Genomics. 1997;46:278–83.

    Article  PubMed  CAS  Google Scholar 

  32. Massague J. TGFbeta in Cancer. Cell. 2008;134:215–30.

    Article  PubMed  CAS  Google Scholar 

  33. Chen T, Carter D, Garrigue-Antar L, Reiss M. Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res. 1998;58:4805–10.

    PubMed  CAS  Google Scholar 

  34. Pasche B, Kolachana P, Nafa K, Satagopan J, Chen YG, Lo RS, et al. TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 1999;59:5678–82.

    PubMed  CAS  Google Scholar 

  35. Pasche B, Knobloch TJ, Bian Y, Liu J, Phukan S, Rosman D, et al. Somatic acquisition and signaling of TGFBR1*6A in cancer. JAMA. 2005;294:1634–46.

    Article  PubMed  CAS  Google Scholar 

  36. Baxter SW, Choong DY, Eccles DM, Campbell IG. Transforming Growth Factor beta Receptor 1 Polyalanine Polymorphism and Exon 5 Mutation Analysis in Breast and Ovarian Cancer. Cancer Epidemiol Biomark Prev. 2002;11:211–4.

    CAS  Google Scholar 

  37. Colleran G, McInerney N, Rowan A, Barclay E, Jones AM, Curran C, et al. The TGFBR1*6A/9A polymorphism is not associated with differential risk of breast cancer. Breast Cancer Res Treat. 2010;119:437–42.

    Article  PubMed  CAS  Google Scholar 

  38. Liao RY, Mao C, Qiu LX, Ding H, Chen Q, Pan HF. TGFBR1*6A/9A polymorphism and cancer risk: a meta-analysis of 13,662 cases and 14,147 controls. Mol Biol Rep. 2010;37:3227–32.

    Article  PubMed  CAS  Google Scholar 

  39. Valle L, Serena-Acedo T, Liyanarachchi S, Hampel H, Comeras I, Li Z, et al. Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science. 2008;321:1361–5.

    Article  PubMed  CAS  Google Scholar 

  40. Pasche B, Wisinski KB, Sadim M, Kaklamani V, Pennison MJ, Zeng Q, et al. Constitutively decreased TGFBR1 allelic expression is a common finding in colorectal cancer and is associated with three TGFBR1 SNPs. J Exp Clin Cancer Res. 2010;29:57.

    Article  PubMed  Google Scholar 

  41. Rosman DS, Phukan S, Huang CC, Pasche B. TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation. Cancer Res. 2008;68:1319–28.

    Article  PubMed  CAS  Google Scholar 

  42. Hu YS, Pan Y, Li WH, Zhang Y, Li J, Ma BA. Association between TGFBR1*6A and osteosarcoma: a Chinese case-control study. BMC Cancer. 2010;10:169.

    Article  PubMed  Google Scholar 

  43. Castillejo A, Mata-Balaguer T, Montenegro P, Ochoa E, Lazaro R, Martinez-Canto A, et al. The TGFBR1*6A allele is not associated with susceptibility to colorectal cancer in a Spanish population: a case-control study. BMC Cancer. 2009;9:193.

    Article  PubMed  Google Scholar 

  44. You W, Liu Z, Zhao J, Zheng M, Zheng SY, Liu X, et al. No association between TGFBR1*6A and lung cancer. J Thorac Oncol. 2007;2:657–9.

    Article  PubMed  Google Scholar 

  45. Lei Z, Liu RY, Zhao J, Liu Z, Jiang X, You W, et al. TGFBR1 Haplotypes and Risk of Non-Small-Cell Lung Cancer. Cancer Res. 2009;69:7046–52.

    Article  PubMed  CAS  Google Scholar 

  46. Song B, Margolin S, Skoglund J, Zhou X, Rantala J, Picelli S, et al. TGFBR1(*)6A and Int7G24A variants of transforming growth factor-beta receptor 1 in Swedish familial and sporadic breast cancer. Br J Cancer. 2007;97:1175–9.

    Article  PubMed  CAS  Google Scholar 

  47. Schirmer MA, Hoffmann AO, Campean R, Janke JH, Zidek LM, Hoffmann M, et al. Bioinformatic and functional analysis of TGFBR1 polymorphisms. Pharmacogenet Genomics. 2009;19:249–59.

    Article  PubMed  CAS  Google Scholar 

  48. Castillejo A, Mata-Balaguer T, Guarinos C, Castillejo MI, Martinez-Canto A, Barbera VM, et al. The Int7G24A variant of transforming growth factor-beta receptor type I is a risk factor for colorectal cancer in the male Spanish population: a case-control study. BMC Cancer. 2009;9:406.

    Article  PubMed  Google Scholar 

  49. Welcsh PL, King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 2001;10:705–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants CA 137000, CA 112520, and CA 108741 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Pasche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore-Smith, L., Pasche, B. TGFBR1 Signaling and Breast Cancer. J Mammary Gland Biol Neoplasia 16, 89–95 (2011). https://doi.org/10.1007/s10911-011-9216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-011-9216-2

Keywords

Navigation