Skip to main content
Log in

Overexpression of hsa-miR-939 follows by NGFR down-regulation and apoptosis reduction

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Neurotrophin receptors play a crucial role in neuronal survival, differentiation and regeneration. Nerve growth factor receptor (NGFR) or P75 NTR is a neurotrophin receptor that is involved in many pathological conditions including cancers. Genetic factors that are involved in regulation of neurotrophin receptors are under intense investigation. MiRNAs are novel regulators of signalling pathways that are candidates for regulation of neurotrophin receptors. Computational programs predicted that NGFR gene is a bona fide target for hsa-miR-939. RT-qPCR, Western analysis and dual luciferase assay evidences indicated that NGFR transcript is targeted by hsa-miR-939. Also, hsa-miR-939 overexpression brought about down-regulation of NGFR expression in U87 cell line, followed by cell death rate reduction, detected by flow cytometry. Taken together, here for the first time, hsa-miR-939 is introduced as a novel key regulator of NGFR expression and its involvement in cell death/survival processes is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

MRE:

MiRNA recognition element

NGFR:

nerve growth factor receptor

pre-miRNAs:

precursor miRNAs

UTR:

untranslated region

References

  • Allen M, Bjerke M, Edlund H, Nelander S and Westermark B 2016 Origin of the U87MG glioma cell line: good news and bad news. Sci. Transl. Med. 8 354re3–re3

    Article  PubMed  Google Scholar 

  • Ambros V 2004 The functions of animal microRNAs. Nature 431 350–355

    Article  CAS  PubMed  Google Scholar 

  • Blöchl A and Blöchl R 2007 A cell-biological model of p75NTR signaling. J. Neurochem. 102 289–305

    Article  PubMed  Google Scholar 

  • Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P, et al. 2002 Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J. 16 1307–1309

  • Chang C-C, Fang W-H, Chang H-A and Huang S-Y 2015 Functional Ser205Leu polymorphism of the nerve growth factor receptor (NGFR) gene is associated with vagal autonomic dysregulation in humans. Sci Rep 5 13136

  • Cheng H-C, Sun Y, Lai L-C, Chen S-Y, Lee W-C, Chen J-H, et al. 2012 Genetic polymorphisms of nerve growth factor receptor (NGFR) and the risk of Alzheimer's disease. J. Negat. Results Biomed. 11 5

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark MJ, Homer N, O'Connor BD, Chen Z, Eskin A, Lee H, et al. 2010 U87MG decoded: the genomic sequence of a cytogenetically aberrant human cancer cell line. PLoS Genet. 6 e1000832

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennis G, Sherman B, Hosack D, Yang J, Gao W, Lane HC, et al. 2003 DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4 P3

    Article  PubMed  Google Scholar 

  • Du T and Zamore PD 2005 microPrimer: the biogenesis and function of microRNA. Development 132 4645–52

    Article  CAS  PubMed  Google Scholar 

  • Dweep H, Sticht C, Pandey P and Gretz N 2011 miRWalk – database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 44 839–47

    Article  CAS  PubMed  Google Scholar 

  • Frade JM and Barde YA 1998 Nerve growth factor: two receptors, multiple functions. Bioessays 20 137–45

    Article  CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK-H, Burge CB and Bartel DP 2009 Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19 92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, et al. 2007 miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem. 282 23716–24

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Daugherty RL and Tourtellotte WG 2007 Regulation of low affinity neurotrophin receptor (p75NTR) by early growth response (Egr) transcriptional regulators. Mol. Cell. Neurosci. 36 501–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentry JJ, Barker PA, Carter BD 2004 The p75 neurotrophin receptor: multiple interactors and numerous functions; in Progress in brain research (eds) A Luigi, C Laura (Elsevier) pp 25–39

  • Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu C-G, et al. 2007 Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 67 6092–9

    Article  CAS  PubMed  Google Scholar 

  • Hefti F and Mash DC 1989 Localization of nerve growth factor receptors in the normal human brain and in Alzheimer's disease. Neurobiol. Aging 10 75–87

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Luo J, Zhong S, Xue L, Chen Y and Fan R 2012 MicroRNAs expression in normal and dissected aortic tissue. Zhonghua Xin Xue Guan Bing Za Zhi. 40 406

    CAS  PubMed  Google Scholar 

  • Irmady K, Jackman KA, Padow VA, Shahani N, Martin LA, Cerchietti L, et al. 2014 MiR-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. J. Neurosci. 34 3419–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston ALM, Lun X, Rahn JJ, Liacini A, Wang L, Hamilton MG, et al. 2007 The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biol. 5 e212

