Skip to main content
Log in

The evolution of X chromosome inactivation in mammals: the demise of Ohno’s hypothesis?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Ohno’s hypothesis states that dosage compensation in mammals evolved in two steps: a twofold hyperactivation of the X chromosome in both sexes to compensate for gene losses on the Y chromosome, and silencing of one X (X-chromosome inactivation, XCI) in females to restore optimal dosage. Recent tests of this hypothesis have returned contradictory results. In this review, we explain this ongoing controversy and argue that a novel view on dosage compensation evolution in mammals is starting to emerge. Ohno’s hypothesis may be true for a few, dosage-sensitive genes only. If so few genes are compensated, then why has XCI evolved as a chromosome-wide mechanism? This and several other questions raised by the new data in mammals are discussed, and future research directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

XCI:

X-chromosome inactivation

PAR:

Pseudoautosomal region

rXCI:

Random X-chromosome inactivation

pXCI:

Paternal X-chromosome inactivation

Xi:

Inactivated X chromosome

PolII:

RNA polymerase II

ZGA:

Zygote genome activation

NGS:

Next-generation sequencing

Ne:

Effective population size

PAM:

Parental antagonism model

XIC:

X-inactivation center

References

  1. Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, Grutzner F, Deakin JE, Whittington CM, Schatzkamer K, Kremitzki CL, Graves T, Ferguson-Smith MA, Warren W, Marshall Graves JA (2008) Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res 18(6):965–973. doi:10.1101/gr.7101908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Potrzebowski L, Vinckenbosch N, Marques AC, Chalmel F, Jegou B, Kaessmann H (2008) Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol 6(4):e80. doi:10.1371/journal.pbio.0060080

    Article  PubMed Central  PubMed  Google Scholar 

  3. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou S-F, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang S-P, Waterston RH, Wilson RK, Rozen S, Page DC (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837

    Article  CAS  PubMed  Google Scholar 

  4. Ohno S, Kaplan WD, Kinosita R (1959) Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp Cell Res 18(2):415–419

    Article  CAS  PubMed  Google Scholar 

  5. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  6. Ohno S (1967) Sex chromosomes and sex linked genes. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  7. Deakin JE, Chaumeil J, Hore TA, Marshall Graves JA (2009) Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes. Chromosome Res 17(5):671–685. doi:10.1007/s10577-009-9058-6

    Article  CAS  PubMed  Google Scholar 

  8. Lee JT (2011) Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 12(12):815–826. doi:10.1038/nrm3231

    Article  CAS  PubMed  Google Scholar 

  9. Livernois AM, Graves JA, Waters PD (2012) The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity (Edinb) 108(1):50–58. doi:10.1038/hdy.2011.106

    Article  CAS  Google Scholar 

  10. Jeon Y, Sarma K, Lee JT (2012) New and Xisting regulatory mechanisms of X chromosome inactivation. Curr Opin Genet Dev 22(2):62–71. doi:10.1016/j.gde.2012.02.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Disteche CM (2012) Dosage compensation of the sex chromosomes. Annu Rev Genet 46:537–560. doi:10.1146/annurev-genet-110711-155454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gribnau J, Grootegoed JA (2012) Origin and evolution of X chromosome inactivation. Curr Opin Cell Biol 24(3):397–404. doi:10.1016/j.ceb.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  13. Dupont C, Gribnau J (2013) Different flavors of X-chromosome inactivation in mammals. Curr Opin Cell Biol 25(3):314–321. doi:10.1016/j.ceb.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  14. Ohhata T, Wutz A (2013) Reactivation of the inactive X chromosome in development and reprogramming. Cell Mol Life Sci 70(14):2443–2461. doi:10.1007/s00018-012-1174-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Schulz EG, Heard E (2013) Role and control of X chromosome dosage in mammalian development. Curr Opin Genet Dev 23(2):109–115. doi:10.1016/j.gde.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  16. Gontan C, Achame EM, Demmers J, Barakat TS, Rentmeester E, van Ijcken W, Grootegoed JA, Gribnau J (2012) RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485(7398):386–390. doi:10.1038/nature11070

    Article  CAS  PubMed  Google Scholar 

  17. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147):1237973. doi:10.1126/science.1237973

    Article  PubMed Central  PubMed  Google Scholar 

  18. Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P, Wutz A, Barillot E, Greally JM, Voinnet O, Heard E (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141(6):956–969. doi:10.1016/j.cell.2010.04.042

    Article  CAS  PubMed  Google Scholar 

  19. Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Morales AC, Jiang M, Zhu Y, Hu L, Urrutia AO, Kong X, Hurst LD (2013) Genes that escape X-inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving. Mol Biol Evol. doi:10.1093/molbev/mst148

