Skip to main content
Log in

Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases, or “All that you did and did not want to know about Nox inhibitory peptides”

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 13 September 2013

Abstract

Phagocytes utilize reactive oxygen species (ROS) to kill pathogenic microorganisms. The source of ROS is an enzymatic complex (the NADPH oxidase), comprising a membrane-associated heterodimer (flavocytochrome b 558), consisting of subunits Nox2 and p22phox, and four cytosolic components (p47phox, p67phox, p40phox, and Rac). The primordial ROS (superoxide) is generated by the reduction of molecular oxygen by NADPH via redox centers located on Nox2. This process is activated by the translocation of the cytosolic components to the membrane and their assembly with Nox2. Membrane translocation is preceded by interactions among cytosolic components. A number of proteins structurally and functionally related to Nox2 have been discovered in many cells (the Nox family) and these have pleiotropic functions related to the production of ROS. An intense search is underway to design therapeutic means to modulate Nox-dependent overproduction of ROS, associated with diseases. Among drug candidates, a central position is held by synthetic peptides reflecting domains in oxidase components involved in NADPH oxidase assembly. Peptides, corresponding to domains in Nox2, p22phox, p47phox, and Rac, found to be oxidase activation inhibitory in vitro, are reviewed. Usually, peptides are inhibitory only when added preceding assembly of the complex. Although competition with intact components seems most likely, less obvious mechanisms are, sometimes, at work. The use of peptides as inhibitory drugs in vivo requires the development of methods to assure cell penetration, resistance to degradation, and avoidance of toxicity, and modest successes have been achieved. The greatest challenge remains the discovery of peptide inhibitors acting specifically on individual Nox isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    Article  PubMed  CAS  Google Scholar 

  2. Pick E, Keisari Y (1981) Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages—induction by multiple non-phagocytic stimuli. Cell Immunol 59:301–318

    Article  PubMed  CAS  Google Scholar 

  3. Nauseef WM (2004) Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122:277–291

    Article  PubMed  CAS  Google Scholar 

  4. Groemping Y, Rittinger K (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386:401–416

    Article  PubMed  CAS  Google Scholar 

  5. Mizrahi A, Berdichevsky Y, Ugolev Y, Molshanski-Mor S, Nakash Y, Dahan I, Alloul N, Gorzalczany Y, Sarfstein R, Hirshberg M, Pick E (2006) Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships. J Leukoc Biol 79:881–895

    Article  PubMed  CAS  Google Scholar 

  6. Kreck ML, Freeman JL, Abo A, Lambeth JD (1996) Membrane association of Rac is required for high activity of the respiratory burst oxidase. Biochemistry 35:15683–15692

    Article  PubMed  CAS  Google Scholar 

  7. Gorzalczany Y, Sigal N, Itan M, Lotan O, Pick E (2000) Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly. J Biol Chem 275:40073–40081

    Article  PubMed  CAS  Google Scholar 

  8. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355

    Article  PubMed  CAS  Google Scholar 

  9. Marcoux J, Man P, Petit-Hartlein I, Vives C, Forest E, Fieschi F (2010) p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex. J Biol Chem 285:28980–28990

    Article  PubMed  CAS  Google Scholar 

  10. Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: Physiology and Pathophysiology. Physiol Rev 87:255–313

    Article  Google Scholar 

  11. Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  PubMed  CAS  Google Scholar 

  12. Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free Rad Biol Med 43:332–347

    Article  PubMed  CAS  Google Scholar 

  13. Molshanski-Mor S, Mizrahi A, Ugolev Y, Dahan I, Berdichevsky Y, Pick E (2007) Cell-free assays: the reductionist approach to the study of NADPH oxidase assembly, or all you wanted to know about cell-free assays but did not dare to ask. In: Quinn MT, DeLeo FR, Bokoch GM (eds) Neutrophil methods and protocols. Humana, Totowa, pp 385–428