    Article  PubMed  PubMed Central  Google Scholar 

  • Kent WJ 2002 BLAT—the BLAST-like alignment tool. Genome Res. 12 656–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khvorova A, Reynolds A and Jayasena SD 2003 Functional siRNAs and miRNAs exhibit strand bias. Cell 115 209–16

    Article  CAS  PubMed  Google Scholar 

  • Khwaja F, Tabassum A, Allen J and Djakiew D 2006 The p75 NTR tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells. Biochem. Biophys. Res. Commun. 341 1184–92

    Article  CAS  PubMed  Google Scholar 

  • Krygier S and Djakiew D 2001 Molecular characterization of the loss of p75NTR expression in human prostate tumor cells. Mol. Carcinog. 31 46–55

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sinha RA, Tiwari M, Pal L, Shrivastava A, Singh R, et al. 2006 Increased pro-nerve growth factor and p75 neurotrophin receptor levels in developing hypothyroid rat cerebral cortex are associated with enhanced apoptosis. Endocrinology 147 4893–903

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB and Bartel DP 2005 Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 120 15–20

    Article  CAS  PubMed  Google Scholar 

  • Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, et al. 2009 DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res. 37 W273–W6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, et al. 2009 A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 10 R64

    Article  PubMed  PubMed Central  Google Scholar 

  • Molloy NH, Read DE and Gorman AM 2011 Nerve growth factor in cancer cell death and survival. Cancer 3 510–30

    Article  Google Scholar 

  • Mufson EJ and Kordower JH 1992 Cortical neurons express nerve growth factor receptors in advanced age and Alzheimer disease. Proc. Natl. Acad. Sci. 89 569–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakabayashi H, Taketa K, Miyano K, Yamane T and Sato J 1982 Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res. 42 3858–63

    CAS  PubMed  Google Scholar 

  • Ramos A, Chi Ho W, Forte S, Dickson K, Boutilier J, Favell K, et al. 2007 Hypo-Osmolar stress induces p75NTR expression by activating Sp1-dependent transcription. J. Neurosci. 27 1498–506

    Article  CAS  PubMed  Google Scholar 

  • Rani S, Gately K, Crown J, O’Byrne K and O’Driscoll L 2013 Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biol. Ther. 14 1

    Article  Google Scholar 

  • Reichardt LF 2006 Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc., B. 361 1545–64

    Article  CAS  Google Scholar 

  • Rocha AS, Risberg B, Magalhães J, Trovisco V, de Castro IV, Lazarovici P, et al. 2006 The p75 neurotrophin receptor is widely expressed in conventional papillary thyroid carcinoma. Hum. Pathol. 37 562–8

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Tebar A, Dechant G and Barde Y-A 1990 Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron 4 487–92

    Article  CAS  PubMed  Google Scholar 

  • Roux PP and Barker PA 2002 Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobiol. 67 203–33

    Article  CAS  PubMed  Google Scholar 

  • Salis MB, Graiani G, Desortes E, Caldwell RB, Madeddu P and Emanueli C 2004 Nerve growth factor supplementation reverses the impairment, induced by Type 1 diabetes, of hindlimb post-ischaemic recovery in mice. Diabetologia 47 1055–63

    Article  CAS  PubMed  Google Scholar 

  • Scarpini E, Conti G, Chianese L, Baron P, Pizzul S, Basellini A, et al. 1996 Induction of p75NGFR in human diabetic neuropathy. J. Neurol. Sci. 135 55–62

    Article  CAS  PubMed  Google Scholar 

  • Troy CM, Friedman JE and Friedman WJ 2002 Mechanisms of p75-mediated death of hippocampal neurons role of caspases. J. Biol. Chem. 277 34295–302

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Tomita M, Kanai A 2007 Computational methods for MicroRNA target prediction; in: Methods in enzymology (eds) JR John, JH Gregory (Academic Press) pp 65–86

  • Zhang X, Chen C, Wu M, Chen L, Zhang J, Zhang X, et al. 2012 Plasma microRNA profile as a predictor of early virological response to interferon treatment in chronic hepatitis B patients. Antivir. Ther. 17 1243–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Saman Hosseinkhani for his kind advice. This work was supported by TMU, ISTI and INSF financial aids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram M Soltani.

Additional information

[Aghdaei FH, Soltani BM, Dokanehiifard S, Mowla SJ and Soleimani M 2017 Overexpression of has-miR-939 follows by NGFR down-regulation and apoptosis reduction. J. Biosci.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghdaei, F.H., Soltani, B.M., Dokanehiifard, S. et al. Overexpression of hsa-miR-939 follows by NGFR down-regulation and apoptosis reduction. J Biosci 42, 23–30 (2017). https://doi.org/10.1007/s12038-017-9669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-017-9669-6

Keywords

Navigation