    Google Scholar 

  21. Duret L, Chureau C, Samain S, Weissenbach J, Avner P (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312:1653–1655

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen DK, Disteche CM (2006) Dosage compensation of the active X chromosome in mammals. Nat Genet 38(1):47–53

    Article  CAS  PubMed  Google Scholar 

  23. Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M, Dudko OK, Malley JD, Eastman PS, Oliver B (2006) Global analysis of X-chromosome dosage compensation. J. Biol 5(1):3. doi:10.1186/jbiol30

    Article  PubMed Central  PubMed  Google Scholar 

  24. Talebizadeh Z, Simon SD, Butler MG (2006) X chromosome gene expression in human tissues: male and female comparisons. Genomics 88(6):675–681. doi:10.1016/j.ygeno.2006.07.016

    Article  CAS  PubMed  Google Scholar 

  25. Lin H, Gupta V, Vermilyea MD, Falciani F, Lee JT, O’Neill LP, Turner BM (2007) Dosage compensation in the mouse balances up-regulation and silencing of X-linked genes. PLoS Biol 5(12):e326. doi:10.1371/journal.pbio.0050326

    Article  PubMed Central  PubMed  Google Scholar 

  26. Johnston CM, Lovell FL, Leongamornlert DA, Stranger BE, Dermitzakis ET, Ross MT (2008) Large-scale population study of human cell lines indicates that dosage compensation is virtually complete. PLoS Genet 4(1):e9. doi:10.1371/journal.pgen.0040009

    Article  PubMed Central  PubMed  Google Scholar 

  27. Xiong Y, Chen X, Chen Z, Wang X, Shi S, Zhang J, He X (2010) RNA sequencing shows no dosage compensation of the active X-chromosome. Nat Genet 42(12):1043–1047

    Article  CAS  PubMed  Google Scholar 

  28. Deng X, Hiatt JB, Nguyen DK, Ercan S, Sturgill D, Hillier LW, Schlesinger F, Davis CA, Reinke VJ, Gingeras TR, Shendure J, Waterston RH, Oliver B, Lieb JD, Disteche CM (2011) Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat Genet 43(12):1179–1185. doi:10.1038/ng.948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. He X, Chen X, Xiong Y, Chen Z, Wang X, Shi S, Wang X, Zhang J (2011) He et al. reply. Nat Genet 43(12):1171–1172

    Article  CAS  Google Scholar 

  30. Kharchenko PV, Xi R, Park PJ (2011) Evidence for dosage compensation between the X chromosome and autosomes in mammals. Nat Genet 43(12):1167–1169. doi:10.1038/ng.991 (author reply 1171-1162)

    Article  CAS  PubMed  Google Scholar 

  31. Lin H, Halsall JA, Antczak P, O’Neill LP, Falciani F, Turner BM (2011) Relative overexpression of X-linked genes in mouse embryonic stem cells is consistent with Ohno’s hypothesis. Nat Genet 43(12):1169–1170. doi:10.1038/ng.992 (author reply 1171-1162)

    Article  CAS  PubMed  Google Scholar 

  32. Pessia E, Makino T, Bailly-Bechet M, McLysaght A, Marais GA (2012) Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci USA 109(14):5346–5351. doi:10.1073/pnas.1116763109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Julien P, Brawand D, Soumillon M, Necsulea A, Liechti A, Schutz F, Daish T, Grutzner F, Kaessmann H (2012) Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. PLoS Biol 10(5):e1001328. doi:10.1371/journal.pbio.1001328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lin F, Xing K, Zhang J, He X (2012) Expression reduction in mammalian X chromosome evolution refutes Ohno’s hypothesis of dosage compensation. Proc Natl Acad Sci USA 109(29):11752–11757. doi:10.1073/pnas.1201816109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Yildirim E, Sadreyev RI, Pinter SF, Lee JT (2011) X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription. Nat Struct Mol Biol 19(1):56–61. doi:10.1038/nsmb.2195

    Article  PubMed Central  PubMed  Google Scholar 

  36. Adler DA, Rugarli EI, Lingenfelter PA, Tsuchiya K, Poslinski D, Liggitt HD, Chapman VM, Elliott RW, Ballabio A, Disteche CM (1997) Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus. Proc Natl Acad Sci USA 94(17):9244–9248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P, Weier M, Liechti A, Aximu-Petri A, Kircher M, Albert FW, Zeller U, Khaitovich P, Grutzner F, Bergmann S, Nielsen R, Paabo S, Kaessmann H (2011) The evolution of gene expression levels in mammalian organs. Nature 478(7369):343–348. doi:10.1038/nature10532