    Chapter  Google Scholar 

  14. Berdichevsky Y, Mizrahi A, Ugolev Y, Molshanski-Mor S, Pick E (2007) Tripartite chimeras comprising functional domains derived from the three cytosolic components p47phox, p67phox and Rac1 elicit activator-independent superoxide production by phagocyte membranes. Role of membrane lipid charge and of specific residues in the chimeras. J Biol Chem 282:22122–22139

    Article  PubMed  CAS  Google Scholar 

  15. Mizrahi A, Berdichevsky Y, Casey PJ, Pick E (2010) A prenylated p47phox–p67phox–Rac1 chimera is a quintessential NADPH oxidase activator. Membrane association and functional capacity. J Biol Chem 285:25485–25499

    Article  PubMed  CAS  Google Scholar 

  16. Nisimoto Y, Jackson HM, Ogawa H, Kawahara T, Lambeth JD (2010) Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain. Biochemistry 49:2433–2442

    Article  PubMed  CAS  Google Scholar 

  17. Fridovich I (1975) Oxygen: boon and bane. Am Sci 63:54–59

    PubMed  CAS  Google Scholar 

  18. Vijg J, Campisi J (2008) Puzzles, promises and a cure for aging. Nature 454:1065–1071

    Article  PubMed  CAS  Google Scholar 

  19. Gutteridge MC, Halliwell B (2010) Antioxidants: molecules, medicines, and myths. Biochem Biophys Res Commun 393:561–564

    Article  PubMed  CAS  Google Scholar 

  20. Cross AR (1990) Inhibitors of the leukocyte superoxide generating oxidase: mechanisms of action and methods for their elucidation. Free Rad Biol Med 8:71–93

    Article  PubMed  CAS  Google Scholar 

  21. Lambeth JD, Krause K-H, Clark RA (2008) NOX enzymes as novel targets for drug development. Semin Immunopathol 30:339–363

    Article  PubMed  CAS  Google Scholar 

  22. Jaquet V, Scapozza L, Clark RA, Krause K-H, Lambeth JD (2009) Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 11:2535–2552

    Article  PubMed  CAS  Google Scholar 

  23. Kim J-A, Neupane GP, Lee ES, Jeong B-S, Park BC, Thapa P (2011) NADPH oxidase inhibitors: a patent review. Expert Opin Ther Patents 21:1147–1158

    Article  CAS  Google Scholar 

  24. Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature Rev Drug Discov 10:453–471

    Article  CAS  Google Scholar 

  25. Maupetit J, Derreamaux P, Tuffféry P (2010) A fast method for large-scale de novo peptide and miniprotein structure prediction. J Comput Chem 31:726–738

    PubMed  CAS  Google Scholar 

  26. DeLeo FR, Yu L, Burritt JB, Loetterle LR, Bond CW, Jesaitis AJ, Quinn MT (1995) Mapping sites of interaction of p47phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc Natl Acad Sci USA 92:7110–7114

    Article  PubMed  CAS  Google Scholar 

  27. Rotrosen D, Kleinberg ME, Nunoi H, Leto T, Gallin JL, Malech HL (1990) Evidence for a functional cytoplasmic domain of phagocyte oxidase cytochrome b 558. J Biol Chem 265:8745–8750

    PubMed  CAS  Google Scholar 

  28. Park M-Y, Imajoh-Ohmi S, Nunoi H, Kanegasaki S (1997) Synthetic peptides corresponding to various hydrophilic regions of the large subunit of cytochrome b 558 inhibit superoxide generation in a cell-free system from neutrophils. Biochem Biophys Res Commun 234:531–536

    Article  PubMed  CAS  Google Scholar 

  29. Nauseef WM, McCormick S, Renee J, Leidal KG, Clark RA (1993) Functional domain in an arginine-rich carboxyl-terminal region of p47phox. J Biol Chem 268:23646–23651

    PubMed  CAS  Google Scholar 

  30. Leusen JHW, de Boer M, Bolscher BGJM, Hilarius PM, Weening RS, Ochs HD, Roos D, Verhoeven AJ (1994) A point mutation in gp91phox of cytochrome b 558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47phox and p67phox. J Clin Invest 93:2120–2126

    Article  PubMed  CAS  Google Scholar 

  31. Joseph G, Pick E (1995) “Peptide walking” is a novel method for mapping functional domains in proteins. J Biol Chem 270:29079–29082

    Article  PubMed  CAS  Google Scholar 

  32. Rodda SJ, Tribbick G (1996) Antibody-defined epitope mapping using the multipin method of peptide synthesis. Methods 9:473–481

    Article  PubMed  CAS  Google Scholar 

  33. Cochran A (2000) Antagonists of protein–protein interactions. Chem Biol 7:R85–R94

    Article  PubMed  CAS  Google Scholar 

  34. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nature Rev Drug Discov 3:301–317

    Article  CAS  Google Scholar 

  35. Maupetit J, Derreumaux P, Tufféry P. (2009) PEP-FOLD: an online resource for the novo peptide structure prediction. Nucleic Acids Res. doi:10.1093/nar/gkp323

  36. Park M-Y, Imajoh-Ohmi S, Nunoi H, Kanegasaki S (1994) Peptides corresponding to the region adjacent to His-94 in the small subunit of cytochrome b 558 inhibit superoxide generation in a cell-free system from human neutrophils. Biochem Biophys Res Commun 204:924–929

    Article  PubMed  CAS  Google Scholar 

  37. Tsuchiya T, Imajoh-Ohmi S, Nunoi H, Kanegasaki S (1999) Uncompetitive inhibition of superoxide generation by a synthetic peptide corresponding to a predicted NADPH binding site in gp91phox, a component of the phagocyte respiratory oxidase. Biochem Biophys Res Commun 257:124–128

    Article  PubMed  CAS  Google Scholar 

  38. Rodda S (2002) Peptide libraries for T cell epitope screening and characterization. J Immunol Methods 267:71–77

    Article  PubMed  CAS  Google Scholar 

  39. Joseph G, Gorzalczany Y, Koshkin V, Pick E (1994) Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxy-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of the polybasic motif. J Biol Chem 269:29024–29031

    PubMed  CAS  Google Scholar 

  40. Chorev M, Goodman M (1995) Recent developments in retro peptides and proteins—an ongoing topochemical exploration. Trends Biotechnol 13:438–445

    Article  PubMed  CAS  Google Scholar 

  41. Morozov I, Lotan O, Joseph G, Gorzalczany Y, Pick R (1998) Mapping of functional domains in p47phox involved in the activation of NADPH oxidase by “peptide walking”. J Biol Chem 273:153435-15444

    Google Scholar 

  42. Dahan I, Issaeva I, Gorzalczany Y, Sigal N, Hirshberg M, Pick E (2002) Mapping of functional domains in the p22phox subunit of flavocytochrome b 559 participating in the assembly of the NADPH oxidase complex by “peptide walking”. J Biol Chem 277:8421–8432

    Article  PubMed  CAS  Google Scholar 

  43. Dahan I, Molshanski-Mor S, Pick E (2012) Inhibition of NADPH oxidase activation by peptides mapping within the dehydrogenase region of Nox2-A "peptide walking" study. J Leukoc Biol 91:501–515

    Google Scholar 

  44. Koshkin V, Pick E (1993) Generation of superoxide by purified and relipidated cytochrome b 559 in the absence of cytosolic activators. FEBS Lett 327:57–62

    Article  PubMed  CAS  Google Scholar 

  45. Alloul N, Gorzalczany Y, Itan M, Sigal N, Pick E (2001) Activation of the superoxide-generating NADPH oxidase by chimeric proteins consisting of segments of the cytosolic component p67phox and the small GTPase Rac1. Biochemistry 40:14557–14566

    Article  PubMed  CAS  Google Scholar 

  46. Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher M-C, Pick E (2004) Dual role of Rac in the assembly of NADPH oxidase: Tethering to the membrane and activation of p67phox. A study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem 279:16007–16016

    Article  PubMed  CAS  Google Scholar 

  47. Csányi G, Cifuentes-Pagano E, Al Gouleh I, Ranayhossaini DJ, Egana L, Lopes LR, Jackson HM, Kelley EE, Pagano PJ (2011) Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2. Free Rad Biol Med 51:1116–1125