    Article  CAS  PubMed  Google Scholar 

  38. Zhang YE, Vibranovski MD, Landback P, Marais GA, Long M (2010) Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome. PLoS Biol 8(10). doi:10.1371/journal.pbio.1000494

  39. Malone JH, Cho DY, Mattiuzzo NR, Artieri CG, Jiang L, Dale RK, Smith HE, McDaniel J, Munro S, Salit M, Andrews J, Przytycka TM, Oliver B (2012) Mediation of Drosophila autosomal dosage effects and compensation by network interactions. Genome Biol 13(4):r28. doi:10.1186/gb-2012-13-4-r28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Birchler JA (2012) Claims and counterclaims of X-chromosome compensation. Nat Struct Mol Biol 19(1):3–5. doi:10.1038/nsmb.2218

    Article  CAS  PubMed  Google Scholar 

  41. Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424(6945):194–197. doi:10.1038/nature01771

    Article  CAS  PubMed  Google Scholar 

  42. Hall DW, Wayne ML (2013) Ohno’s “peril of hemizygosity” revisited: gene loss, dosage compensation, and mutation. Genome Biol Evol 5(1):1–15. doi:10.1093/gbe/evs106

    Article  PubMed Central  PubMed  Google Scholar 

  43. Mank JE, Hosken DJ, Wedell N (2011) Some inconvenient truths about sex chromosome dosage compensation and the potential role of sexual conflict. Evolution 65(8):2133–2144. doi:10.1111/j.1558-5646.2011.01316.x

    Article  PubMed  Google Scholar 

  44. Wright AE, Mank JE (2012) Battle of the sexes: conflict over dosage-sensitive genes and the origin of X chromosome inactivation. Proc Natl Acad Sci USA 109(14):5144–5145. doi:10.1073/pnas.1202905109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Veitia RA (2005) Gene dosage balance: deletions, duplications and dominance. Trends Genet 21(1):33–35. doi:10.1016/j.tig.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  46. Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis RW, Nislow C, Giaever G (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169:1915–1925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Gout J, Kahn D, Duret L (2010) The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution. PLoS Genet 6(5):e1000944. doi:10.1371/journal.pgen.1000944

    Article  PubMed Central  PubMed  Google Scholar 

  48. Engelstadter J, Haig D (2008) Sexual antagonism and the evolution of X chromosome inactivation. Evolution 62(8):2097–2104. doi:10.1111/j.1558-5646.2008.00431.x

    Article  PubMed  Google Scholar 

  49. Haig D (2000) The kinship theory of genomic imprinting. Annu Rev Ecol Syst 31:9–32

    Article  Google Scholar 

  50. Haig D (2006) Self-imposed silence: parental antagonism and the evolution of X-chromosome inactivation. Evolution 60(3):440–447

    CAS  PubMed  Google Scholar 

  51. Haig D (2006) Intragenomic politics. Cytogenet Genome Res 113(1–4):68–74. doi:10.1159/000090816

    Article  CAS  PubMed  Google Scholar 

  52. Necsulea A, Soumillon M, Liechti A, Daish T, Baker JC, Grützner F, Kaessmann H (2013) Functionality and evolution of lncRNA repertoires and expression patterns in tetrapods. Nature (in press)

  53. Livernois AM, Waters SA, Deakin JE, Marshall Graves JA, Waters PD (2013) Independent evolution of transcriptional inactivation on sex chromosomes in birds and mammals. PLoS Genet 9(7):e1003635. doi:10.1371/journal.pgen.1003635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Collignon J, Sockanathan S, Hacker A, Cohen-Tannoudji M, Norris D, Rastan S, Stevanovic M, Goodfellow PN, Lovell-Badge R (1996) A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122(2):509–520

    CAS  PubMed  Google Scholar 

  55. Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJ, Zhu Y, Kaaij LJ, van Ijcken W, Gribnau J, Heard E, de Laat W (2011) The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 25(13):1371–1383. doi:10.1101/gad.633311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Amer Nat 112:975–997

    Article  Google Scholar 

  57. Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14(2):113–124. doi:10.1038/nrg3366