    Google Scholar 

  48. Kreck ML, Uhlinger DJ, Tyagi SR, Inge KL, Lambeth JD (1994) Participation of the small molecular weight GTP-binding protein Rac1 in cell-free activation and assembly of the respiratory burst oxidase - Inhibition by a carboxyl-terminal peptide. J Biol Chem 269:4161–4168

    PubMed  CAS  Google Scholar 

  49. Kleinberg ME, Malech HL, Rotrosen D (1990) The phagocyte 47-kilodalton cytosolic oxidase protein is an early reactant in activation of the respiratory burst. J Biol Chem 265:15577–15583

    PubMed  CAS  Google Scholar 

  50. Uhlinger DJ, Tyagi SR, Lambeth JD (1995) On the mechanism of inhibition of the neutrophil respiratory burst oxidase by a peptide from the C-terminus of the large subunit of cytochrome b 558. Biochemistry 34:524–527

    Article  PubMed  CAS  Google Scholar 

  51. De Leo FR, Ulman KV, Davis AR, Jutila KL, Quinn MT (1996) Assembly of the human neutrophil oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem 271:17013–17020

    Article  PubMed  Google Scholar 

  52. De Leo FR, Jutila MA, Quinn MT (1996) Charcterization of peptide diffusion into electropermeabilized neutrophils. J Immunol Methods 198:35–49

    Article  Google Scholar 

  53. Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ (2001) Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O -2 and systolic blood pressure in mice. Circ Res 89:408–414

    Article  PubMed  CAS  Google Scholar 

  54. Biberstine-Kinkade KJ, Yu L, Dinauer M (1999) Mutagenesis of an arginine- and lysine-rich domain in the gp91phox subunit of the phagocyte NADPH-oxidase flavocytochrome b 558. J Biol Chem 274:10451–10457

    Article  PubMed  CAS  Google Scholar 

  55. Jackson HM, Kawahara T, Nisimoto Y, Smith SME, Lambeth JD (2010) Nox4 B-loop creates an interface between the transmembrane and dehydrogenase domains. J Biol Chem 285:10281–10290

    Article  PubMed  CAS  Google Scholar 

  56. Durand D, Vivès C, Cannella D, Pérez J, Pebay-Peyroula E, Vachetter P, Fieschi F (2010) NADPH oxidase activator p67phox behaves in solution as a multidomain protein with semi-flexible linkers. J Struct Biol 169:45–53

    Article  PubMed  CAS  Google Scholar 

  57. Leusen JHW, Bolscher BGJM, Hilarius PM, Weening RS, Kaulfersch W, Seger RA, Roos D, Verhoeven AJ (1994) 156Pro → Gln substitution in the light chain of cytochrome b 558 of the human NADPH oxidase (p22phox) leads to defective translocation of the cytosolic proteins p47phox and p67phox. J Exp Med 180:2329–2334

    Article  PubMed  CAS  Google Scholar 

  58. Shi J, Ross CR, Leto TL, Blecha F (1996) PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase by binding to Src homology 3 domains of p47phox. Proc Natl Acad Sci USA 93:6014–6018

    Article  PubMed  CAS  Google Scholar 

  59. Katz C, Levy-Beladev L, Rotem-Bamberger S, Rito T, Rudiger SGD, Friedler A (2011) Studying protein - protein interactions using peptide arrays. Chem Soc Rev 40:2131–2145

    Article  PubMed  CAS  Google Scholar 

  60. El-Benna J, Dang PM-C, Perianin A (2010) Peptide-based inhibitors of the phagocyte NADPH oxidase. Biochem Pharmacol 80:778–785

    Article  PubMed  CAS  Google Scholar 

  61. Kleinberg ME, Mital D, Rotrosen D, Malech HL (1992) Characterization of a phagocyte cytochrome b 558 91-kilodalton subunit functional domain: Identification of peptide sequence and amino acids essential for activity. Biochemistry 31:2686–2690

    Article  PubMed  CAS  Google Scholar 

  62. Nakanishi A, Imajoh-Ohmi S, Fujinawa T, Kikuchi H, Kanegasaki S (1992) Direct evidence for interaction between COOH-terminal regions of cytochrome b 558 subunits and cytsosolic 47-kDa protein during activation on O2 generating system in neutrophils. J Biol Chem 267:19072–19074

    PubMed  CAS  Google Scholar 

  63. Jacobson G, Dourron HM, Liu J, Carretero OA, Reddy DJ, Andrzejewski T, Pagano PJ (2003) Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res 92:637–643

    Article  PubMed  CAS  Google Scholar 

  64. Weaver P, Liu J, Pimentel D, Reddy DJ, Harding P, Peterson EL, Pagano PJ (2006) Adventitial delivery of dominant-negative p67phox attenuates neointimal hyperplasia of the rat carotid artery. Am J Physiol Heart Circ Physiol 290:H1933–H1941

    Article  PubMed  CAS  Google Scholar 

  65. Kao Y-Y, Gianni D, Bohl B, Taylor RM, Bokoch GM (2008) Identification of a conserved Rac binding site on NADPH oxidases supports a direct GTPase regulatory mechanism. J Biol Chem 283:12736–12746

    Article  PubMed  CAS  Google Scholar 

  66. Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, Younkin L, Younkin S, Carlson G, McEwen BS, Iadecola C (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA 105:1347–1352

    Article  PubMed  CAS  Google Scholar 

  67. Clark RA, Leidal KG, Pearson DW, Nauseef WM (1987) NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activable superoxide-generating system. J Biol Chem 262:4065–4074

    PubMed  CAS  Google Scholar 

  68. Malech HL, Huang C-K, Renfer L, Rotrosen D (1993) Tyrosine-324 of p47phox plays a functional role in cell-free activation of phagocyte NADPH oxidase. Clin Res 41:323A

    Google Scholar 

  69. DeLeo FR, Nauseef WM, Jesaitis AJ, Burritt JB, Clark RA, Quinn MT (1995) A domain of p47phox that interacts with human neutrophil flavocytochrome b558. J Biol Chem 270:26246–26251

    Google Scholar 

  70. Dang PM-C, Stensballe A, Boussetta T, Raad H, Dewas C, Kroviarski Y, Hayem G, Jensen ON, Gougerot-Pocidalo M-A, El-Benna J (2006) A specific p47phox-serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J Clin Invest 116:2033–2043

    Article  PubMed  CAS  Google Scholar 

  71. Cohen JG, Killeen E, Chander A, Takemaru K-I, Larson JE, Treharne KJ, Mehta A (2009) Small interfering peptide (siP) for in vivo examinations of the developing lung interactonome. Dev Dyn 238:386–393

    Article  PubMed  CAS  Google Scholar 

  72. Sigal N, Gorzalczany Y, Pick E (2003) Two pathways of activation of the superoxide-generating NADPH oxidase of phagocytes in vitro—distinctive effects of inhibitors. Inflammation 27:147–159

    Article  PubMed  CAS  Google Scholar 

  73. Marchioni F, Zheng Y (2009) Targeting Rho GTPases by peptidic structures. Curr Pharmacol Design 15:2481–2487

    Article  CAS  Google Scholar 

  74. Labadia ME, Zu Y-L, Huang C-K (1996) A synthetic peptide containing a predominant protein kinase C site within p47phox inhibits the NADPH oxidase in intact neutrophils. J Leukoc Biol 59:116–124

    PubMed  CAS  Google Scholar 

  75. Futaki S, Goto S, Sugiura Y (2003) Membrane permeability commonly shared among arginine-rich peptides. J Mol Recognit 16:260–264

    Article  PubMed  CAS  Google Scholar 

  76. Magzoub M, Graslund A (2004) Cell-penetrating peptides: small from inception to application. Q Rev Biophys 34:147–195