    Article  CAS  PubMed  Google Scholar 

  58. Rice WR (1987) The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex-chromosomes. Evolution 41:911–914

    Article  Google Scholar 

  59. Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95(2):118–128

    Article  CAS  PubMed  Google Scholar 

  60. Grant J, Mahadevaiah SK, Khil P, Sangrithi MN, Royo H, Duckworth J, McCarrey JR, VandeBerg JL, Renfree MB, Taylor W, Elgar G, Camerini-Otero RD, Gilchrist MJ, Turner JM (2012) Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487(7406):254–258. doi:10.1038/nature11171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Wang X, Douglas KC, Vandeberg JL, Clark A, Samollow PB (2013) Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica. Genome Res. doi:10.1101/gr.161919.113

    Google Scholar 

  62. Okamoto I, Patrat C, Thepot D, Peynot N, Fauque P, Daniel N, Diabangouaya P, Wolf JP, Renard JP, Duranthon V, Heard E (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472(7343):370–374. doi:10.1038/nature09872

    Article  CAS  PubMed  Google Scholar 

  63. Tachibana M, Ma H, Sparman ML, Lee HS, Ramsey CM, Woodward JS, Sritanaudomchai H, Masterson KR, Wolff EE, Jia Y, Mitalipov SM (2012) X-chromosome inactivation in monkey embryos and pluripotent stem cells. Dev Biol 371(2):146–155. doi:10.1016/j.ydbio.2012.08.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Wang X, Miller DC, Clark AG, Antczak DF (2012) Random X inactivation in the mule and horse placenta. Genome Res 22(10):1855–1863. doi:10.1101/gr.138487.112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Wang X, Soloway PD, Clark AG (2010) Paternally biased X inactivation in mouse neonatal brain. Genome Biol 11(7):R79. doi:10.1186/gb-2010-11-7-r79

    Article  PubMed Central  PubMed  Google Scholar 

  66. Connallon T, Clark AG (2013) Sex-differential selection and the evolution of X inactivation strategies. PLoS Genet 9(4):e1003440. doi:10.1371/journal.pgen.1003440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Veyrunes F, Chevret P, Catalan J, Castiglia R, Watson J, Dobigny G, Robinson TJ, Britton-Davidian J (2010) A novel sex determination system in a close relative of the house mouse. Proc Biol Sci 277(1684):1049–1056. doi:10.1098/rspb 2009.1925

    Article  PubMed Central  PubMed  Google Scholar 

  68. Castagne R, Rotival M, Zeller T, Wild PS, Truong V, Tregouet DA, Munzel T, Ziegler A, Cambien F, Blankenberg S, Tiret L (2011) The choice of the filtering method in microarrays affects the inference regarding dosage compensation of the active X-chromosome. PLoS ONE 6(9):e23956. doi:10.1371/journal.pone.0023956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Jue NK, Murphy MB, Kasowitz SD, Qureshi SM, Obergfell CJ, Elsisi S, Foley RJ, O’Neill RJ, O’Neill MJ (2013) Determination of dosage compensation of the mammalian X chromosome by RNA-seq is dependent on analytical approach. BMC Genomics 14(1):150. doi:10.1186/1471-2164-14-150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Mank JE, Ellegren H (2009) Sex bias in gene expression is not the same as dosage compensation. Heredity 103(5):434

    Article  CAS  PubMed  Google Scholar 

  71. Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man 1871-1971. Aldine-Atherton, Chicago, pp 136–179

    Google Scholar 

  72. Haig D (2002) Genomic imprinting and kinship. Rutgers University Press, New Brunswick

    Google Scholar 

  73. Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans R Soc Lond B Biol Sci 355(1403):1563–1572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Charlesworth B (1978) Model for evolution of Y chromosomes and dosage compensation. Proc Natl Acad Sci USA 75(11):5618–5622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Charlesworth B (1996) The evolution of chromosomal sex determination and dosage compensation. Curr Biol 6(2):149–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fangqin Lin for providing us with the exact X:AA and X:XX median values from [34]. GABM is supported by Agence Nationale de la Recherche (Grant ref. ANR-12-BSV7-0002). GABM thanks Instituto Gulbenkian de Ciência for hosting him during several periods strongly overlapping with the writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel A. B. Marais.

Appendices

Box 1: testing Ohno’s hypothesis with expression data

Ohno’s hypothesis has been tested by comparing the expression of the X chromosome to that of the autosomes taken together, the X:AA ratio.

Microarray versus RNAseq data

Initially, microarray data have been used for this test [2226]. Microarray may give less precise estimates of expression levels [27]. Moreover, microarray data have to be filtered prior to analysis. The procedures for data filtering rely on arbitrary thresholds, which applied similarly to the X and autosomes remove many lowly expressed X-linked genes and generate an artifactual X:AA of 1 [68]. RNAseq data are supposed to give more precise estimates of expression levels. However, there is also some noise in RNAseq data due to unspecific mapping of RNAseq reads onto the genome, and how this noise is removed can also affect the results [69]. Removing this noise is at the heart of the controversy between the different studies using RNAseq [2730, 35]. As the threshold for considering a given expression level different from 0 increases, the X:AA ratio increases and reaches a plateau at 1 [28]. It is clear, however, that when using conservative thresholds, the number of X-linked genes analyzed becomes small, and one cannot conclude from this about a “global” X hyperactivation [32].