    Article  Google Scholar 

  77. Deshayes S, Morris MC, Divita G, Heitz F (2005) Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci 62:1839–1849

    Article  PubMed  CAS  Google Scholar 

  78. Langel U (ed) (2007) Handbook of cell-penetrating peptides. 2nd edn. CRC, Boca Raton

  79. Fuchs SM, Raines RT (2006) Internalization of cationic peptides: the road less (or more?) traveled. Cell Mol Life Sci 63:1819–1822

    Article  PubMed  CAS  Google Scholar 

  80. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 91:664–668

    Article  PubMed  CAS  Google Scholar 

  81. Kim DW, Mitchell DJ, Brockstedt DG, Fong L, Nolan GP, Fathman CG, Engleman EG, Rothbard JB (1997) Introduction of soluble proteins into the MHC Class I pathway by conjugation to an HIV tat peptide. J Immunol 159:1666–1668

    PubMed  CAS  Google Scholar 

  82. Cerchietti LC, Yang SN, Shaknovich R, Hatzi K, Polo JM, Chadburn A, Dowdy SF, Melnick A (2009) A peptidomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood 113:3397–3405

    Article  PubMed  CAS  Google Scholar 

  83. Fradin T, Dahan I, Molshanski-Mor S, Mizrahi A, Berdichevsky Y, Pick E (2011) A dithiol–disulfide switch in the cytosolic part of Nox2 controls NADPH oxidase assembly. Eur J Clin Invest 41(Suppl 1):29

    Google Scholar 

  84. Jia H, Lohr M, Jezequel S, Davis D, Shaikh S, Selwood D, Zachary I (2001) Cysteine-rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis. Biochem Biophys Res Commun 283:469–479

    Article  PubMed  CAS  Google Scholar 

  85. Cardozo AK et al (2007) Cell-permeable peptides induce dose-and length-dependent cytotoxic effects. Biochim Biophys Acta 1768:2222–2234

    Article  PubMed  CAS  Google Scholar 

  86. Lien S, Lowman HB (2003) Therapeutic peptides. Trends Biotechnol 21:556–562

    Article  PubMed  CAS  Google Scholar 

  87. McGregor DP (2008) Discovering and improving novel peptide therapeutics. Curr Opin Pharmacol 8:616–619

    Article  PubMed  CAS  Google Scholar 

  88. Stevenson CL (2009) Advances in peptide pharmaceuticals. Curr Pharm Biotechnol 10:122–137

    Article  PubMed  CAS  Google Scholar 

  89. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    Article  PubMed  CAS  Google Scholar 

  90. Pichereau C, Allay C (2004) Therapeutic peptides under the spotlight. Eur Biopharm Rev 5:1–4

    Google Scholar 

  91. Brandes RP (2003) A radical adventure. The quest for specific functions and inhibitors of vascular NADPH oxidases. Circ Res 92:583–585

    Article  PubMed  CAS  Google Scholar 

  92. Valente AJ, El Jamali A, Epperson TK, Gamez MJ, Pearson DW, Clark RA (2007) NOX1 NADPH oxidase refulation by rgw NOXA1 SH3 domain. Free Rad Biol Med 43:384–396

    Article  PubMed  CAS  Google Scholar 

  93. Fauchere J, Pliska V (1983) Hydrophobic parameters of amino acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem Chim Ther 18:369–375

    CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was supported by: Israel Science Foundation grants 428/01, 19/05, and 49/09, the Roberts–Guthman Chair in Immunopharmacology, the Julius Friedrich Cohnheim–Minerva Center for Phagocyte Reserch, the Ela Kodesz Institute of Host Defense against Infectious Diseases, the Roberts Fund, the Milken–Lowell Fund, the Wallis Foundation, the Rubanenko Fund, the Walter J. Levy Benevolent Trust, and the Joseph and Shulamit Salomon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Pick.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00018-013-1473-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahan, I., Pick, E. Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases, or “All that you did and did not want to know about Nox inhibitory peptides”. Cell. Mol. Life Sci. 69, 2283–2305 (2012). https://doi.org/10.1007/s00018-012-1007-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1007-4

Keywords

Navigation