X:AA, X:XX, and other expression ratios

Using X:AA expression relies on the assumption that expression were similar between the proto-sex chromosomes and the autosomes (XX:AA = 1). Using the present-day and ancestral expression of the X chromosome, the X:XX ratio, is thus a more direct way to test for Ohno’s hypothesis. Computing the X:XX ratio in mammals has implied finding an outgroup where the 1-to-1 orthologs of the X-linked genes are autosomal, namely birds [33]. This guarantees that only genes that were originally on the sex chromosomes before they diverged are analyzed, which is what should be done as dosage compensation is expected for these genes only. The new genes that evolved (e.g. through intra-X duplication or translocation to the X) after X and Y stopped recombining and diverged should not be included in studies on dosage compensation, are correctly excluded of the X:XX analysis but not in the X:AA ones. However, finding 1-to-1 orthologs between distantly related species may be difficult and result in a small number of genes being analyzed. Moreover, all these chromosome-wide comparisons may be problematic as different selective forces (dosage compensation, sexual selection) may affect expression levels [43, 70]. A more precise way of testing Ohno’s hypothesis is to study X-linked and autosomal genes that are expected to interact in some ways and for which equal dosage may be required. Considering genes from the same network is one possibility [33], and considering genes belonging to protein complexes is another [32].

Box 2: The parental antagonism model of X chromosome inactivation

The parental antagonism model (PAM) for the evolution of XCI was proposed by Haig [49, 50]. It is embedded within the general evolutionary theory of parental investment in offspring [71] and closely related to the kinship theory of genomic imprinting [49, 72]. The argument can be presented in a number of steps.

Step 0 A prerequisite for PAM to work is that offspring are provisioned with an adjustable amount of resources from their mother following fertilization. This is indeed the case in therians where resources are provided through the placenta during embryonic development.

Step 1 At the core of PAM is the expectation that there will be an evolutionary conflict between maternally and paternally derived genes within a developing organism with respect to the amount of resources provided by the mother of that individual. Both genes derived from the mother and from the father will be selected to induce the mother to provide resources. However, the optimal amount of resources provided may be greater for paternally than for maternally derived genes. This is because when females mate with multiple males during their lifetimes, paternal interests will be limited to the current offspring whereas maternal interests extend to all future offspring that a mother will have.

Step 2 The X chromosome is two-thirds of the time inherited from the mother but only one-third of the time from the father (simply because females have two Xs and males just one). As a consequence, genes on the X chromosome are expected to reflect maternal interests more than paternal ones. In particular, it is expected that genes coding for embryonic growth inhibitors will accumulate on the X chromosome, whereas growth enhancers will be scarce [51].

Step 3 As an evolutionary response to this accumulation of growth inhibitor genes on the X chromosome, there will be selection on paternally inherited genes on the X chromosome to inactivate these genes in embryos, thereby increasing embryo growth. This inactivation may then also spread to other genes on the paternally derived X, either for mechanistic reasons or for dosage compensation. The resulting state of inactivation of the paternally derived X (pXCI) is found in marsupials.

Step 4 pXCI entails that an organism becomes functionally haploid, so that recessive deleterious mutations on the maternally derived X chromosome will be expressed and reduce fitness. This may create selection pressure for random XCI (rXCI), alleviating this burden because half of the cells will then express the functional gene copy [50]. This transition from pXCI to rXCI does not involve parental conflict because the choice of which X chromosome is inactivated does not affect gene dosage.

Step 5 Nevertheless, parental conflict over which of the X chromosomes is inactivated may persist or re-emerge. This is because there may still be imprinted growth inhibitor genes on the X chromosome that are silenced when paternally inherited, so that the maternally derived X chromosome will be under selection to remain the active X. As a consequence, pXCI can re-evolve from rXCI, which may explain pXCI in mouse trophoblast tissues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pessia, E., Engelstädter, J. & Marais, G.A.B. The evolution of X chromosome inactivation in mammals: the demise of Ohno’s hypothesis?. Cell. Mol. Life Sci. 71, 1383–1394 (2014). https://doi.org/10.1007/s00018-013-1499-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1499-6

Keywords

Navigation